The Electronic Nose Coupled with Chemometric Tools for Discriminating the Quality of Black Tea Samples In Situ
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tea Sample Preparation
2.2. Electronic Nose Apparatus and Analysis
2.3. E-nose Raw Signal Profiles and Data Preprocessing
2.4. Statistical Analysis Using Unsupervised and Supervised Pattern Recognition Tools
3. Results and Discussion
3.1. Principal Component Analysis: E-nose Performance for Tea Quality Classification
3.2. Supervised Multivariate Classification Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lelono, D.; Triyana, K.; Hartati, S.; Istiyanto, J.E. Development of Electronic Nose with High Stable Sample Heater to Classify Quality Levels of Local Black Tea. Int. J. Adv. Sci. Eng. Inf. Technol. 2017, 7, 352–358. [Google Scholar] [CrossRef]
- Lelono, D.; Triyana, K.; Hartati, S.; Istiyanto, J.E. Classification of Indonesia black teas based on quality by using electronic nose and principal component analysis. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2016; Volume 1755, p. 020003. [Google Scholar]
- Zhi, R.; Zhao, L.; Zhang, D. A Framework for the Multi-Level Fusion of Electronic Nose and Electronic Tongue for Tea Quality Assessment. Sensors 2017, 17, 1007. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Luo, L.; He, Y.; Xu, N. Determination of dry matter content of tea by near and middle infrared spectroscopy coupled with wavelet-based data mining algorithms. Comput. Electron. Agric. 2013, 98, 46–53. [Google Scholar] [CrossRef]
- Li, L.; Xie, S.; Zhu, F.; Ning, J.; Chen, Q.; Zhang, Z. Colorimetric sensor array-based artificial olfactory system for sensing Chinese green tea’s quality: A method of fabrication. Int. J. Food Prop. 2017, 20, 1–12. [Google Scholar] [CrossRef]
- Loutfi, A.; Coradeschi, S.; Mani, G.K.; Shankar, P.; Rayappan, J.B.B. Electronic noses for food quality: A review. J. Food Eng. 2015, 144, 103–111. [Google Scholar] [CrossRef]
- Gong, X.; Han, Y.; Zhu, J.; Hong, L.; Zhu, D.; Liu, J.; Zhang, X.; Niu, Y.; Xiao, Z. Identification of the aroma-active compounds in Longjing tea characterized by odor activity value, gas chromatography-olfactometry, and aroma recombination. Int. J. Food Prop. 2017, 20, S1107–S1121. [Google Scholar] [CrossRef]
- Li, H.; Zhang, B.; Hu, W.; Liu, Y.; Dong, C.; Chen, Q. Monitoring black tea fermentation using a colorimetric sensor array-based artificial olfaction system. J. Food Process. Preserv. 2018, 42, e13348. [Google Scholar] [CrossRef]
- Alcázar, A.; Ballesteros, O.; Jurado, J.M.; Pablos, F.; Martín, M.J.; Vilches, J.L.; Navalón, A. Differentiation of Green, White, Black, Oolong, and Pu-erh Teas According to Their Free Amino Acids Content. J. Agric. Food Chem. 2007, 55, 5960–5965. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, J.; Cheng, S. Discrimination among tea plants either with different invasive severities or different invasive times using MOS electronic nose combined with a new feature extraction method. Comput. Electron. Agric. 2017, 143, 293–301. [Google Scholar] [CrossRef]
- GB/T 23776-2009. Methodology of Sensory Evaluation of Tea. Available online: https://webstore.ansi.org/standards/spc/gb237762009 (accessed on 8 July 2019).
- Badan Standarisasi Nasional SNI: 1902:2016. Available online: https://www.scribd.com/document/322613336/SNI-1902-2016 (accessed on 8 July 2019).
- Li, X.; Sun, C.; Luo, L.; He, Y. Determination of tea polyphenols content by infrared spectroscopy coupled with iPLS and random frog techniques. Comput. Electron. Agric. 2015, 112, 28–35. [Google Scholar] [CrossRef]
- Ghosh, S.; Tudu, B.; Bhattacharyya, N.; Bandyopadhyay, R. A recurrent Elman network in conjunction with an electronic nose for fast prediction of optimum fermentation time of black tea. Neural Comput. Appl. 2017, 31, 1–7. [Google Scholar] [CrossRef]
- Tazi, I.; Triyana, K.; Siswanta, D.; Veloso, A.C.A.; Peres, A.M.; Dias, L.G. Dairy products discrimination according to the milk type using an electrochemical multisensor device coupled with chemometric tools. J. Food Meas. Charact. 2018, 12, 2385–2393. [Google Scholar] [CrossRef] [Green Version]
- Brenet, S.; John-Herpin, A.; Gallat, F.X.; Musnier, B.; Buhot, A.; Herrier, C.; Rousselle, T.; Livache, T.; Hou, Y. Highly-Selective Optoelectronic Nose Based on Surface Plasmon Resonance Imaging for Sensing Volatile Organic Compounds. Anal. Chem. 2018, 90, 9879–9887. [Google Scholar] [CrossRef]
- Hidayat, S.N.; Triyana, K. Optimized back-propagation combined with radial basic neural network for improving performance of the electronic nose: Case study on the fermentation process of tempeh. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2016; Volume 1755. [Google Scholar]
- Triyana, K.; Taukhid Subekti, M.; Aji, P.; Nur Hidayat, S.; Rohman, A. Development of Electronic Nose with Low-Cost Dynamic Headspace for Classifying Vegetable Oils and Animal Fats. Appl. Mech. Mater. 2015, 771, 50–54. [Google Scholar] [CrossRef]
- Hidayat, S.N.; Nuringtyas, T.R.; Triyana, K. Electronic Nose Coupled with Chemometrics for Monitoring of Tempeh Fermentation Process. In Proceedings of the 4th International Conference on Science and Technology (ICST), Yogyakarta, Indonesia, 7–8 August 2018; Volume 1, pp. 1–6. [Google Scholar]
- Julian, T.; Hidayat, S.N.; Triyana, K. Metal Oxide Semiconductor Based Electronic Nose as Classification and Prediction Instrument for Nicotine Concentration in Unflavoured Electronic Juice. In Proceedings of the 4th International Conference on Science and Technology (ICST), Yogyakarta, Indonesia, 7–8 August 2018; Volume 1, pp. 1–5. [Google Scholar]
- Arshak, K.; Moore, E.; Lyons, G.M.; Harris, J.; Clifford, S. A Review of Gas Sensors Employed in Electronic Nose Applications; Emerald Group Publishing: Bingley, UK, 2004; Volume 24, ISBN 0260228001. [Google Scholar]
- Biswas, P.; Chatterjee, S.; Kumar, N.; Singh, M.; Basu Majumder, A.; Bera, B. Integrated Determination of Tea Quality Based on Taster’s Evaluation, Biochemical Characterization and Use of Electronics. In Smart Sensors, Measurement and Instrumentation; Springer: Berlin, Germany, 2014; pp. 95–117. [Google Scholar]
- Saha, P.; Ghorai, S.; Tudu, B.; Bandyopadhyay, R.; Bhattacharyya, N. Multiclass Kernel Classifiers for Quality Estimation of Black Tea Using Electronic Nose. In Smart Sensors, Measurement and Instrumentation; Springer: Berlin, Germany, 2014; pp. 141–160. [Google Scholar]
- Saha, P.; Ghorai, S.; Tudu, B.; Bandyopadhyay, R.; Bhattacharyya, N. Optimization of Sensor Array in Electronic Nose by Combinational Feature Selection Method. In Smart Sensors, Measurement and Instrumentation; Springer: Berlin, Germany, 2014; pp. 189–205. [Google Scholar]
- Chen, Q.; Liu, A.; Zhao, J.; Ouyang, Q. Classification of tea category using a portable electronic nose based on an odor imaging sensor array. J. Pharm. Biomed. Anal. 2013, 84, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhao, J.; Chen, Z.; Lin, H.; Zhao, D.-A. Discrimination of green tea quality using the electronic nose technique and the human panel test, comparison of linear and nonlinear classification tools. Sensors Actuators B Chem. 2011, 159, 294–300. [Google Scholar] [CrossRef]
- Yu, H.; Wang, J.; Xiao, H.; Liu, M. Quality grade identification of green tea using the eigenvalues of PCA based on the E-nose signals. Sens. Actuators B Chem. 2009, 140, 378–382. [Google Scholar] [CrossRef]
- Yu, H.; Wang, J.; Zhang, H.; Yu, Y.; Yao, C. Identification of green tea grade using different feature of response signal from E-nose sensors. Sens. Actuators B Chem. 2008, 128, 455–461. [Google Scholar] [CrossRef]
- Yu, H.; Wang, J. Discrimination of LongJing green-tea grade by electronic nose. Sensors Actuators B Chem. 2007, 122, 134–140. [Google Scholar] [CrossRef]
- Dai, Y.; Zhi, R.; Zhao, L.; Gao, H.; Shi, B.; Wang, H. Longjing tea quality classification by fusion of features collected from E-nose. Chemom. Intell. Lab. Syst. 2015, 144, 63–70. [Google Scholar] [CrossRef]
- Ralisnawati, D.; Sukartiko, A.C.; Suryandono, A.; Triyana, K. Detecting aroma changes of local flavored green tea (Camellia sinensis) using electronic nose. IOP Conf. Ser. Earth Environ. Sci. 2018, 131, 012004. [Google Scholar] [CrossRef] [Green Version]
- Banerjee(Roy), R.; Tudu, B.; Shaw, L.; Jana, A.; Bhattacharyya, N.; Bandyopadhyay, R. Instrumental testing of tea by combining the responses of electronic nose and tongue. J. Food Eng. 2012, 110, 356–363. [Google Scholar] [CrossRef]
- Kaur, R.; Kumar, R.; Gulati, A.; Ghanshyam, C.; Kapur, P.; Bhondekar, A.P. Enhancing electronic nose performance: A novel feature selection approach using dynamic social impact theory and moving window time slicing for classification of Kangra orthodox black tea (Camellia sinensis (L.) O. Kuntze). Sens. Actuators B Chem. 2012, 166–167, 309–319. [Google Scholar] [CrossRef]
- Banerjee(Roy), R.; Chattopadhyay, P.; Tudu, B.; Bhattacharyya, N.; Bandyopadhyay, R. Artificial flavor perception of black tea using fusion of electronic nose and tongue response: A Bayesian statistical approach. J. Food Eng. 2014, 142, 87–93. [Google Scholar] [CrossRef]
- Zakaria, N.; Masnan, M.; Zakaria, A.; Shakaff, A. A Bio-Inspired Herbal Tea Flavour Assessment Technique. Sensors 2014, 14, 12233–12255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, M.B.; Roy, R.B.; Tudu, B.; Bandyopadhyay, R.; Bhattacharyya, N. Cross-Perception Fusion Model of Electronic Nose and Electronic Tongue for Black Tea Classification. In Communications in Computer and Information Science; Springer: Berlin, Germany, 2017; pp. 407–415. [Google Scholar]
- Xu, M.; Wang, J.; Gu, S. Rapid identification of tea quality by E-nose and computer vision combining with a synergetic data fusion strategy. J. Food Eng. 2019, 241, 10–17. [Google Scholar] [CrossRef]
- Banerjee, M.B.; Roy, R.B.; Tudu, B.; Bandyopadhyay, R.; Bhattacharyya, N. Black tea classification employing feature fusion of E-Nose and E-Tongue responses. J. Food Eng. 2019, 244, 55–63. [Google Scholar] [CrossRef]
- Dutta, L.; Talukdar, C.; Hazarika, A.; Bhuyan, M. A Novel Low-Cost Hand-Held Tea Flavor Estimation System. IEEE Trans. Ind. Electron. 2018, 65, 4983–4990. [Google Scholar] [CrossRef]
- Modak, A.; Roy, R.B.; Tudu, B.; Bandyopadhyay, R.; Bhattacharyya, N. A novel fuzzy based signal analysis technique in electronic nose and electronic tongue for black tea quality analysis. In Proceedings of the 2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI), Kolkata, India, 8–10 January 2016; pp. 279–283. [Google Scholar]
- Majchrzak, T.; Wojnowski, W.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Electronic noses in classification and quality control of edible oils: A review. Food Chem. 2018, 246, 192–201. [Google Scholar] [CrossRef]
- Wojnowski, W.; Majchrzak, T.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Portable electronic nose based on electrochemical sensors for food quality assessment. Sensors 2017, 17, 2715. [Google Scholar] [CrossRef]
- Figaro Engineering Inc. TGS 2620 for the Detection of Solvent Vapors; Figaro Engineering Inc.: Osaka, Japan, 2014. [Google Scholar]
- Figaro Engineering Inc. TGS 2612-for the Detection of Methane and LP Gas; Figaro Engineering Inc.: Osaka, Japan, 2014. [Google Scholar]
- Figaro Engineering Inc. TGS 832-A00-for the Detection of Chlorofluorocarbons; Figaro Engineering Inc.: Osaka, Japan, 2012. [Google Scholar]
- Figaro Engineering Inc. TGS 822-for the Detection of Organic Solvent Vapors; Figaro Engineering Inc.: Osaka, Japan, 2002; Volume 1. [Google Scholar]
- Figaro Engineering Inc. TGS 2603-for Detection of Odor and Air Contaminants; Figaro Engineering Inc.: Osaka, Japan, 2014. [Google Scholar]
- Figaro Engineering Inc. TGS 2600-for the Detection of Air Contaminants; Figaro Engineering Inc.: Osaka, Japan, 2015; ISBN 8478321705. [Google Scholar]
- Figaro Engineering Inc. TGS 813-for the Detection of Combustible Gases; Figaro Engineering Inc.: Osaka, Japan, 2002. [Google Scholar]
- Figaro Engineering Inc. TGS 826-Ammonia Sensor-MOX Sensor; Figaro Engineering Inc.: Osaka, Japan, 2014. [Google Scholar]
- Hines, E.L.; Llobet, E.; Gardner, J.W. Electronic noses: A review of signal processing techniques. IEE Proc. Circuits Devices Syst. 1999, 146, 297–310. [Google Scholar] [CrossRef]
- Yan, J.; Guo, X.; Duan, S.; Jia, P.; Wang, L.; Peng, C.; Zhang, S. Electronic Nose Feature Extraction Methods: A Review. Sensors 2015, 15, 27804–27831. [Google Scholar] [CrossRef] [PubMed]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY, USA, 2009; Volume 1, ISBN 978-0-387-84857-0. [Google Scholar]
- Kuhn, M. Others Caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar]
- Package ‘MASS’. Available online: https://cran.r-project.org/web/packages/MASS/MASS.pdf (accessed on 8 July 2019).
- Karatzoglou, A.; Smola, A.; Hornik, K.; Zeileis, A. Kernlab-an S4 package for kernel methods in R. J. Stat. Softw. 2004, 11, 1–20. [Google Scholar] [CrossRef]
Samples Codes | Quality Level | Brand | Sample Visual Aspect | Train Dataset | Testing Dataset |
---|---|---|---|---|---|
A1 | Q1 | Broken Orange Pekoe (BOP) | D1 D2 D3 | D4 D5 | |
A2 | Q1 | Broken Orange Pekoe Fannings (BOPF) | D1 D2 D3 | D4 D5 | |
A3 | Q1 | Pekeo Fanings (PF) | D1 D2 D3 | D4 D5 | |
B1 | Q2 | Pekoe Fanning II (PFF) | D1 D2 D3 | D4 D5 | |
B2 | Q2 | Fanning II (FF) | D1 D2 D3 | D4 D5 | |
C1 | Q3 | BOHEA | D1 D2 D3 | D4 D5 | |
C2 | Q3 | PLUFF | D1 D2 D3 | D4 D5 |
Main Targeted Analytes | Sensor Series | Measurement Range | Sensitivity (Change Ratio of Rs) | Limit of Detection (LoD), ppm | Cross-Sensitivity |
---|---|---|---|---|---|
Alcohol, Solvent Vapors [43] | TGS 2620 | 50 to 5000 ppm ethanol | 0.3 to 0.5 in ethanol | 50 | Methane, carbon monoxide, iso-butane, hydrogen, ethanol |
Methane, Propane, Iso-Butane [44] | TGS 2612 | 1 to 25% Lower Explosive Limits (LEL) of each gas | 0.50 to 0.65 | 300 | Ethanol, methane, iso-butane, propane |
Chlorofluorocarbons [45] | TGS 832 | 4 to 40 kΩ in 1,1,1,2-Tetrafluoroethane (R-134a) at 100 ppm/air | 0.50 to 0.65 | 10 | Chlorofluorocarbons, hydrofluorocarbons refrigerant gas, ethanol |
Organic Solvent Vapors [46] | TGS 822 | 1 to 10 kΩ in ethanol at 300 ppm/air | 0.40 ± 0.10 | 50 | Methane, carbon monoxide, isobutane, n-hexane, benzene, ethanol, acetone |
Air Contaminants (Trimethylamine, Methyl Mercaptan, etc.) [47] | TGS 2603 | 1 to 10 ppm ethanol | <0.5 | 0.3 | Hydrogen, hydrogen sulfide, methyl mercaptan, trimethylamine, ethanol |
Air Contaminants (Hydrogen, Ethanol, etc.) [48] | TGS 2600 | 1 to 30 ppm of H2 | 0.3 to 0.6 | 1 | Methane, carbon monoxide, iso-butane, ethanol, hydrogen |
Combustible Gases [49] | TGS 813 | 5 to 15 kΩ in methane at 1000 ppm/Air | 0.60 ± 0.05 | 500 | Carbon monoxide, methane, ethanol, propane, isobutane, hydrogen |
Ammonia [50] | TGS 826 | 30 to 300 ppm | 0.55 ± 0.15 | 30 | Iso-butane, hydrogen, ammonia, ethanol |
Data Preprocessing | Class | LDA | QDA | SVM-Linear | SVM-Radial |
---|---|---|---|---|---|
F1 | Q1 | 0.80 | 1.00 | 1.00 | 0.83 |
Q2 | 0.65 | 0.35 | 0.50 | 0.55 | |
Q3 | 1.00 | 1.00 | 1.00 | 1.00 | |
F2 | Q1 | 0.90 | 1.00 | 0.97 | 0.90 |
Q2 | 0.80 | 0.75 | 0.95 | 0.60 | |
Q3 | 1.00 | 1.00 | 1.00 | 1.00 | |
F3 | Q1 | 1.00 | 1.00 | 1.00 | 1.00 |
Q2 | 0.85 | 0.60 | 1.00 | 0.60 | |
Q3 | 1.00 | 1.00 | 1.00 | 1.00 |
Data Preprocessing | Class | LDA | QDA | SVM-Linear | SVM-Radial |
---|---|---|---|---|---|
F1 | Q1 | 0.85 | 0.68 | 0.75 | 0.78 |
Q2 | 0.96 | 1.00 | 1.00 | 0.96 | |
Q3 | 0.90 | 1.00 | 1.00 | 0.94 | |
F2 | Q1 | 0.90 | 0.88 | 0.98 | 0.80 |
Q2 | 0.98 | 1.00 | 0.98 | 0.98 | |
Q3 | 0.96 | 1.00 | 1.00 | 0.96 | |
F3 | Q1 | 0.95 | 0.80 | 1.00 | 0.80 |
Q2 | 1.00 | 1.00 | 1.00 | 1.00 | |
Q3 | 0.98 | 1.00 | 1.00 | 1.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidayat, S.N.; Triyana, K.; Fauzan, I.; Julian, T.; Lelono, D.; Yusuf, Y.; Ngadiman, N.; Veloso, A.C.A.; Peres, A.M. The Electronic Nose Coupled with Chemometric Tools for Discriminating the Quality of Black Tea Samples In Situ. Chemosensors 2019, 7, 29. https://doi.org/10.3390/chemosensors7030029
Hidayat SN, Triyana K, Fauzan I, Julian T, Lelono D, Yusuf Y, Ngadiman N, Veloso ACA, Peres AM. The Electronic Nose Coupled with Chemometric Tools for Discriminating the Quality of Black Tea Samples In Situ. Chemosensors. 2019; 7(3):29. https://doi.org/10.3390/chemosensors7030029
Chicago/Turabian StyleHidayat, Shidiq Nur, Kuwat Triyana, Inggrit Fauzan, Trisna Julian, Danang Lelono, Yusril Yusuf, N. Ngadiman, Ana C.A. Veloso, and António M. Peres. 2019. "The Electronic Nose Coupled with Chemometric Tools for Discriminating the Quality of Black Tea Samples In Situ" Chemosensors 7, no. 3: 29. https://doi.org/10.3390/chemosensors7030029
APA StyleHidayat, S. N., Triyana, K., Fauzan, I., Julian, T., Lelono, D., Yusuf, Y., Ngadiman, N., Veloso, A. C. A., & Peres, A. M. (2019). The Electronic Nose Coupled with Chemometric Tools for Discriminating the Quality of Black Tea Samples In Situ. Chemosensors, 7(3), 29. https://doi.org/10.3390/chemosensors7030029