Paper-Based Device for Sweat Chloride Testing Based on the Photochemical Response of Silver Halide Nanocrystals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Equipment and Instrumentation
2.3. Fabrication of the Paper Devices
2.4. Samples
2.5. Experimental Procedure
3. Results
3.1. Sensing Mechanism
3.2. Optimization of the Assay
3.3. Analytical Merits and Selectivity
3.4. Stability Tests
3.5. Analysis of Real Samples
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Scotet, V.; Gutierrez, H.; Farrell, P.M. Newborn Screening for CF across the Globe—Where Is It Worthwhile? Int. J. Neonatal Screen. 2020, 6, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeGrys, V.A.; Yankaskas, J.R.; Quittell, L.M.; Marshall, B.C.; Mogayzel, P.J. Cystic Fibrosis Foundation Diagnostic sweat testing: the Cystic Fibrosis Foundation guidelines. J. Pediatr. 2007, 151, 85–89. [Google Scholar] [CrossRef]
- Collie, J.T.B.; Massie, R.J.; Jones, O.A.H.; LeGrys, V.A.; Greaves, R.F. Sixty-five years since the New York heat wave: Advances in sweat testing for cystic fibrosis. Pediatr. Pulmonol. 2014, 49, 106–117. [Google Scholar] [CrossRef]
- DeMarco, M.L.; Dietzen, D.J.; Brown, S.M. Sweating the small stuff: Adequacy and accuracy in sweat chloride determination. Clin. Biochem. 2015, 48, 443–447. [Google Scholar] [CrossRef]
- Gokdemir, Y.; Karadag, B.T. Sweat Testing and Recent Advances. Front. Pediatr. 2021, 9, 649904. [Google Scholar] [CrossRef]
- Zhang, C.; Kim, J.P.; Creer, M.; Yang, J.; Liu, Z. A smartphone-based chloridometer for point-of-care diagnostics of cystic fibrosis. Biosens. Bioelectron. 2017, 97, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, X.; Chon, C.; Gonska, T.; Li, D. A novel device for quantitative measurement of chloride concentration by fluorescence indicator. Meas. Sci. Technol. 2012, 23, 025701. [Google Scholar] [CrossRef]
- Mu, X.; Xin, X.; Fan, C.; Li, X.; Tian, X.; Xu, K.-F.; Zheng, Z. A paper-based skin patch for the diagnostic screening of cystic fibrosis. Chem. Commun. 2015, 51, 6365–6368. [Google Scholar] [CrossRef] [PubMed]
- De Matteis, V.; Cannavale, A.; Blasi, L.; Quarta, A.; Gigli, G. Chromogenic device for cystic fibrosis precocious diagnosis: A “point of care” tool for sweat test. Sens. Actuators B Chem. 2016, 225, 474–480. [Google Scholar] [CrossRef]
- Cinti, S.; Fiore, L.; Massoud, R.; Cortese, C.; Moscone, D.; Palleschi, G.; Arduini, F. Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat. Talanta 2018, 179, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Taghizadeh-Behbahani, M.; Hemmateenejad, B.; Shamsipur, M.; Tavassoli, A. A paper-based length of stain analytical device for naked eye (readout-free) detection of cystic fibrosis. Anal. Chim. Acta 2019, 1080, 138e145. [Google Scholar] [CrossRef]
- Rock, M.J.; Makholm, L.; Eickhoff, J. A new method of sweat testing: The CF Quantum® sweat test. J. Cyst. Fibros. 2014, 13, 520–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rock, M.; LeGrys, V. The CF quantum sweat test: Not ready for clinical use. Am. Soc. Clin. Lab. Sci. 2020, 30, ascls-119. [Google Scholar] [CrossRef] [Green Version]
- Kappi, F.A.; Tsogas, G.Z.; Routsi, A.-M.; Christodouleas, D.C.; Giokas, D.L. Paper-based devices for biothiols sensing using the photochemical reduction of silver halides. Anal. Chim. Acta 2018, 1036, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Harvey, C.J.; LeBouf, R.F.; Stefaniak, A.B. Formulation and stability of a novel artificial human sweat under conditions of storage and use. Toxicol. Vitr. 2010, 24, 1790–1796. [Google Scholar] [CrossRef]
- Choi, M.; Shin, K.-H.; Jang, J. Plasmonic photocatalytic system using silver chloride/silver nanostructures under visible light. J. Colloid Interface Sci. 2010, 341, 83–87. [Google Scholar] [CrossRef]
- Marchetti, A.P.; Eachus, R.S. The Photochemistry and Photophysics of the Silver Halides. In Advances in Photochemistry; Volman, D.H., Hammond, G.S., Neckers., D.C., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Bjelkhagen, H.I. Silver-Halide Recording Materials; Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 1995; Volume 66, ISBN 9783540586197. [Google Scholar]
- Funke, K. Solid State Ionics: From Michael Faraday to green energy—The European dimension. Sci. Technol. Adv. Mater. 2013, 14, 043502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brewer, P.; Brown, R. Effect of Structural Design of Silver/Silver Chloride Electrodes on Stability and Response Time and the Implications for Improved Accuracy in pH Measurement. Sensors 2009, 9, 118–130. [Google Scholar] [CrossRef]
- Hudson, R.A.; Farlow, G.C.; Slifkin, L.M. Individual formation parameters of charged point defects in ionic crystals: Silver chloride. Phys. Rev. B 1987, 36, 4651–4659. [Google Scholar] [CrossRef] [PubMed]
- Glaus, S.; Calzaferri, G. The band structures of the silver halides AgF, AgCl, and AgBr: A comparative study. Photochem. Photobiol. Sci. 2003, 2, 398. [Google Scholar] [CrossRef]
- Allen, E.; Triantaphillidou, S. (Eds.) The Manual of Photography and Digital Imaging; Routledge: Abingdon, UK, 2012; ISBN 9780080926803. [Google Scholar]
- Trivelli, A.P.H.; Sheppard, S.E. On the Visible Decomposition of Silver Halide Grains by Light. J. Phys. Chem. 1925, 29, 1568–1582. [Google Scholar] [CrossRef]
- Hamilton, J.F. Conventional Photographic Materials. In Handbook of Imaging Materials; Diamond, A.S., Weiss, D.S., Eds.; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9780367396572. [Google Scholar]
- Fujita, S. Organic Chemistry of Photography; Springer: Berlin/Heidelberg, Germany, 2004; ISBN 9783642059025. [Google Scholar]
- Kappi, F.A.; Papadopoulos, G.A.; Tsogas, G.Z.; Giokas, D.L. Low-cost colorimetric assay of biothiols based on the photochemical reduction of silver halides and consumer electronic imaging devices. Talanta 2017, 172, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Fischer, G. Stabilizers for Photographic Silver Halide Emulsions: Progress in Chemistry and Application; Springer: Boston, MA, USA, 2004; ISBN 9781461347965. [Google Scholar]
- Chaplan, C.A.; Mitchell, H.T.; Martinez, A.W. Paper-based standard addition assays. Anal. Methods 2014, 6, 1296–1300. [Google Scholar] [CrossRef] [Green Version]
- Giannoulas, G.; Tsogas, G.Z.; Giokas, D.L. Single-point calibration and standard addition assays on calibrant-loaded paper-based analytical devices. Talanta 2019, 201, 149–155. [Google Scholar] [CrossRef]
Calibration Range (mM) | Calibration Function | R2 | RSD (%, n = 5) | LOD (mM) a | |
---|---|---|---|---|---|
Chloride | 10–40 | y = 17.5 lnx − 20.4 | 0.97 | 5.81 (20 mM) | 2.7 |
40–140 | y = −0.15 x + 49.6 | 0.96 | 6.34 (50 mM) | - | |
Sample | Chloride (mM) | Spiked (mM) | Found (mM) | Recovery (%) | RSD (%, n = 5) |
---|---|---|---|---|---|
Artificial sweat | 23.0 | 0.0 | 24.5 | 106.5 | 6.4 |
10.0 | 31.7 | 94.3 | 6.9 | ||
40.0 | 63.5 | 102.1 | 5.8 | ||
Sweat 1 | 31.5 | 20.0 | 50.0 | 95.2 | 7.1 |
40.0 | 73.0 | 104.7 | 8.8 | ||
Sweat 2 | 27.6 | 20.0 | 49.0 | 105.1 | 6.7 |
40.0 | 70.0 | 108.7 | 7.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choleva, T.G.; Matiaki, C.; Sfakianaki, A.; Vlessidis, A.G.; Giokas, D.L. Paper-Based Device for Sweat Chloride Testing Based on the Photochemical Response of Silver Halide Nanocrystals. Chemosensors 2021, 9, 286. https://doi.org/10.3390/chemosensors9100286
Choleva TG, Matiaki C, Sfakianaki A, Vlessidis AG, Giokas DL. Paper-Based Device for Sweat Chloride Testing Based on the Photochemical Response of Silver Halide Nanocrystals. Chemosensors. 2021; 9(10):286. https://doi.org/10.3390/chemosensors9100286
Chicago/Turabian StyleCholeva, Tatiana G., Christina Matiaki, Afroditi Sfakianaki, Athanasios G. Vlessidis, and Dimosthenis L. Giokas. 2021. "Paper-Based Device for Sweat Chloride Testing Based on the Photochemical Response of Silver Halide Nanocrystals" Chemosensors 9, no. 10: 286. https://doi.org/10.3390/chemosensors9100286
APA StyleCholeva, T. G., Matiaki, C., Sfakianaki, A., Vlessidis, A. G., & Giokas, D. L. (2021). Paper-Based Device for Sweat Chloride Testing Based on the Photochemical Response of Silver Halide Nanocrystals. Chemosensors, 9(10), 286. https://doi.org/10.3390/chemosensors9100286