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Abstract: An electronic nose (E-nose), comprising eight metal oxide semiconductor (MOS) gas
sensors, was used in situ for real-time classification of black tea according to its quality level.
Principal component analysis (PCA) coupled with signal preprocessing techniques (i.e., time set
value preprocessing, F1; area under curve preprocessing, F2; and maximum value preprocessing,
F3), allowed grouping the samples from seven brands according to the quality level. The E-nose
performance was further checked using multivariate supervised statistical methods, namely, the
linear and quadratic discriminant analysis, support vector machine together with linear or radial
kernels (SVM-linear and SVM-radial, respectively). For this purpose, the experimental dataset
was split into two subsets, one used for model training and internal validation using a repeated
K-fold cross-validation procedure (containing the samples collected during the first three days of tea
production); and the other, for external validation purpose (i.e., test dataset, containing the samples
collected during the 4th and 5th production days). The results pointed out that the E-nose-SVM-linear
model together with the F3 signal preprocessing method was the most accurate, allowing 100%
of correct predictive classifications (external-validation data subset) of the samples according to
their quality levels. So, the E-nose-chemometric approach could be foreseen has a practical and
feasible classification tool for assessing the black tea quality level, even when applied in-situ, at the
harsh industrial environment, requiring a minimum and simple sample preparation. The proposed
approach is a cost-effective and fast, green procedure that could be implemented in the near future by
the tea industry.
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1. Introduction

Tea (Camellia sinensis) is the most consumed non-alcoholic beverage in the world, after water [1–10].
Tea can be made from leaf and bud of Camellia sinensis through a series of production, fixation,
withering, rolling, fermentation, polling and drying processes [4,8,9]. Tea contains a complex chemical
composition, depending on its quality from several parameters, like climate, agronomic practices and
post-harvest treatment and storage conditions [7]. The phenotype for determining quality levels of
black tea in this factory refer to the Indonesian National Standard SNI 1902:2016 that consist of general
quality requirements (physical and organoleptic) and specific quality requirements. The organoleptic
requirements include color, shape, size and aroma of the tea samples. Meanwhile, the second
requirements include the level of polyphenol, ash content and contamination of heavy metals and
microbes. For routine and rapid application, the experts usually use only the physical and organoleptic.
Consequently, the assessment of tea quality is a hard task that must take into account visual, aroma
and taste attributes, which usually are evaluated by trained experts of sensory panels following strict
regulations [11]. Nevertheless, quality assessment of tea is a key factor in strengthening confidence
between tea producers and consumers.

In tea production, the factory that following a standard of the Indonesian National Standards (SNI
1902:2016). This standard adopts and harmonizes the International Organization for Standardization
(ISO 3720)—Black Tea Definition and Basic Requirements [12]. The mandatory control of the
implementation in the national markets is performed by Indonesia National Agency of Drug and Food
Control (BPOM). The quality level is commonly assessed by trained panelists. However, this analysis,
although being the official method, tends to be subjective and depends on the experience of the
panelists. Furthermore, the low number of samples that can be evaluated per day poses an additional
limitation. Consequently, this procedure, besides being expensive and time-consuming, may lead
to inaccurate tea quality classifications [1,2,13,14]. On the other hand, several analytical techniques
may be used for tea analysis such as, gas chromatography (GC), capillary electrophoresis (CE),
high-performance liquid chromatography (HPLC) and plasma atomic emission spectrometry. These
procedures give wide-ranging and accurate information about tea chemical composition, but they
exhibit costly instrumental and operation conditions, require skilled technicians to perform the analysis,
and are usually time-consuming techniques that may require complex sample pre-treatments [13,15].

Alternatively, infrared spectroscopy, FTIR spectroscopy and colorimetric sensor arrays for have
been applied to identify tea variety [13], the quality of Chinese green teas [5] or to assess dry matter
content of tea [4]. One of the tea quality test parameters is through testing of volatile organic compounds
(VOCs). Brenet et al. used surface plasmon resonance imaging for sensing VOCs that has become
a high-selective sensing device [16]. Also, electronic noses (E-nose), that utilize an array of gas
sensors to give a fingerprint response to a given odor [17–21], combined with different multivariate
statistical tools have been used for tea quality assessment and tea aroma evaluation of green or black
teas from different geographical origins [1,2,22–33]. Recently, the possibility of merging different
electronic devices (E-nose, E-tongue and/or E-eye), have been studied aiming to improve the overall
classification performances of the single devices [3,34–38]. Similarly, E-nose devices, comprising metal
oxide semiconductor (MOS) gas sensors have been successfully applied for assessing black tea flavor
grade [39] and quality level [1,2,40]. E-Nose have advantages that rapid non-destructive analysis,
adequate sensitivity and relatively low cost [41,42] but E-Nose with MOS sensors have disadvantages
that sensor drift, susceptible to poisoning, high power consumption, humidity-dependent signal [41].
Therefore, in the above-mentioned works, the E-nose assays were not carried out at the industrial
facilities, thus not allowing for a real-time assessment.

In this study, a lab-made E-nose with eight different MOS gas sensors was developed and used
in situ in a harsh industrial environment for real-time classification of black tea samples (from seven
brands) according to their quality levels. Unsupervised (principal component analysis, PCA) and
supervised (linear and quadratic discriminant analysis, LDA and QDA, respectively; and support
vector machines, SVM) pattern recognition statistical tools were used together with feature extraction
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(preprocessing) methods. Static preprocessing methods were chosen, namely, the time set value (F1),
area under curve (F2), and maximum value (F3) methods. To establish the best supervised multivariate
classification models, the dataset was split into a training data subset (for learning and internal
validation purposes using a repeated K-fold cross-validation (CV) procedure (with 10-folds and 10
repeats)) and a test data subset (for external validation). The objective of this study is to investigate the
ability of the E-nose for classifying the quality of tea in the harsh industrial environment with simple
feature extraction method and the best classification model performance that could be implemented in
the near future of the tea industry.

2. Materials and Methods

2.1. Tea Sample Preparation

The dried black tea samples, made from fermented leaves or combination of leaves and buds
depending on the brand, were obtained from a tea plantation and factory in Pekalongan area (7◦11′26.8′′

S, 109◦37′35.4′′ E), Central Java, Indonesia. Details regarding the samples, including sample codes,
quality level, sample visual aspect, as well as the sample lots (i.e., referring to the production date)
included in the training and testing datasets for evaluating the supervised statistical E-nose models
established are provided in Table 1.

Table 1. List of dried black tea samples.

Samples
Codes

Quality
Level Brand Sample Visual Aspect Train

Dataset
Testing
Dataset

A1 Q1 Broken Orange
Pekoe (BOP)
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Table 1. Cont.

Samples
Codes

Quality
Level Brand Sample Visual Aspect Train

Dataset
Testing
Dataset

B1 Q2 Pekoe Fanning
II (PFF)
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As can be seen, tea samples from BOP, BOPF and PF brands belonged to the first (highest) quality
level (Q1), while the second (medium) quality level (Q2) included samples from PFF and FF brands.
Finally, the third (lowest) quality level (Q3) included the tea samples from BOHEA and PLUFF brands.
It should be remarked that the price of the dried tea with a quality level of Q1 is almost twice and four
times higher compared to that of Q2 and Q3, respectively.

The tea qualities were determined following the Indonesian National Standards (SNI 1902:2016)
and certified by the Rainforest Alliance USA (certificate registration code: RA-F-02638). The first set
of samples was obtained in five consecutive days (D1 to D5). For replication purpose, the second to
the fifth set of tea samples were collected during the following five days in different weeks. Thus,
in total, 175 independent tea samples were collected and further analyzed (7 brands × 5 days × 5
sample independent replicas). For each assay, 2 g of dried tea sample was placed into a 10-mL beaker
(sample container) and measured using the E-nose.

2.2. Electronic Nose Apparatus and Analysis

A lab-made E-nose with eight MOS gas sensors (Taguchi gas sensor, TGS, series), obtained from
Figaro Engineering, Inc. (Osaka, Japan), was used, for the first time, in-situ (at the production line
of the tea factory), for real-time analysis of tea samples. The environment temperature and relative
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humidity during the measurements were 21 ± 2 ◦C and 85 ± 10%, respectively. Details regarding each
MOS gas sensor comprised in the sensor device as well as the targeted gases that may be detected are
given in Table 2. From Table 2, some sensors present cross sensitivity to some chemical compounds
that can increase the range of the potential applications of the device in the case of E-nose. Besides
the gas sensor array, the built E-nose device comprised a sampling system, a data acquisition unit
(DAQ), and a signal-processing framework, as shown in Figure 1. The sampling system comprises two
electronic valves (three-way system) for airflow control.

Table 2. List of sensors used in the E-nose.

Main Targeted
Analytes

Sensor
Series Measurement Range

Sensitivity
(Change Ratio

of Rs)

Limit of
Detection

(LoD), ppm
Cross-Sensitivity

Alcohol, Solvent
Vapors [43] TGS 2620 50 to 5000 ppm ethanol 0.3 to 0.5 in

ethanol 50 Methane, carbon monoxide,
iso-butane, hydrogen, ethanol

Methane, Propane,
Iso-Butane [44] TGS 2612

1 to 25% Lower
Explosive Limits (LEL)

of each gas
0.50 to 0.65 300 Ethanol, methane, iso-butane,

propane

Chlorofluorocarbons
[45] TGS 832

4 to 40 kΩ in
1,1,1,2-Tetrafluoroethane
(R-134a) at 100 ppm/air

0.50 to 0.65 10
Chlorofluorocarbons,

hydrofluorocarbons refrigerant
gas, ethanol

Organic Solvent
Vapors [46] TGS 822 1 to 10 kΩ in ethanol at

300 ppm/air 0.40 ± 0.10 50
Methane, carbon monoxide,

isobutane, n-hexane, benzene,
ethanol, acetone

Air Contaminants
(Trimethylamine,

Methyl Mercaptan,
etc.) [47]

TGS 2603 1 to 10 ppm ethanol <0.5 0.3
Hydrogen, hydrogen sulfide,

methyl mercaptan,
trimethylamine, ethanol

Air Contaminants
(Hydrogen,

Ethanol, etc.) [48]
TGS 2600 1 to 30 ppm of H2 0.3 to 0.6 1 Methane, carbon monoxide,

iso-butane, ethanol, hydrogen

Combustible Gases
[49] TGS 813 5 to 15 kΩ in methane at

1000 ppm/Air 0.60 ± 0.05 500
Carbon monoxide, methane,
ethanol, propane, isobutane,

hydrogen

Ammonia [50] TGS 826 30 to 300 ppm 0.55 ± 0.15 30 Iso-butane, hydrogen, ammonia,
ethanol

During the sampling step, airflow (a reference gas) from reference connector to valve 1 pass
through the sample container to valve 2 and entering the gas sensor array setup. Meanwhile, during
the delay or purging phase, the airflow from the reference gas directly passes through the gas sensor
array. A 16-bit analog-to-digital converter (ADC) in an Arduino Mega microcontroller was used for the
data acquisition system. Every second, a dataset with 10 signal values is sent from the microcontroller
unit to the data logger using RS-232 serial communication.

Prior to measuring, the E-nose was turned for about 30 min to ensure that a steady state response
is obtained. Afterward, the configuration of the phase time was set as: 10 s delay phase, 60 s sampling
phase, and 300 s for purging phase. The assays were performed in situ, at the factory facilities located
in the tea plantation area, without any special conditioning of room were the measurements were
carried out, simulating a real application of the E-nose at an industrial level. Before each assay, the
headspace equilibrium time was set equal to 5 min. The typical of sensor signal characteristics of the
E-nose sensors is illustrated in Figure 2, representing the three stages of the E-nose analysis (the delay
phase, the sampling phase, and the purging phase) of the i-gas sensor for a j sample.
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Figure 1. (a) Photograph the E-nose device used in this study (A: computer with chemometric tools, 
B: main part of the E-nose devices, and C: chamber of sample); (b) Schematic diagram of the E-nose 
device (DAQ: data acquisition system). 

Figure 1. (a) Photograph the E-nose device used in this study (A: computer with chemometric tools,
B: main part of the E-nose devices, and C: chamber of sample); (b) Schematic diagram of the E-nose
device (DAQ: data acquisition system).
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Figure 2. An example of the real e-nose responses when detecting a BOP tea sample.

2.3. E-nose Raw Signal Profiles and Data Preprocessing

The data matrix used for the statistical multivariate analysis included the E-nose signal profiles
gathered by the eight MOS gas sensors during the tea samples analysis. The matrix data of each tea
sample contained 8 sensors × 3700-row data. Each sensor i of the E-nose, an electrical signal profile was
generated over the analysis time-period, for each j sample (Vij(t)). The time-dynamic response of each
sensor depends on several physical parameters, such as flow rate in the sampling system, the sample’s
headspace, the reaction time between the sample volatile compounds and the sensing material, and
the environmental conditions like pressure, temperature and humidity [51]. In this work, three types
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of data preprocessing techniques were applied namely the time set value (F1), the area under the curve
(F2, as illustrated a shading area in Figure 2, as described in Equation (1)), and the maximum value (F3,
as described in Equation (2)) preprocessing tools [52]. When required, a time period of 70 s was used,
corresponding to the time delay and the sampling analysis time as illustrated in Figure 2.

Xi, j =

t1∫
t0

Vi, j(t)dt (1)

Xi, j = max
(
Vi, j(t)

)
(2)

2.4. Statistical Analysis Using Unsupervised and Supervised Pattern Recognition Tools

The dataset included the preprocessed signals gathered by the eight MOS gas sensors comprised
in the E-nose during the 175 assays corresponding to 175 independent samples evaluated (7 brands ×
5 days × 5 sample repetitions). Principal component analysis (PCA) was used as an unsupervised
pattern recognition method aiming to reduce experimental data dimension [15]. So, PCA would allow
a preliminary evaluation of the capability of the E-nose to be used as unsupervised classification model
of the tea samples according to their quality level.

The E-nose performance for tea quality assessment, was further evaluated by applying four
supervised statistical methods, namely LDA, QDA and SVM with linear and radial kernels (RBF
kernel) [53]. Previously to the statistical analysis, the data matrix was subjected to a normalization
procedure (scaling and centering techniques). After this normalization step, the initial database was
split into two groups, the training data subset and the testing data subset. The training data subset
was used to establish the classification model, being selected the one that allowed achieving the best
classification performance for the repeated K-fold cross-validation (CV) procedure (10 repeats × 10
folds, which ensured that at each validation run, 10% of the training data was left for internal validation
purposes), while the testing data subset was used for the external-validation (full prediction) of the
classification model previously established. For SVM, the cost and gamma parameters were tuned
to get the best classification performance. The training data subset included the samples collected
during the first three days of tea production (i.e., D1, D2, and D3 sets), while the testing data subset
included the samples produced during the 4th and 5th production days (i.e., D4 and D5 sets) as shown
in Table 1. The overall modeling development and analysis were performed using the open-source
statistical software R (version 3.5.1) and using the caret [54], MASS [55], and Kernlab [56] libraries.

3. Results and Discussion

3.1. Principal Component Analysis: E-nose Performance for Tea Quality Classification

Three PCA models were established, one for each of the E-nose preprocessed data methods used
(F1, F2, and F3 data preprocessing techniques). The first five principal components (PCs) functions
explained more than 99% of the data variance, accounting the first three PCs of each model for 94.43%,
92.24% and 94.27% of the data variability, for F1, F2 and F3 procedures, respectively. As can be
inferred from the 3D plots of the first three PCs (Figures 3–5), the tea samples could be satisfactorily
grouped according to the quality level (Q1, Q2 and Q3 grades), showing that the E-nose signals
enabled the unsupervised sample classification. The results also pointed out the E-nose signal profiles
allowed to closely group tea samples of the same brand (25 samples per brand), although a slight
brand overlapping was observed between BOP and BOPF brands with PF brand, FF with PFF brand,
and BOHEA with PLUFF brands. This overlapping could indicate that the aroma profiles recorded by
the E-nose can be used as a tea quality fingerprint rather than a tea brand fingerprint, meaning that the
olfaction device could be a tool for quality assessment tool rather than a brand classifier.
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Finally, the reported quality assessment achieved with the E-nose and PCA, is in agreement with
the assessment of the tea factory sensory panelists, which classified samples of BOP, BOPF and PF
brands as the highest tea quality level (Q1 grade), those of PFF and FF brands as the medium tea
quality level (Q2 grade), and finally, the samples from BOHEA and PLUFF brands as the lowest tea
quality level (Q3 grade). Thus, the E-nose showed the potential to be used as a preliminary tool for
tea quality assessment. Furthermore, from the PCA results it is also possible to infer that the F3 data
preprocessing method allowed achieving the best-unsupervised discrimination performance.
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3.2. Supervised Multivariate Classification Methods

Supervised multivariate classification methods, including LDA, QDA, SVM linear, and SVM
radial, were further used to verify the capability of the E-nose to correctly predict, in a real-time basis
and using data collected in-situ, the quality grade of tea samples. First, the multicollinearity between
the E-nose preprocessed signals (after applying the F1, F2 and F3 techniques) gathered by the 8 MOS
gas sensors was evaluated. The magnitude of the R-Pearson coefficients (data not shown) showed that
the preprocessed signals of some E-nose sensors (S1, S3, S4, S6 and S7) were collinear (0.81 ≤ R-Pearson
≤ 0.98), being the preprocessed signals of sensors S2, S5 and S8 not collinear (R-Pearson ≤ 0.69). The
collinearity found is often reported for E-noses [27] and so, different linear and non-linear supervised
chemometric tools were used in this study since they can differently deal with collinearity issues [28].

For evaluating the predictive performance of the E-nose coupled with LDA, QDA, SVM linear or
SVM radial models, each of the three initial datasets comprising the preprocessing signals (F1, F2 and
F3 techniques) were firstly split into two groups. As mentioned, one group (105 tea samples of the
seven different brands and three quality levels, collected during the three consecutive production days:
D1, D2 and D3), was used for training and internal validation purposes. For the internal validation,
the repeated K-fold-CV variant (10 repeats × 10 folds, leading to the 100 classification runs) was used
for resampling purposes (ensuring that in each run, 10% of the training data were kept aside for
internal validation), allowing estimating, in a more realistic manner (in comparison with the usual
leave-one-out CV variant), the potential predictive performance of each model. The second data subset
(70 tea samples of the seven different brands and three quality levels, collected during the two other
consecutive production days: D4 and D5) was used for testing the predictive capabilities of each
model previously established (external validation). It should be remarked that for the SVM-linear
model the cost value was set equal to 1, for all the data preprocessing methods. In contrary, for the
SVM-radial approach the best values of the two tuning parameters (the cost and the sigma values)
were optimized (cost values of 16, 16, and 2, for F1, F2, and F3 methods, respectively; and sigma value
equal to 0.2596189, 0.2934098, and 0.2246985, for F1, F2, and F3 methods respectively).

The results (Figure 6) showed that based on the training and internal validation (repeated
K-fold-CV) procedures the four supervised pattern recognition tools allowed establishing satisfactory
tea quality classification models, based on the signals gathered by the MOS gas sensors of the E-nose
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with sensitivities (i.e., percentages of correctly classified samples) greater than 90%. The SVM-linear
approach was the one that showed a better agreement between the classification performances for the
training and internal validation procedures, pointing out that this technique could be less prone to
noise effects. Moreover, the results (Figure 6) also allowed inferring that the F3 data preprocessing
technique allowed achieving the best discrimination rates, independently of the supervised classification
technique used. Finally, the full predictive performance of each E-nose-supervised classification model
was further evaluated using the external validation data subset, using the best model established for
each of the four methods studied (LDA, QDA, SVM-linear and SVM-radial).Chemosensors 2019, 7, x 11 of 15 
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Figure 6. Accuracy achieved for training (black bars), internal validation using the repeated K-fold-CV
procedure (10 repeats and 10 folds, red bars), and external-validation (testing dataset, green bars) for
the combinations of supervised pattern recognition tool (LDA, QDA, SVM-linear or SVM-radial) and
data preprocessing method (F1, F2 or F3).

As can be inferred from Figure 6, the predictive classification performance of the E-nose-LDA,
E-nose-QDA and E-nose-SVM-radial models significantly decreased compared to the performances
previously achieved for the internal validation procedure, even if the more robust repeated K-fold-CV
variant was applied. In fact, the correct classification rates decreased from values greater than 0.95 to
values ranging from 0.80 to 0.93 (external validation). On the contrary, the E-nose-SVM-linear approach
enabled obtaining the best predictive performance, with overall correct classification rates of 95% and
100% for F2 and F3 data preprocessing methods, respectively. These findings pointed out the relevance
of selecting the adequate pattern-recognition multivariate model/data preprocessing technique for
achieving the best E-nose classification performance. The sensitivity and specificity values obtained
for the external-validation data for each individual tea quality group evaluated, are listed in Tables 3
and 4. The results clearly showed the overall superior performance of the SVM-linear models and
the enhanced results achieved by applying the F3 preprocessing technique. The satisfactory results
clearly demonstrated the capability of using, in-situ on a real-time basis, an E-nose with MOS gas
sensors, together with the SVM-linear model coupled with the maximum value signal preprocessing
method (F3 technique), as a practical and potential routine analytical tool for correctly assessing
tea quality level (Q1, Q2 or Q3 grades), for the seven tea brands studied (BOP, BOPF, PF, FF, PFF,
BOHEA, and PLUFF). Furthermore, it should be remarked that, the satisfactory E-nose performance is
in line with the discrimination performances previously reported by other researchers (sensitivities
ranging from 80 to 100%) using E-nose devices for tea quality classification [1,3,24,26,27,29,32–34,39].
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However, it should also be noticed that, contrary to the present study, the majority of these results
were obtained for training or internal validation datasets, and only is few cases a test dataset was used
to verify the predictive E-nose performances. Moreover, and contrary to this study, in the previous
works, the E-nose devices were not tested at the usual harsh industrial conditions located in the tea
plantation area.

Table 3. Sensitivity values (correct classification rate, i.e., true positive rate) achieved for the external
validation dataset (testing dataset), per grouping class.

Data Preprocessing Class LDA QDA SVM-Linear SVM-Radial

F1
Q1 0.80 1.00 1.00 0.83
Q2 0.65 0.35 0.50 0.55
Q3 1.00 1.00 1.00 1.00

F2
Q1 0.90 1.00 0.97 0.90
Q2 0.80 0.75 0.95 0.60
Q3 1.00 1.00 1.00 1.00

F3
Q1 1.00 1.00 1.00 1.00
Q2 0.85 0.60 1.00 0.60
Q3 1.00 1.00 1.00 1.00

Table 4. Specificity values (i.e., true negative rate) achieved for the external validation dataset (testing
dataset), per grouping class.

Data Preprocessing Class LDA QDA SVM-Linear SVM-Radial

F1
Q1 0.85 0.68 0.75 0.78
Q2 0.96 1.00 1.00 0.96
Q3 0.90 1.00 1.00 0.94

F2
Q1 0.90 0.88 0.98 0.80
Q2 0.98 1.00 0.98 0.98
Q3 0.96 1.00 1.00 0.96

F3
Q1 0.95 0.80 1.00 0.80
Q2 1.00 1.00 1.00 1.00
Q3 0.98 1.00 1.00 1.00

4. Conclusions

This study demonstrates the versatility and practical potential of using a lab-made E-nose, with
MOS gas sensors, coupled with signal preprocessing methods and chemometric tools for assessing the
quality grade of black tea samples, from different brands and different production lots (i.e., production
days). The black tea samples were obtained from tea factories in the Pekalongan region of Central Java,
Indonesia, being the assays performed in situ, showing for the first time, that an E-nose could be used
as a tea quality assessment tool, even in the usual harsh factory environments. The results showed that
the maximum value preprocessing method allowed for the best unsupervised and supervised overall
correct classification rates. Also, the E-nose-SVM-linear model enabled achieving 100% of correct full
predictive classifications (external-validation dataset containing 70 independent tea samples of three
quality levels from the seven brands, collected during two production days). Hopefully, the reported
satisfactory predictive performance may contribute to the future implementation of this type of E-nose
device/chemometric approach by tea factories as well as by governmental agencies, for black tea
quality assessment. The E-nose could be used in situ and on a real-time basis as a preliminary fast
and cost-effective tea quality assessment tool, reducing the number of samples to be evaluated by
expert sensory panelists, overcoming the scarcity of official sensory panels, minimizing the human
subjectivity on the tea evaluation, and increasing the limited number of samples panelists can evaluate
per day.
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