A Review of the Analytical Methods for the Determination of 4(5)-Methylimidazole in Food Matrices
Abstract
:1. Introduction
2. Formation of 4(5)-Methylimidazole
3. Content of 4(5)-Methylimidazole in Food Matrices
- Class I: Plain caramel color-E150 a;
- Class II: Sulfite caramel color-E150 b;
- Class III: Ammonia caramel color-E150 c;
- Class IV: Sulfite ammonia caramel color-E150 d.
4. Extraction Methods
Matrix | Extraction and Clean-Up | Detector | Column | Mobile Phase | Gradient | Flow Rate (mL min−1) | LOQ | Recovery (%) | Reference |
---|---|---|---|---|---|---|---|---|---|
Maillard reaction systems, cola soft drink | SCX Disc 15 mg/3 mL | MS/MS | Varian Polaris RP (100 mm × 4.6 mm, 3 μm) | A: ACN/15 mmol ammonia B: water/15 mmol ammonia | 0–3 min, 98% B; 10–15 min, 60% B; 17–20 min, 98% B | 0.4 | - | 102.5 ± 3.61 | [10] |
Caramel color, coffee, dark beer | Water extraction and 1 SPE with MCX 3 cc/60 mg, SCX 500 mg/3 mL, SCX Disc 15 mg/3 mL | 6 DAD: 215 nm 7 MS in 8 SIM mode | MetaChem Polaris C-18A (150 mm × 4.6 mm, 3.5 μm) | A: ACN B: 5 mmol L−1 ammonia in Milli-Q water | 0 min, 98% B; 10 min, 80% B; 15 min, 80% B; 20 min, 98% B | 0.4 | 48.3 ng mL−1 0.4 ng mL−1 | ≥98 | [17] |
Coffee | 2 SFE Water extraction and SPE with SCX Disc 15 mg/3 mL | DAD: 215 nm MS in SIM mode | Atlantis HILIC (150 mm × 2.1 mm, 3 μm) | A: MeOH B: 0.01 mol L−1 ammonium formate | Isocratic 20% B | 0.2 | 48.3 ng mL−1 0.4 ng mL−1 | 98.1 | [18] |
Caramel color | Dilution 10 times in water | DAD: 217 nm | XBridge Shield RP18 (150 mm × 4.6 mm, 3.5 μm) Hypercarb PGC (100 mm × 4.6 mm, 5 μm) | A: MeOH B: 10 mM ammonium formate pH 11 A: ACN B: 10 mM ammonium hydroxide pH 11 | 0–10 min, 100% B 11–20 min, 0 B; 21–30 min, 100% B; 0–20 min, 95% B; 21–27 min, 0% B; 28–30 min, 95% B | 0.7 0.7 | - | - | [19] |
Water, soil | 3 MIP–SPE, 4 NIP–SPE | UV-VIS: 220 nm | - | A: MeOH B: water | Isocratic 20% B | 0.5 | - | 96–102% (MIP-SPE), 34–39% for (NIP-SPE) | [20] |
Cigarette additives | Sonication and SPE | 9 PDA: 215 nm | Acquity UPLC BEH Hilic (100 mm × 2.1 mm, 1.7 μm) | A: ACN B: ammonium formate (5 mmol L−1) | Isocratic 20% B | 0.5 | - | 100.06–101.63 | [21] |
Beverages | SPE with Oasis MCX cartridge 5 DLLME with dansyl chloride derivatization | PDA: 254 nm | Waters Atlantis T3 column (250 mm × 4.6 mm, 5 μm) | A: Water B: ACN | 0–1 min, 40% B; 1–10 min, 60% B; 10–20 min, 80% B; 20–21 min, 40% B; 21–30 min, 40% B | 1.0 | 12.7 ng mL−1 | 91 | [22] |
Cola beverages | Addition of 10 MMIP and shaken for 15 min Separation and wash of MMIP with ACN/formic acid (9:1, v/v) by sonication | PDA: 233 nm | Sino-Chrom ODS-AP column (230 mm × 5 mm, 4.6 μm) | A: MeOH B: KH2PO4 (0.05 mol L−1) | Isocratic 90% B | 1.0 | 0.13 mmol L−1 | 90.19–104.29 | [23] |
Soy sauce, caramel color, Worcestershire sauce, carbonated soft drinks, canned coffee, dark beer | Dilution with water SPE C18 12 cc (2 g) | MS/MS 11 TOFMS | Scherzo SM-C18 (150 mm × 3 mm, 3 μm) | A: 10 mmol/L ammonium formate-water/acetonitrile (90:10) B: 150 mmol/L ammonium formate-water/ACN (30:70) | 0 min, 0% B; 8 min, 20% B; 10 min, 100% B; 21 min, 100% B; 21.1 min, 0% B; 36 min, 0% B | 0.3 | 0.7 ng mL−1 | 95.6–104.5 | [24] |
Cola, tea, beer, coffee beverages, bread, biscuit, instant coffee | QuEChERS extraction | MS/MS | Agilent Polaris C18-A (150 mm × 4.6 mm, 3.5 μm) | A: 5 mM ammonia in water B: ACN | 0 min, 5% B; 10 min, 40% B; 10.1 min, 95% B; 12 min, 95% B | 0.5 | 5–20 μg L−1 20–100 mg kg−1 | 91–113 | [25] |
Sauces, meat | Dillution with water, ultrasonication, centrifuge 8000 r/min, and SPE clean-up with PCX cartridge | MS/MS | Waters XBridge BEH Shield RP18 (150 mm × 3 mm, 3.5 μm) | A: 10 mmol L−1 ammonia in water B: MeOH | 0–10 min, 5% B; 11–15 min, 5% to 100% B; 15–20 min, 100% B | 0.3 | - | - | [26] |
Fermented soy sauce | QuEChERS-isotope dilution | MS/MS | Waters ACQUITY UPLC BEH HILIC (50 mm × 2.1 mm, 1.7 μm) | A: 0.1% formic acid in water B: ACN | 0–0.8 min, 5% B; 0.8–2.1 min, 5–80% B; 2.1–2.6 min, 80–95% B; 2.6–3.6 min, 95% B; 3.6–4.1 min, 95–5% B; 4.1–6.0 min, 5% B | 0.4 | 0.9 μg Kg−1 | 91.2–112.5 | [27] |
Beverages | 1,2-Dichloroethane, ACN and 13 C6-4-MeI were added in diluted samples, centrifuge at 5000× g, SPE clean-up | MS/MS | xBridge Shield RP C18 (250 mm × 4.6 mm, 5 μm) | A: 5 mmol L−1 100% ammonium acetate/0.1% formic acid B: MeOH | 0–5 min, 5% B; 5–6 min, 5%–100% B; for 6–15 min, 100% B; 15–16 min, 100%–5% B; 16–25 min, 5% B | 0.8 | 0.3 μg L−1 | 102.60–113.22 | [28] |
Various food matrices | Ultrasonication, addition of water and 0.1 M HCl, SPE clean-up with Oasis MCX 6 cc/150 mg | MS/MS | CORTECS HILIC (2.1 mm × 100 mm, 1.6 μm), Waters HSS T3 (150 mm × 2.1 mm, 1.8 µm) | A: 10 mM ammonium formate in 95/5 (v/v) ACN/water/0.1% formic acid B: 30 mM ammonium formate in 85/15 (v/v) ACN/water/0.1% formic acid | 0–1 min, 0% B; 1–5 min, 0–100% B; 5–6 min, 100% B; 6–6.1 min, 0% B; 6.1–10 min, 0% B | 0.25 | 5 mg kg−1 | 94–114 | [29] |
Various food matrices | Dilution with water, addition of PCX sorbent for micro SPE | 12 HRMS | Waters BEH HILIC (100 mm × 2.1 mm, 1.7 μm) | A: ACN B: 5 mM ammonium acetate in water | Isocratic 10% B | 0.2 | 1 mg kg−1 | 82.6–115.8 | [30] |
Soft drinks, sauces, vinegars | Dilution 1:5 using 5 mM ammonium formate in water, vortex, and centrifuge at 14.000 rpm | MS/MS | Discovery C18 (250 mm × 4.6 mm, 5 μm) | A: 5 mM ammonium formate in water B: MeOH | 0.1 min, 95% B; 10.0 min, 1% B; 10.1 min, 95% B for 7 min | 0.6 | 4.0 ng mL−1 | 84.2 ± 14.8 | [31] |
Various food matrices | Addition of MeOH/2% formic acid, homogenization at 1500 rpm, and centrifuge at 4000× g, SPE clean-up with Oasis MCX 6 cc/500 mg | MS/MS | Hypercarb Porous Graphitic Carbon (100 mm × 2.1 mm, 3 μm) | A: water/20 mM ammonium formate/0.1% formic acid B: MeOH/20 mM ammonium formate/0.1% formic acid | 0–1 min, 0% B; 1–2.25 min, 80% B; hold 0.75 min, 80% B; 0.1 min, 0% B in 0.1 min, and hold at 0% B for 0 min | 0.5 | 10 mg kg−1 | 102–108 | [32] |
Caramel colors, vinegar, and beverages | Dilution with water and addition of 0.02 mol/L hydrochloric acid | MS/MS | Polaris 3 C18-A (100 mm × 2.1 mm) | A: water/0.05% ammonia B: ACN | 0 min, 5% B; 3.0 min, 5% B; 5.0 min, 40% B; 5.1 min, 5% B; 6.5 min, 5% B | 0.3 | 4.5 µg L−1 | 70–110 | [33] |
Carbonated beverages | Dilution 10 times in water and addition of d6-4-MEI | MS/MS | XDB-C8 (150 mm × 4.6 mm, 5 μm) | A: 0.05% formic acid in water B: 0.05% formic acid in MeOH | 0–0.5 min, 20% B; 10 min, 100% B; 12 min, 100% B; 12–17 min, 20% B | 0.4 | 9.6 ng mL–1 | - | [34] |
Liquorice | Addition of MeOH/water (50/50 v/v), sonication for 15 min, removal of proteins, filtration | MS/MS | Poroshell 120 EC-C18 (50 mm × 4.6 mm, 2.7 μm) | A: 0.1% formic acid/MeOH (99.5/0.5 v/v) B: 0.05% ammonia solution/MeOH (90/10 v/v) | Isocratic 50% B | 0.45 | 0.07 mg Kg−1 | 99.4 | [35] |
Carbonated beverages | Dilution with water | MS/MS | KINETEX PFP (50 mm × 4.6 mm, 2.6 μm) | A: 0.1% formic acid in deionized water B: 0.1% formic acid in MeOH | 0–0.2 min, 5% B; 0.2–1.3 min, 80% B; 1.3–1.8 min, 80% B; 1.8–4 min, 5% B | 0.6 | 2 ng mL–1 | 94.7 ± 1.5 | [36] |
Beverages, sauces | 500 µL of sample + 20 µL of 0.1 M of HCl until 3 mL final volume with water SPE Strata™X-C 100 mg | MS/MS | Thermo Hypercarb (100 mm × 2.1 mm, 5 μm) | A: water B: MeOH | 0 min, 5% B; 11 min, 95% B; 13 min, 95% B; 15 min, 5% B | 0.3 | 5 ng mL–1 | 75.4–92.5 | [37] |
Caramel colors, cola | Dilution 1:20 with a mixture of mobile phase A:B (7:3, V:V), filtration with a membrane filter 0.2 μm | MS/MS | Gemini (Phenomenex) RP 18 (200 mm × 2 mm, 3 μm) | A: 5 mM NH4HCO3 in high-purity water (pH 9) B: 5 mM NH4HCO3 in MeOH (pH 9) | 0–8 min, 30% B; 8–13 min, 80% B; 13–17 min, 80% B; 17–20 min, 30% B; 20–35 min, 30% B | 0.2 | 80 μg L−1 | 98.4 | [38] |
Caramel color, sauces, curry, mixed drinks, vinegar, seasonings | Dilution with ACN, centrifuge at 5000 rpm, filtration with 0.2 μm syringe filter | MS/MS | Luna C18 (100 mm × 2 mm, 3 μm) | A: 5 mM NH4HCO3 (pH 9) B: 5 mM NH4HCO3 50 mL + 950 mL MeOH (pH 9) | Isocratic 30% B | 0.2 | 5 μg Kg−1 | 81.9 ± 0.9–111.0 ± 0.2 | [39] |
Soft drinks | Dilution 10 times in water and filtration with 13 PTFE, 0.22 μm | MS/MS | Eclipse Plus C8 (150 mm × 4.6 mm, 5 μm) | A: 0.05% formic acid in water/ammonium hydroxide (25%) pH 4 B: ACN | B = 0% at first, increased to B = 100% by 7 min | 0.4 | - | - | [40] |
Beverages | Dilution with water | MS/MS | Acclaim C30 reversed-phase (150 mm × 2.1 mm, 3 μm) | A: MeOH/5% ammonium hydroxide (0.7% in DI water) B: water | Isocratic 85% B | 0.3 | 1 ng mL−1 | 96.0–99.5 | [41] |
Caramel model systems | Dilution with water | MS/MS | Varian Polaris RP (100 mm × 4.6 mm, 3 μm) | A: water (15 mmol ammonium hydroxide) B: ACN (15 mmol ammonium hydroxide) | 0–3 min, 2% B; 10–13 min, 40% B; 15–25 min, 2% B; | 0.4 | - | 101.2 ± 1.8 | [78] |
Biscuits | Addition of MeOH, centrifuge, evaporation Addition of n-hexane, centrifuge, and filtration with a 0.2 μm PES membrane | MS/MS | Phenomenex kinetex C18 (100 mm × 3.0 mm, 2.6 μm) | A: 0.1% formic acid in water B: MeOH | 1 min, 5% B; 2 min, 10% B; 3.5 min, 80% B; 5 min, 80% B; 5.5 min, 5% B; 7 min, 5% B | 0.3 | 5 ng g−1 | 93–108 | [79] |
Soy sauce | MMIP | PDA: 233 nm | Sino-Chrom ODS-AP column (230 mm × 5 mm, 4.6 μm) | A: MeOH B: KH2PO4 (0.05 mol L−1) | Isocratic 88% B | 1.0 | 5.64 μg L−1 | 97.33–104.57 | [81] |
Biscuits | SPE with Oasis MCX cartridge DLLME with dansyl chloride derivatization | 14 QqQ-MS Ion trap-MS | Agilent Polaris C18-A (150 mm × 4.6 mm, 3.5 μm) | A: ACN B: 5 mM ammonium hydroxide in water A: water B:ACN | 0 min, 95% B; 10 min, 60% B; 10.1 min, 95% B; 12 min, 59% B; Isocratic 90% B; 15 min | 0.5 0.5 | 0.5 ng mL−1 0.2 ng mL−1 | 103–108 87–102 | [82] |
Matrix | Extraction and Clean-Up | Detector | Column | Conditions | Oven Temperature Program | LOQ | Recovery (%) | Reference |
---|---|---|---|---|---|---|---|---|
Caramel colors | Addition of 2-methylimidazole, 3 N sodium hydroxide, and Celite 545. Extraction with hot dichloromethane, evaporation, and addition of acetic anhydride | MS | HP5MS (30 m × 0.25 mm, 0.25 μm) | Split ratio of 30:1 at 240 °C | 75 °C for 10 min, then 320 °C | - | - | [19] |
Soft drinks | 1 SPME fibers (100 μm 2 PDMS, 65 μm 3 PDMS-DVB, 85 μm PA, 85 μm 4 CAR-PDMS) | MS | HP-InnoWax (60 m × 0.25 mm, 0.25 μm) | Splitless mode at 270 °C | 70 °C for 1 min, ramped to 250 °C at 15 °C min−1 | 6.0 μg L−1 | - | [40] |
Ammonia caramel color | Ion-pair extraction with 5 BEHPA, derivatization with isobutyl chloroformate | MS | DB-5 MS (30 m × 0.25 mm, 0.25 μm) | Splitless mode at 250 °C | 70 °C for 1 min, then 20 °C min−1 to 280 °C | 1 mg Kg−1 | 95–102 | [42] |
Coffee | Ion-pair extraction with BEHPA, derivatization with isobutyl or ethyl chloroformate | MS 6 FID | DB-5MS and DB-1701 (30 m × 0.25 mm, 0.25 μm) SP-Sil-8CB (25 m × 0.25 mm, 0.12 μm) | Splitless mode at 250 °C | 70 °C for 1 min, then two-step gradient to 280 °C after 16 min (10-min hold) | 0.04 mg kg−1 | 86.5–102.8 | [43] |
Soft drinks and dark beer | Ion-pair extraction with BEHPA, derivatization with ACN-isobutanol-pyridine (50:30:20) | MS | DB-5MS (15 m × 0.25 mm, 0.25 μm) | Splitless mode at 270 °C | 80 °C for 1 min, ramped to 280 °C at 30 °C min−1, held for 1.83 min. Total run time 9.5 min | 2.2 μg L−1 | 90–101 | [44] |
Caramel model systems | Ion-pair extraction with BEHPA, derivatization with ACN-isobutanol-pyridine (50:30:20), and isobutyl chloroformate | MS | DB-5 (30 m × 0.25 mm, 0.25 μm) | Splitless mode at 270 °C | 80 °C for 1 min, ramped to 280 °C at 30 °C min−1, held for 1.83 min | - | 84–111 | [45] |
Yellow rice wine and soy sauce | Sample mixed with d5-ethyl carbamate, homogenized and transferred to an alkaline diatomite SPE column, eluted with n-hexane and ethyl acetate | MS | DB-Innowax (30 m × 0.25 mm, 0.25 μm) | Splitless mode at 200 °C | 50 °C for 1 min, increased to 180 °C at 8 °C min, increased to 230 °C at 15 °C min−1, held for 2 min, increased to 240 °C, held for 5 min | 15 μg Kg−1 | 83.3–92.8 | [46] |
Brown colored foods and beverages | Ion-pair extraction with BEHPA, derivatization with ACN-isobutanol-pyridine (50:30:20), and isobutyl chloroformate | MS | DB-5MS (30 m × 0.25 mm, 0.25 μm) | Splitless mode at 270 °C | 80 °C for 1 min, ramped to 280 °C at 30 °C min−1, held for 1.83 min | 36.87 ng g−1 | 87–117 | [47] |
Red ginseng products | 7 DLLME with in situ derivatization | MS | DB-Wax (30 m × 0.25 mm, 0.25 μm) | Splitless mode at 200 °C | Ramped from 100 to 190 °C at 10 °C min−1, ramped from 190 to 220 °C at 15 °C min−1, maintained for 25 min at 220 °C | 5.79 μg L−1 | 89.86–109.09 | [49] |
Biscuits | Ion-pair extraction with BEHPA, derivatization with ACN-isobutanol-pyridine (50:30:20), and isobutyl chloroformate | MS | HP-5MS (30 m × 0.25 mm, 0.25 μm) | Splitless mode at 275 °C | 80 °C for 1 min, ramped to 280 °C at 30 °C min−1, held for 2 min | 53 ng mL−1 | - | [51] |
Coffee | Ion-pair extraction with BEHPA, derivatization with ACN-isobutanol-pyridine (50:30:20), and isobutyl chloroformate | MS | HP-5MS (30 m × 0.25 mm, 0.25 μm) | Splitless mode at 260 °C | 80 °C for 1 min, ramped to 280 °C at 30 °C min−1, held for 2 min | 49.02 ng mL−1 | 103.86–111.08 | [52] |
Balsamic vinegars, sauces | Ion-pair extraction with BEHPA, derivatization with ACN-isobutanol-pyridine (50:30:20), and isobutyl chloroformate | MS | DB-5 (30 m × 0.25 mm, 0.25 μm) | Splitless mode at 270 °C | 80 °C for 1 min, ramped to 280 °C at 30 °C min−1, held for 1.83 min. Total run time 9.5 min | - | 78–96 | [83] |
Coffee, coffee substitutes | Ion-pair extraction with BEHPA, derivatization with ACN-isobutanol-pyridine, and isobutyl chloroformate | MS | DB-5 MS (30 m × 0.25 mm, 0.25 μm) | Splitless mode at 270 °C | 80 °C for 1 min, ramped to 280 °C at 30 °C min−1, held for 1.83 min. Total run time 9.5 min | 10 μg Kg−1 | 97.3–98.2 | [84] |
Cola, dark beer | Direct derivatization with ACN-isobutanol-pyridine (50:30:20) and isobutyl chloroformate | MS/MS | DB-17 (30 m × 0.25 mm, 0.25 μm) | Splitless mode at 250 °C | 80 °C for 1 min, increase to 250 °C at 20 °C min−1, held for 2 min | 5.5 μg L−1 | 91–107 | [85] |
Ammonia caramel | Ion-pair extraction with BEHPA, derivatization with ACN-isobutanol-pyridine (5:3:2), and isobutyl chloroformate | MS/MS | RTX-5MS (10 m × 0.18 mm, 0.1 μm) | Splitless mode at 280 °C | 70 °C for 1 min, with temperature rise at a rate of 20 °C min−1, to 280 °C | 37.8 μg Kg−1 | 101 | [86] |
5. Analytical Methods
5.1. Liquid Chromatography
5.2. Gas Chromatography
5.3. Spectroscopic Techniques
5.4. Other Techniques
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
4(5)MEI | 4(5)-Methylimidazole |
LC | Liquid Chromatography |
GC | Gas Chromatography |
LC-MS | Liquid Chromatography-Mass Spectrometry |
HRMS | High Resolution Mass Spectrometry |
FID | Flame Ionization Detector |
GC-MS | Gas Chromatography-Mass Spectrometry |
SPE | Solid Phase Extraction |
SFE | Supercritical Fluid Extraction |
HPLC | High Performance Liquid Chromatography |
HILIC | Hydrophilic Interaction Chromatography |
MS | Mass Spectrometry |
QqQ-MS | Triple Quadrupole-Mass Spectrometry |
LOQ | Limit of Quantification |
DAD | Diode Array |
SIM | Single Ion Monitoring |
TOFMS | Time of Flight Mass Spectrometry |
PTFE | Polytetrafluoroethylene |
SPME | Solid Phase Microextraction |
PDA | Photodiode-Array Detection |
MIP-SPE | Molecularly Imprinted Polymer-Solid Phase Extraction |
NIP-SPE | Non-Imprinted Polymer- Solid Phase Extraction |
MMIP | Magnetic Molecularly Imprinted Polymer |
DLLME | Dispersive Liquid–Liquid Microextraction |
ic-ELISA | Indirect Competitive Enzyme-Linked Immunoassay |
HPCEC-PAD | High-Performance Cation Exchange Chromatography-PulsedIntegrated Amperometric Electrochemical Detection |
AMTC-PAD | Amino Trap Column- Pulsed Amperometric Detection |
BEHPA | Bis-2-ethylhexylphosphate |
PDMS | Polydimethylsiloxane |
PDMS-DVB | Polydimethylsiloxane-Divinylbenzene |
CAR-PDMS | Carboxen-Polydimethylsiloxane |
VA-IL-DLLM | Vortex Assisted-Ionic Liquid-Based Dispersive Liquid-Liquid Microextraction |
CSEI-sweeping-MEKC | Cation-Selective Exhaustive Injection and Sweeping Micellar Electrokinetic Chromatography |
References
- Grimmett, M.R. 4.08-Imidazoles and Their Benzo Derivatives: (iii) Synthesis and Applications. In Comprehensive Heterocyclic Chemistry; Katritzky, A.R., Rees, C.W., Eds.; Pergamon Press: New York, NY, USA, 1984; pp. 457–498. ISBN 978-0-08-096519-2. [Google Scholar]
- Xi, N.; Huang, Q.; Liu, L. Imidazoles. In Comprehensive Heterocyclic Chemistry III; Katritzky, A.R., Ramsden, C.A., Scriven, E.F.V., Taylor, R.J.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 143–364. ISBN 978-0-08-044992-0. [Google Scholar]
- Lei, D.; Ma, W.; Wang, L.; Zhang, D. Preparation of 2-Ethyl-4-Methylimidazole Derivatives as Latent Curing Agents and Their Application in Curing Epoxy Resin. J. Appl. Polym. Sci. 2015, 132, 42563. [Google Scholar] [CrossRef]
- Mehri, F.; Salimi, A.; Jamali, Z.; Kahrizi, F.; Faizi, M. Exposure to 4-Methylimidazole as a Food Pollutant Induces Neurobehavioral Toxicity in Mother and Developmental Impairments in the Offspring. Toxin Rev. 2020, 1–6. [Google Scholar] [CrossRef]
- Jonsson, T.; Emteborg, M.; Irgum, K. Heterocyclic Compounds as Catalysts in the Peroxyoxalate Chemiluminescence Reaction of Bis(2,4,6-Trichlorophenyl)Oxalate. Anal. Chim. Acta 1998, 361, 205–215. [Google Scholar] [CrossRef]
- Humans, I.W.G. 4-METHYLIMIDAZOLE. Available online: https://www.ncbi.nlm.nih.gov/books/NBK373183/ (accessed on 17 November 2021).
- Campos, R.B.; Menezes, L.R.A.; Barison, A.; Tantillo, D.J.; Orth, E.S. The Importance of Methyl Positioning and Tautomeric Equilibria for Imidazole Nucleophilicity. Chem. A Eur. J. 2016, 22, 15521–15528. [Google Scholar] [CrossRef]
- Li, G.-S.; Ruiz-López, M.F.; Maigret, B. Ab Initio Study of 4(5)-Methylimidazole in Aqueous Solution. J. Phys. Chem. A 1997, 101, 7885–7892. [Google Scholar] [CrossRef]
- Hengel, M.; Shibamoto, T. Carcinogenic 4(5)-Methylimidazole Found in Beverages, Sauces, and Caramel Colors: Chemical Properties, Analysis, and Biological Activities. J. Agric. Food Chem. 2013, 61, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.-K.; Shibamoto, T. Formation of Carcinogenic 4(5)-Methylimidazole in Maillard Reaction Systems. J. Agric. Food Chem. 2011, 59, 615–618. [Google Scholar] [CrossRef]
- Vollmuth, T.A. Caramel Color Safety—An Update. Food Chem. Toxicol. 2018, 111, 578–596. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 231/2012. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32012R0231 (accessed on 17 November 2021).
- Chan, PC. NTP technical report on the toxicity studies of 2- and 4-Methylimidazole (CAS No. 693-98-1 and 822-36-6) administered in feed to F344/N rats and B6C3F1 mice. Toxic Rep. Ser. 2004, 67, 1–12. [Google Scholar]
- Program, NT. Toxicology and Carcinogenesis Studies of 4-Methylimidazole (Cas No. 822-36-6) in F344/N Rats and B6C3F1 Mice (Feed Studies). Natl. Toxicol. Program. Tech. Rep. Ser. 2007, 535, 1–274. [Google Scholar]
- Monserrat, L. Notice of Amendment of Text Title 27, California Code of Regulations Amendment of Section 25705 Specific Regulatory Levels: No Significant Risk Levels 4-Methylimidazole (4-MEI). Available online: https://oehha.ca.gov/proposition-65/crnr/notice-amendment-text-title-27-california-code-regulations-amendment-section (accessed on 26 September 2021).
- Morita, T.; Uneyama, C. Genotoxicity Assessment of 4-Methylimidazole: Regulatory Perspectives. Genes Environ. 2016, 38, 20. [Google Scholar] [CrossRef] [Green Version]
- Klejdus, B.; Moravcová, J.; Lojková, L.; Vacek, J.; Kubáň, V. Solid-Phase Extraction of 4(5)-Methylimidazole (4MeI) and 2-Acetyl-4(5)-(1,2,3,4-Tetrahydroxybutyl)-Imidazole (THI) from Foods and Beverages with Subsequent Liquid Chromatographic-Electrospray Mass Spectrometric Quantification. J. Sep. Sci. 2006, 29, 378–384. [Google Scholar] [CrossRef]
- Lojková, L.; Klejdus, B.; Moravcová, J.; Kubáň, V. Supercritical Fluid Extraction (SFE) of 4(5)-Methylimidazole (4-MeI) and 2-Acetyl-4(5)-(1,2,3,4)-Tetrahydroxybutyl-Imidazole (THI) from Ground-Coffee with High-Performance Liquid Chromatographic-Electrospray Mass Spectrometric Quantification (HPLC/ESI-MS). Food Addit. Contam. 2006, 23, 963–973. [Google Scholar] [CrossRef] [PubMed]
- Moretton, C.; Crétier, G.; Nigay, H.; Rocca, J.-L. Quantification of 4-Methylimidazole in Class III and IV Caramel Colors: Validation of a New Method Based on Heart-Cutting Two-Dimensional Liquid Chromatography (LC-LC). J. Agric. Food Chem. 2011, 59, 3544–3550. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Fan, J.; Gao, X.; Wang, J. A Surface Molecularly Imprinted Polymer for Selective Extraction and Liquid Chromatographic Determination of 4-Methylimidazole in Environmental Samples. Adsorpt. Sci. Technol. 2013, 31, 791–806. [Google Scholar] [CrossRef]
- Zhu, Y.; Ren, H.; Wei, Y.; Bie, Z.; Ji, L. Determination of Imidazole, 4-Methylimidazole, and 2-Methylimidazole in Cigarette Additives by Ultra-High Performance Liquid Chromatography. Anal. Lett. 2015, 48, 2708–2714. [Google Scholar] [CrossRef]
- Wu, C.; Wang, L.; Li, H.; Yu, S. Combination of Solid-Phase Extraction with Microextraction Techniques Followed by HPLC for Simultaneous Determination of 2-Methylimidazole and 4-Methylimidazole in Beverages. Food Chem. 2020, 305, 125389. [Google Scholar] [CrossRef]
- Ye, H.; Chen, X.; Feng, Z. Preparations of Magnetic Molecularly Imprinted Polymer for Selective Recognition and Determination of 4-Methylimidazole in Soft Beverage by High Performance Liquid Chromatography. Adsorpt. Sci. Technol. 2017, 35, 37–54. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, H.; Masuda, T. Determination of 4(5)-Methylimidazole in Soy Sauce and Other Foods by LC-MS/MS after Solid-Phase Extraction. J. Agric. Food Chem. 2011, 59, 9770–9775. [Google Scholar] [CrossRef]
- Wu, C.; Wang, L.; Li, H.; Yu, S. Determination of 4(5)-Methylimidazole in Foods and Beverages by Modified QuEChERS Extraction and Liquid Chromatography-Tandem Mass Spectrometry Analysis. Food Chem. 2019, 280, 278–285. [Google Scholar] [CrossRef]
- Li, H.; Tang, X.; Wu, C.; Yu, S. Maillard Reaction in Chinese Household-Prepared Stewed Pork Balls with Brown Sauce: Potentially Risky and Volatile Products. Food Sci. Hum. Wellness 2021, 10, 221–230. [Google Scholar] [CrossRef]
- Zhang, L.; Li, C. Simultaneous Analysis of 2-Methylimidazole, 4-Methylimidazole, and 5-Hydroxymethylfurfural Potentially Formed in Fermented Soy Sauce by “Quick, Easy, Cheap, Effective, Rugged, and Safe” Purification and UHPLC with Tandem Mass Spectrometry. J. Sep. Sci. 2019, 42, 501–508. [Google Scholar] [CrossRef]
- Feng, T.-T.; Wu, J.-H.; Liang, X.; Du, M.; Qin, L.; Xu, X.-B. Isotope Dilution Determination for the Trace Level of 4(5)-Methylimidazole in Beverages Using Dispersive Liquid-Liquid Microextraction Coupled with ESI-HPLC–MS/MS. Food Chem. 2018, 245, 687–691. [Google Scholar] [CrossRef]
- Jacobs, G.; Voorspoels, S.; Vloemans, P.; Fierens, T.; Van Holderbeke, M.; Cornelis, C.; Sioen, I.; De Maeyer, M.; Vinkx, C.; Vanermen, G. Caramel Colour and Process By-Products in Foods and Beverages: Part I—Development of a UPLC-MS/MS Isotope Dilution Method for Determination of 2-Acetyl-4-(1,2,3,4-Tetrahydroxybutyl)Imidazole (THI), 4-Methylimidazole (4-MEI) and 2-Methylimidazol (2-MEI). Food Chem. 2018, 255, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Yan, P.; Lv, B.; Zhao, Y.; Wu, Y. Parallel Reaction Monitoring to Improve the Detection Performance of Carcinogenic 4-Methylimidazole in Food by Liquid Chromatography-High Resolution Mass Spectrometry Coupled with Dispersive Micro Solid-Phase Extraction. Food Control 2018, 88, 1–8. [Google Scholar] [CrossRef]
- Tzatzarakis, M.N.; Vakonaki, E.; Moti, S.; Alegakis, A.; Tsitsimpikou, C.; Tsakiris, I.; Goumenou, M.; Nosyrev, A.E.; Rizos, A.K.; Tsatsakis, A.M. Quantification of 4-Methylimidazole in Soft Drinks, Sauces and Vinegars of Greek Market Using Two Liquid Chromatography Techniques. Food Chem. Toxicol. 2017, 107, 565–571. [Google Scholar] [CrossRef]
- Mottier, P.; Mujahid, C.; Tarres, A.; Bessaire, T.; Stadler, R.H. Process-Induced Formation of Imidazoles in Selected Foods. Food Chem. 2017, 228, 381–387. [Google Scholar] [CrossRef]
- Wang, L.; Ren, B.; Liu, Y.; Lu, Y.; Chang, F.; Yang, L. 2-Acetyl-4-Tetrahydroxybutylimidazole and 4-Methylimidazole in Caramel Colours, Vinegar and Beverages in China. Food Addit. Contam. Part B 2015, 8, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Ratnayake, G.; Halldorson, T.; Bestvater, L.; Tomy, G.T. Determination of 4(5)-Methylimidazole in Carbonated Beverages by Isotope-Dilution Liquid Chromatography-Tandem Mass Spectrometry. Food Addit. Contam. Part A 2015, 32, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Raters, M.; Elsinghorst, P.W.; Goetze, S.; Dingel, A.; Matissek, R. Determination of 2-Methylimidazole, 4-Methylimidazole, and 2-Acetyl-4-(1,2,3,4-Tetrahydroxybutyl)Imidazole in Licorice Using High-Performance Liquid Chromatography–Tandem Mass Spectrometry Stable-Isotope Dilution Analysis. J. Agric. Food Chem. 2015, 63, 5930–5934. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.-H.; Shin, K.-O.; Seo, C.-H.; Lee, S.-H.; Yoo, H.-S.; Yoon, H.-R.; Kim, J.-W.; Lee, Y.-M. Quantification of 4-Methylimidazole in Carbonated Beverages by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. Arch. Pharm. Res. 2015, 38, 1363–1368. [Google Scholar] [CrossRef]
- Goscinny, S.; Hanot, V.; Trabelsi, H.; Van Loco, J. Determination of Caramel Colorants’ by-Products in Liquid Foods by Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS). Food Addit. Contam. Part A 2014, 31, 1652–1660. [Google Scholar] [CrossRef] [PubMed]
- Schlee, C.; Markova, M.; Schrank, J.; Laplagne, F.; Schneider, R.; Lachenmeier, D.W. Determination of 2-Methylimidazole, 4-Methylimidazole and 2-Acetyl-4-(1,2,3,4-Tetrahydroxybutyl)Imidazole in Caramel Colours and Cola Using LC/MS/MS. J. Chromatogr. B 2013, 927, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.R.; Kim, S.U.; Shin, Y.; Kim, J.Y.; Lee, S.M.; Kim, J.H. Determination of 4-Methylimidazole and 2-Acetyl-4()-Tetrahydroxybutylimidazole in Caramel Color and Processed Foods by LC-MS/MS. Prev. Nutr. Food Sci. 2013, 18, 263–268. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.-H.; Shin, H.-S. Simple Determination of 4-Methylimidazole in Soft Drinks by Headspace SPME GC–MS. Chromatographia 2013, 76, 97–101. [Google Scholar] [CrossRef]
- Wang, J.; Schnute, W.C. Simultaneous Quantitation of 2-Acetyl-4-Tetrahydroxybutylimidazole, 2- and 4-Methylimidazoles, and 5-Hydroxymethylfurfural in Beverages by Ultrahigh-Performance Liquid Chromatography–Tandem Mass Spectrometry. J. Agric. Food Chem. 2012, 60, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.O.; Ferreira, M.A. Gas Chromatographic-Mass Spectrometric Determination of 4-(5) Methylimidazole in Ammonia Caramel Colour Using Ion-Pair Extraction and Derivatization with Isobutylchloroformate. J. Chromatogr. A 1997, 786, 299–308. [Google Scholar] [CrossRef]
- Casal, S.; Fernandes, J.O.; Oliveira, M.B.P.P.; Ferreira, M.A. Gas Chromatographic–Mass Spectrometric Quantification of 4-(5-)Methylimidazole in Roasted Coffee after Ion-Pair Extraction. J. Chromatogr. A 2002, 976, 285–291. [Google Scholar] [CrossRef]
- Cunha, S.C.; Barrado, A.I.; Faria, M.A.; Fernandes, J.O. Assessment of 4-(5-)Methylimidazole in Soft Drinks and Dark Beer. J. Food Compos. Anal. 2011, 24, 609–614. [Google Scholar] [CrossRef]
- Seo, S.; Ka, M.-H.; Lee, K.-G. Reduction of Carcinogenic 4(5)-Methylimidazole in a Caramel Model System: Influence of Food Additives. J. Agric. Food Chem. 2014, 62, 6481–6486. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, L.; Wang, L.; Zhang, J.; Tan, Y.; Tang, J.; Ma, B.; Pan, X.; Jiang, W. Simultaneous Determination of Ethyl Carbamate and 4-(5-)Methylimidazole in Yellow Rice Wine and Soy Sauce by Gas Chromatography with Mass Spectrometry. J. Sep. Sci. 2014, 37, 2172–2176. [Google Scholar] [CrossRef]
- Lee, S.; Lee, K.-G. Analysis and Risk Assessment of 4(5)-Methylimidazole in Brown Colored Foods and Beverages. Food Addit. Contam. Part B 2016, 9, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.M.F.; Shuang, S.; Lai, H.Y.; Cheng, S.C.; Cheng, R.C.W.; Cheung, B.K.B.; Lee, A.W.M. Gas Chromatography-Mass Spectrometric Determination of Total Isothiocyanates in Chinese Medicinal Herbs. Anal. Chim. Acta 2004, 516, 155–163. [Google Scholar] [CrossRef]
- Lee, J.; Lee, Y.; Nam, T.G.; Jang, H.W. Dispersive Liquid–Liquid Microextraction with in Situ Derivatization Coupled with Gas Chromatography and Mass Spectrometry for the Determination of 4-Methylimidazole in Red Ginseng Products Containing Caramel Colors. J. Sep. Sci. 2018, 41, 3415–3423. [Google Scholar] [CrossRef]
- Wieczorek, M.N.; Jeleń, H.H. Volatile Compounds of Selected Raw and Cooked Brassica Vegetables. Molecules 2019, 24, 391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mousa, R.M.A. Simultaneous Mitigation of 4(5)-Methylimidazole, Acrylamide, and 5-Hydroxymethylfurfural in Ammonia Biscuits by Supplementing with Food Hydrocolloids. Food Sci. Nutr. 2019, 7, 3912–3921. [Google Scholar] [CrossRef]
- Hyong, S.; Chu, M.; Park, H.; Park, J.; Lee, K.-G. Analysis of α-Dicarbonyl Compounds and 4-Methylimidazole in Coffee Made with Various Roasting and Brewing Conditions. LWT 2021, 151, 112231. [Google Scholar] [CrossRef]
- Altunay, N.; Gürkan, R. Ion Pair Vortex Assisted-Ionic Liquid Based Dispersive Liquid-Liquid Microextraction for Selective Separation and Preconcentration of 4-Methylimidazole from Caramel Colour Drinks and Foodstuffs Prior to Its Spectrophotometric Determination. Microchem. J. 2019, 147, 999–1009. [Google Scholar] [CrossRef]
- Petruci, J.F.d.S.; Pereira, E.A.; Cardoso, A.A. Determination of 2-Methylimidazole and 4-Methylimidazole in Caramel Colors by Capillary Electrophoresis. J. Agric. Food Chem. 2013, 61, 2263–2267. [Google Scholar] [CrossRef]
- Li, A.; Wei, P.; Hsu, H.-C.; Cooks, R.G. Direct Analysis of 4-Methylimidazole in Foods Using Paper Spray Mass Spectrometry. Analyst 2013, 138, 4624–4630. [Google Scholar] [CrossRef]
- Shih, Y.-H.; Lirio, S.; Li, C.-K.; Liu, W.-L.; Huang, H.-Y. Determination of Imidazole Derivatives by Micellar Electrokinetic Chromatography Combined with Solid-Phase Microextraction Using Activated Carbon-Polymer Monolith as Adsorbent. J. Chromatogr. A 2016, 1428, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.-B.; Liu, D.-B.; Zhao, Y.; Yu, S.-J.; Zhao, Z.-G. Simultaneous Analysis of 2- and 4-Methylimidazole in Caramel Color and Soft Drinks Using IC-PAD with Post-Column Addition of Hydroxide. Food Anal. Methods 2015, 8, 467–473. [Google Scholar] [CrossRef]
- Wu, X.; Huang, M.; Yu, S.; Kong, F. Rapid and Quantitative Detection of 4(5)-Methylimidazole in Caramel Colours: A Novel Fluorescent-Based Immunochromatographic Assay. Food Chem. 2016, 190, 843–847. [Google Scholar] [CrossRef]
- Manshaei, F.; Bagheri, H.; Es-haghi, A. Turn-off Chelation-Enhanced Fluorescence Sensing of Carbon Dot-Metallic Deep Eutectic Solvent by Imidazole-Based Small Molecules. Sens. Actuators B Chem. 2021, 344, 130228. [Google Scholar] [CrossRef]
- Radzisewski, B. Ueber Glyoxalin Und Seine Homologe. Ber. Der Dtsch. Chem. Ges. 1882, 15, 2706–2708. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ho, C.-T. Flavour Chemistry of Methylglyoxal and Glyoxal. Chem. Soc. Rev. 2012, 41, 4140–4149. [Google Scholar] [CrossRef]
- Strecker, A. Notiz Über Eine Eigenthümliche Oxydation Durch Alloxan. Justus Liebigs Ann. Der Chem. 1862, 123, 363–365. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Hengel, M.; Pan, C.; Seiber, J.N.; Shibamoto, T. Determination of Toxic α-Dicarbonyl Compounds, Glyoxal, Methylglyoxal, and Diacetyl, Released to the Headspace of Lipid Commodities upon Heat Treatment. J. Agric. Food Chem. 2013, 61, 1067–1071. [Google Scholar] [CrossRef]
- Hollnagel, A.; Kroh, L.W. Formation of α-Dicarbonyl Fragments from Mono- and Disaccharides under Caramelization and Maillard Reaction Conditions. Z Lebensm Unters Forsch 1998, 207, 50–54. [Google Scholar] [CrossRef]
- Jang, H.W.; Jiang, Y.; Hengel, M.; Shibamoto, T. Formation of 4(5)-Methylimidazole and Its Precursors, α-Dicarbonyl Compounds, in Maillard Model Systems. J. Agric. Food Chem. 2013, 61, 6865–6872. [Google Scholar] [CrossRef]
- Wu, X.; Huang, M.; Kong, F.; Yu, S. Short Communication: Study on the Formation of 2-Methylimidazole and 4-Methylimidazole in the Maillard Reaction. J. Dairy Sci. 2015, 98, 8565–8571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Licht, B.H.; Shaw, K.; Smith, C.; Mendoza, M.; Orr, J.; Myers, D.V. Characterization of Caramel Colour IV. Food Chem. Toxicol. 1992, 30, 365–373. [Google Scholar] [CrossRef]
- Chappel, C.I.; Howell, J.C. Caramel Colours—A Historical Introduction. Food Chem. Toxicol. 1992, 30, 351–357. [Google Scholar] [CrossRef]
- Houben, G.F.; Penninks, A.H. Immunotoxicity of the Colour Additive Caramel Colour III; A Review on Complicated Issues in the Safety Evaluation of a Food Additive. Toxicology 1994, 91, 289–302. [Google Scholar] [CrossRef]
- Brusick, D.J.; Jagannath, D.R.; Galloway, S.M.; Nestmann, E.R. Genotoxicity Hazard Assessment of Caramel Colours III and IV. Food Chem. Toxicol. 1992, 30, 403–410. [Google Scholar] [CrossRef]
- Ciolino, L.A. Determination and Classification of Added Caramel Color in Adulterated Acerola Juice Formulations. J. Agric. Food Chem. 1998, 46, 1746–1753. [Google Scholar] [CrossRef]
- Allen, J.A.; Brooker, P.C.; Jones, E.; Adams, K.; Richold, M. Absence of Mutagenic Activity in Salmonella and of Clastogenic Activity in Cho Cells of Caramel Colours I, II, III and IV. Food Chem. Toxicol. 1992, 30, 389–395. [Google Scholar] [CrossRef]
- Yoshikawa, S.; Fujiwara, M. Determination of 4 (5)-Methylimidazole in Food by Thin Layer Chromatography. Food Hyg. Saf. Sci. (Shokuhin Eiseigaku Zasshi) 1981, 22, 189–196_1. [Google Scholar] [CrossRef] [Green Version]
- Muller, L.; Sivertsen, T.; Langseth, W. Ammoniated Forage Poisoning: Concentrations of Alkylimidazoles in Ammoniated Forage and in Milk, Plasma and Urine in Sheep and Cow. Acta Vet. Scand. 1998, 39, 511–514. [Google Scholar] [CrossRef]
- Müller, L.; Langseth, W.; Solheim, E.; Sivertsen, T. Ammoniated Forage Poisoning: Isolation and Characterization of Alkyl-Substituted Imidazoles in Ammoniated Forage and in Milk. J. Agric. Food Chem. 1998, 46, 3172–3177. [Google Scholar] [CrossRef]
- Moore-Testa, P.; Saint-Jalm, Y.; Testa, A. Identification and Determination of Imidazole Derivatives in Cigarette Smoke. J. Chromatogr. A 1984, 290, 263–274. [Google Scholar] [CrossRef]
- Klupinski, T.P.; Strozier, E.D.; Friedenberg, D.A.; Brinkman, M.C.; Gordon, S.M.; Clark, P.I. Identification of New and Distinctive Exposures from Little Cigars. Chem. Res. Toxicol. 2016, 29, 162–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.-G.; Jang, H.; Shibamoto, T. Formation of Carcinogenic 4(5)-Methylimidazole in Caramel Model Systems: A Role of Sulphite. Food Chem. 2013, 136, 1165–1168. [Google Scholar] [CrossRef]
- Wu, C.; Wang, L.; Guo, X.; Li, H.; Yu, S. Simultaneous Detection of 4(5)-Methylimidazole and Acrylamide in Biscuit Products by Isotope-Dilution UPLC-MS/MS. Food Control 2019, 105, 64–70. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Lu, Y.; Zhao, Y.; Ye, H. Fast Extraction and Detection of 4-Methylimidazole in Soy Sauce Using Magnetic Molecularly Imprinted Polymer by HPLC. Molecules 2017, 22, 1885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Wang, L.; Li, H.; Yu, S. Enhancement of Liquid Chromatography-Ion Trap Mass Spectrometry Analysis of 4(5)-Methylimidazole in Biscuits through Derivatization with Dansyl Chloride. J. Chromatogr. A 2019, 1596, 1–7. [Google Scholar] [CrossRef]
- Cunha, C.; Senra, L.; Fernandes, J.O.; Cunha, S.C. Gas Chromatography–Mass Spectrometry Analysis of 4-Methylimidazole in Balsamic Vinegars and Processed Sauces. Food Anal. Methods 2014, 7, 1519–1525. [Google Scholar] [CrossRef]
- Cunha, S.C.; Senra, L.; Cruz, R.; Casal, S.; Fernandes, J.O. 4-Methylimidazole in Soluble Coffee and Coffee Substitutes. Food Control 2016, 63, 15–20. [Google Scholar] [CrossRef]
- Choi, S.J.; Jung, M.Y. Simple and Fast Sample Preparation Followed by Gas Chromatography-Tandem Mass Spectrometry (GC-MS/MS) for the Analysis of 2- and 4-Methylimidazole in Cola and Dark Beer. J. Food Sci. 2017, 82, 1044–1052. [Google Scholar] [CrossRef]
- Wieczorek, M.N.; Przygoński, K.; Jeleń, H.H. Determination of 4-Methylimidazole in Ammonia Caramel Using Gas Chromatography–Tandem Mass Spectrometry (GC-MS/MS). J. Food Qual. 2018, 2018, 4696074. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, M.C.; Gómez-Hens, A.; Valcárcel, M. Individual and Joint Kinetic Fluorometric Determination of Imidazole and 4-Methylimidazole. Microchem. J. 1986, 34, 332–339. [Google Scholar] [CrossRef]
- Li, J.M.; Wang, Y.J.; Zou, N. Detemination of 4-Methyliminidazol in Soy Sauce by Ultraviolet-Visible Spectrometry. Chin. J. Spectrosc. Lab. (Chin. J.) 2008, 25, 84–87. [Google Scholar]
- Xu, X.-B.; Liu, D.-B.; Yu, S.-J.; Yu, P.; Zhao, Z.-G. Separation and Determination of 4-Methylimidazole, 2-Methylimidazole and 5-Hydroxymethylfurfural in Beverages by Amino Trap Column Coupled with Pulsed Amperometric Detection. Food Chem. 2015, 169, 224–229. [Google Scholar] [CrossRef]
- Wu, X.-L.; Yu, S.-J.; Kang, K.-R. Development of a Monoclonal Antibody-Based Indirect Competitive Immunosorbent Assay for 4(5)-Methylimidazole Detection in Caramels. Food Chem. 2015, 170, 354–359. [Google Scholar] [CrossRef]
- Shin, H.J.; Jang, H.W.; Ok, G. Highly Sensitive Detection of 4-Methylimidazole Using a Terahertz Metamaterial. Sensors 2018, 18, 4304. [Google Scholar] [CrossRef] [Green Version]
Matrice | Concentration (mg kg−1) | Reference |
---|---|---|
Ammonia caramel color-E150 c | N.D. 1–463 | [17,67,70,71] |
Sulfite ammonia caramel color-E150 d | N.D.–1276 | [67,70,71,72] |
Brown sugar | 0.12–0.16 | [53] |
Coffee | 0.31–1.24 | [17,18,43] |
Tea | 0.009–0.41 | [30] |
Black beer | N.D.–28.03 | [17,30] |
Soda | 0.30–0.36 | [10] |
Cola soft drinks | 0.05–0.10 | [25,53,73] |
Whiskey | N.D.–0.14 | [73] |
Wine | 0.04–0.23 | [30] |
Soy sauce | 0.03–3.51 | [29,30,48,73] |
Breakfast cereals | 0.14 | [29] |
Confectioneries | N.D.–0.78 | [73] |
Bread | N.D.–0.31 | [25,30] |
Biscuits | 0.04–0.19 | [25,29] |
Chocolate | 0.03–0.16 | [53] |
Honey | N.D.–0.09 | [30,53] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Revelou, P.-K.; Xagoraris, M.; Alissandrakis, E.; Pappas, C.S.; Tarantilis, P.A. A Review of the Analytical Methods for the Determination of 4(5)-Methylimidazole in Food Matrices. Chemosensors 2021, 9, 322. https://doi.org/10.3390/chemosensors9110322
Revelou P-K, Xagoraris M, Alissandrakis E, Pappas CS, Tarantilis PA. A Review of the Analytical Methods for the Determination of 4(5)-Methylimidazole in Food Matrices. Chemosensors. 2021; 9(11):322. https://doi.org/10.3390/chemosensors9110322
Chicago/Turabian StyleRevelou, Panagiota-Kyriaki, Marinos Xagoraris, Eleftherios Alissandrakis, Christos S. Pappas, and Petros A. Tarantilis. 2021. "A Review of the Analytical Methods for the Determination of 4(5)-Methylimidazole in Food Matrices" Chemosensors 9, no. 11: 322. https://doi.org/10.3390/chemosensors9110322
APA StyleRevelou, P. -K., Xagoraris, M., Alissandrakis, E., Pappas, C. S., & Tarantilis, P. A. (2021). A Review of the Analytical Methods for the Determination of 4(5)-Methylimidazole in Food Matrices. Chemosensors, 9(11), 322. https://doi.org/10.3390/chemosensors9110322