An Electronic Nose Technology to Quantify Pyrethroid Pesticide Contamination in Tea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Selection and Optimization of the Electronic Nose Sensor
2.3. Test Design
2.4. Data Extraction, Processing, and Model Establishment
2.4.1. Extraction of Data Eigenvalues of the Electronic Nose Sensor
2.4.2. Data Processing
2.4.3. Model Establishment and Verification
3. Results
3.1. Optimization of the Electronic Nose Sensor
3.2. Establishment of A Concentration Prediction Model of Pyrethroids
- Model I (Cyhalothrin): Y1 = −10.361 + 4.214 G/G0 W5S − 2.951 G/G0 W1S + 0.58 G/G0 W1W + 1.15 G/G0 W2W
- Model II (Bifenthrin): Y2 = −2.459 + 0.038G/G0 W5S + 2.351G/G0 W1S − 4.271G/G0 W1W + 2.364G/G0 W2W
- Model III (Fenpropathrin): Y3 = −5.3.74 + 3.462G/G0 W5S − 2.423G/G0 W1S + 1.386G/G0 W1W − 0.334G/G0 W2W
3.3. Validation of the Content Prediction Model
3.4. Identification of Pesticides by BP Neural Network
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wong, J.W.; Hennessy, M.K.; Hayward, D.G.; Krynitsky, A.J.; Cassias, I.; Schenck, F.J. Analysis of organophosphorus pesticides in dried ground ginseng root by capillary gas chromatography-mass spectrometry and -flame photometric detection. J. Agric. Food Chem. 2007, 55, 1117–1128. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.W.; Zhang, K.; Shi, F.; Hayward, D.G.; Makovi, C.M.; Krynitsky, A.J.; Tech, K.; Di Benedetto, A.L.; Lee, N.S. Multiresidue Pesticide Analysis of Ginseng and Other Botanical Dietary Supplements. ACS Symp. Ser. 2011, 1081, 333–350. [Google Scholar]
- Feng, J.; Tang, H.; Chen, D.Z.; Li, L. Monitoring and Risk Assessment of Pesticide Residues in Tea Samples from China. Hum. Ecol. Risk Assess. 2015, 21, 169–183. [Google Scholar] [CrossRef]
- Ding, Y.N.; Tong, X.L.; Lai, G.Y.; Xu, D.M.; Lin, L.Y.; Huang, Y.J.; Zhang, Z.G. Study on the limit standards of pesticide residues in tea at home and abroad and the safety of exported tea. Food Safe Qual. Detec. Technol. 2019, 10, 8140–8145. [Google Scholar]
- Liu, Y.; Gao, L. On the problem of pesticide residue limits in expanding tea export and legal countermeasures. Anhui Agric. Sci. Bull. 2017, 23, 3–7. [Google Scholar]
- Zheng, L.Z. Studies on the Impact Factors of Tea Farmers’ Application of Pesticides. Ph.D. Thesis, Fujian agricultural and Forestry University, Fuzhou, China, 2009. [Google Scholar]
- An, Z.Y. Problems in the safe use of pesticides in tea gardens and scientific methods of use. Agric. Dev. Equip. 2016, 3, 143–144. [Google Scholar]
- Wei, G.X.; Huang, J.K.; Yang, J. The impacts of food safety standards on China’s tea exports. China Econ. Rev. 2012, 23, 253–264. [Google Scholar] [CrossRef]
- Chen, J.; Rui, J.M.; Liu, X.R. Analysis of Tea pesticide residue standards and testing methods. In Proceedings of the 2016 6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer (MMEBC), Tianjin, China, 11–12 June 2016; Volume 88, pp. 876–879. [Google Scholar]
- Hua, N.Z. Progress and trend of pyrethroid pesticide. Pestic. Mark. News 2015, 2, 26–28. [Google Scholar]
- Zeng, M.S.; Xia, H.L.; Ma, X.J. Dynamics of degradation of bifenthrin residues in tea plantations and their varieties and regional differences. In Proceedings of the 2012 Agricultural Product Safety and Quality Control Exchange Seminar, BeiJing, China, 16 November 2012. [Google Scholar]
- Kanrar, B.; Mandal, S.; Bhattacharyya, A. Validation and uncertainty analysis of a multiresidue method for 42 pesticides in made tea, tea infusion and spent leaves using ethyl acetate extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 1926–1933. [Google Scholar] [CrossRef]
- Zhang, X.; Mobley, N.; Zang, J.G.; Zheng, X.M.; Lu, L.; Ragin, O.; Smith, C.J. Analysis of Agricultural Residues on Tea Using d-SPE Sample Preparation with GC-NCI-MS and UHPLC-MS/MS. J. Agric. Food Chem. 2010, 58, 11553–11560. [Google Scholar] [CrossRef]
- Deng, X.J.; Guo, Q.J.; Chen, X.P.; Xue, T.; Wang, H.; Yao, P. Rapid and effective sample clean-up based on magnetic multiwalled carbon nanotubes for the determination of pesticide residues in tea by gas chromatography-mass spectrometry. Food Chem. 2014, 145, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C. Multiresidue method for the determination of pesticides in Oolong tea using QuEChERS by gas chromatography-triple quadrupole tandem mass spectrometry. Food Chem. 2017, 229, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.Q.; Li, S.H.; Feng, H.; Yang, Y.J.; Xiao, B.; Chen, D.W. An enhanced sensitivity and cleanup strategy for the nontargeted screening and targeted determination of pesticides in tea using modified dispersive solid-phase extraction and cold-induced acetonitrile aqueous two-phase systems coupled with liquid chromatography-high resolution mass spectrometry. Food Chem. 2019, 275, 530–538. [Google Scholar] [PubMed]
- Tan, S.L.; Teo, H.S.; Garcia-Guzman, J. E-nose Screening of Pesticide Residue on Chilli and Double-checked Analysis through Different Data-recognition Algorithms. In Proceedings of the 7th IEEE Electronics, Robotics and Automotive Mechanics Conference(CERMA), SEP 28-OCT 01, Cuernavaca, Mexico, 28 September–1 October 2010. [Google Scholar]
- Wang, C.L.; Huang, W.Y. Electronic nose system for the recognition of pesticides based on the characteristic ratios method. J. Transduct. Technol. 2006, 3, 573–576, 580. [Google Scholar]
- Wang, G.M. Research on Feature Extraction Method in Detection of Pesticide Residues in Vegetables Based on Electronic Nose. Master’s Thesis, Henan University of science and technology, Luoyang, China, 2009. [Google Scholar]
- Ortiz, J.; Gualdron, O.; Duran, C. Detection of pesticide in fruits using an electronic nose. AJBAS 2016, 10, 107–113. [Google Scholar]
- GB 2763-2019 National Food Safety Standard-Maximum Residue Limits for Pesticides in Food. Available online: http://www.nbgen.com/index.php?case=archive&act=show&aid=138 (accessed on 15 March 2020).
- Fu, J.M.; Geng, Q.; Wang, M.K.; Huang, X.Q.; Han, X.Y. Diagnosis of nitrogen nutrition in fresh tea leaves with electronic nose and spectrophotometer. Plant Nutr. Fert. Sci. 2019, 25, 1413–1421. [Google Scholar]
- Gutierrez-Osuna, R.; Nagle, H.T. A method for evaluating data-preprocessing techniques for odor classification with an array of gas sensors. IEEE Trans. Syst. Man Cybern. Part B-Cybern. 1999, 29, 626–632. [Google Scholar] [CrossRef] [Green Version]
- Rogers, P.H.; Benkstein, K.D.; Semancik, S. Machine Learning Applied to Chemical Analysis: Sensing Multiple Biomarkers in Simulated Breath Using a Temperature-Pulsed Electronic-Nose. Anal. Chem. 2012, 84, 9774–9781. [Google Scholar] [CrossRef]
- Martinelli, E.; Magna, G.; Vergara, A.; Di Natale, C. Cooperative classifiers for reconfigurable sensor arrays. Sens. Actuators B Chem. 2014, 199, 83–92. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.L.; Chang, Y.Q. Reconstruction in integrating fault spaces for fault identification with kernel independent component analysis. Chem. Eng. Res. Des. 2013, 91, 1071–1084. [Google Scholar] [CrossRef]
- Sisk, B.C.; Lewis, N.S. Comparison of analytical methods and calibration methods for correction of detector response drift in arrays of carbon black-polymer composite vapor detectors. Sens. Actuators B Chem. 2005, 104, 249–268. [Google Scholar] [CrossRef]
- Zheng, X.Q.; Li, Q.S.; Xiang, L.P.; Liang, Y.R. Recent advances in volatiles of teas. Molecules 2016, 21, 338. [Google Scholar] [CrossRef] [PubMed]
- Peluso, I.; Serafini, M. Antioxidants from black and green tea: From dietary modulation of oxidative stress to pharmacological mechanisms. Brit. J. Pharmacol. 2017, 174, 1195–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.Z.; Wan, X.C.; Shi, Z.P.; Gao, L.P. Variations of respiration rate, β-Glucosidase activity, volatiles, and glycosidic aroma precursors during spreading fresh tea leaves. Plant Physiol. Comm. 2003, 39, 134–137. [Google Scholar]
- Zheng, P.P.; Ye, F.; Gao, S.W.; Wang, X.P.; Gong, Z.M. Effect of spreading time on aroma components in fresh tea leaves. Chin. Agric. Sci. Bull. 2011, 27, 334–338. [Google Scholar]
- Ho, C.T.; Zheng, X.; Li, S.M. Tea aroma formation. Food Sci. Hum. Wellness 2015, 4, 9–27. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.X.; Rana, M.M.; Liu, G.F.; Gao, M.J.; Li, D.X.; Wu, F.G.; Li, X.B.; Wan, X.C.; Wei, S. Green tea flavour determinants and their changes over manufacturing processes. Food Chem. 2016, 212, 739–748. [Google Scholar] [CrossRef]
- Zhang, W.L.; Tian, F.C.; Song, A.; Hu, Y.W. Research on electronic nose system based on continuous wide spectral gas sensing. Microchem. J. 2018, 140, 1–7. [Google Scholar] [CrossRef]
Sensor Name | Performance Description |
---|---|
W1C | Sensitive to aromatic compounds |
W5S | Very sensitive to oxynitride |
W3C | Sensitive to ammonia and aromatic compounds such as benzene |
W6S | Sensitive to hydrogen |
W5C | Sensitive to alkane such as propane and aromatic compounds |
W1S | Sensitive to methane |
W1W | Sensitive to sulfur compounds such as hydrogen sulfide |
W2S | Sensitive to alcohols and aldehydes and ketones |
W2W | Sensitive to aromatic compounds and organic sulfur compounds |
W3S | Sensitive to alkane such as methane |
Prediction Model | Item | Square Sum | df | Mean Square | F | P |
---|---|---|---|---|---|---|
Model Ⅰ | Regression | 34268.483 | 4 | 8567.121 | 879.946 | 0.000 |
Residue | 681.517 | 70 | 9.736 | |||
Total | 34950.000 | 74 | ||||
Model Ⅱ | Regression | 3741.735 | 4 | 935.434 | 759.061 | 0.000 |
Residue | 86.265 | 70 | 1.232 | |||
Total | 3828.000 | 74 | ||||
Model Ⅲ | Regression | 3765.806 | 4 | 941.451 | 1059.609 | 0.000 |
Residue | 62.194 | 70 | 0.888 | |||
Total | 3828.000 | 74 |
Sample | ModelⅠ (Cyhalothrin) | ModelⅡ (Bifenthrin) | ModelⅢ (Fenpropathrin) | Actual Concentration (Model Ⅰ\Ⅱ\Ⅲ) |
---|---|---|---|---|
1 | −0.29 | 0.54 | −0.78 | 0\0\0 |
2 | 0.77 | −0.23 | 0.51 | 0\0\0 |
3 | 0.72 | −0.32 | 0.50 | 0\0\0 |
4 | −0.253 | 2.34 * | −0.53 | 0\0\0 |
5 | 0.723 | −0.47 | −0.44 | 0\0\0 |
6 | 3.25 | 2.33 | −0.05 * | 5\2\2 |
7 | 3.78 | 2.54 | 1.56 | 5\2\2 |
8 | 3.56 | 2.13 | 2.54 | 5\2\2 |
9 | 6.08 | 2.57 | 2.41 | 5\2\2 |
10 | 4.47 | 2.33 | 2.62 | 5\2\2 |
11 | 15.62 | 4.32 | 5.24 | 15\5\5 |
12 | 15.50 | 6.45 | 4.74 | 15\5\5 |
13 | 15.03 | 5.87 | 8.32 * | 15\5\5 |
14 | 15.59 | 5.38 | 6.12 | 15\5\5 |
15 | 14.52 | 4.76 | 5.98 | 15\5\5 |
16 | 31.83 | 7.22 * | 10.73 | 30\10\10 |
17 | 31.79 | 10.04 | 10.98 | 30\10\10 |
18 | 30.93 | 9.61 | 12.04 * | 30\10\10 |
19 | 29.33 | 9.76 | 9.17 | 30\10\10 |
20 | 29.68 | 9.95 | 9.03 | 30\10\10 |
21 | 61.99 | 20.33 | 19.25 | 60\20\20 |
22 | 60.67 | 19.44 | 20.97 | 60\20\20 |
23 | 60.93 | 20.27 | 20.82 | 60\20\20 |
24 | 63.13 * | 19.98 | 19.70 | 60\20\20 |
25 | 60.11 | 19.15 | 19.59 | 60\20\20 |
Accuracy rate: | 96% | 92% | 88% | \ |
BP Neural Network Model | Amount of Samples | Number of Training Samples | Number of Untrained Samples | Number of Training Sample Error Recognition | Number of Untrained Sample Error Recognition | Recognition Accuracy/% |
---|---|---|---|---|---|---|
Three-hidden-layer | 240 | 200 | 40 | 3 | 0 | 98.75 |
Two-hidden-layer | 240 | 200 | 40 | 7 | 0 | 97.08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Xiao, W.; Shang, T.; Zhang, S.; Han, X.; Wang, Y.; Sun, H. An Electronic Nose Technology to Quantify Pyrethroid Pesticide Contamination in Tea. Chemosensors 2020, 8, 30. https://doi.org/10.3390/chemosensors8020030
Tang X, Xiao W, Shang T, Zhang S, Han X, Wang Y, Sun H. An Electronic Nose Technology to Quantify Pyrethroid Pesticide Contamination in Tea. Chemosensors. 2020; 8(2):30. https://doi.org/10.3390/chemosensors8020030
Chicago/Turabian StyleTang, Xiaoyan, Wenmin Xiao, Tao Shang, Shanyan Zhang, Xiaoyang Han, Yuliang Wang, and Haiwei Sun. 2020. "An Electronic Nose Technology to Quantify Pyrethroid Pesticide Contamination in Tea" Chemosensors 8, no. 2: 30. https://doi.org/10.3390/chemosensors8020030
APA StyleTang, X., Xiao, W., Shang, T., Zhang, S., Han, X., Wang, Y., & Sun, H. (2020). An Electronic Nose Technology to Quantify Pyrethroid Pesticide Contamination in Tea. Chemosensors, 8(2), 30. https://doi.org/10.3390/chemosensors8020030