Improved Synthesis of ZnO Nanowalls: Effects of Chemical Bath Deposition Time and Annealing Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. ZnO Nanowalls Synthesis and Thermal Treatment
- 2.94 g of zinc nitrate hexahydrate (ZN, Zn(NO3)2·6H2O);
- 1.4 g of hexamethylenetetramine (HTMA, (CH2)6N4);
- 400 mL of deionized water (DI, MilliQ, 18.2 MΩ·cm).
2.2. ZnO Nanowalls Characterization
3. Results
3.1. Morphological Features
3.2. Electrical Measurements
3.3. Optical Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Liu, X.; Neri, G.; Pinna, N. nanostructured Materials for Room-Temperature Gas Sensors. Adv. Mater. 2016, 28, 795–831. [Google Scholar] [CrossRef] [PubMed]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Tekeb, A.; Reshchikov, M.A.; Doğanc, S.; Avrutin, V.; Cho, S.J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301–041404. [Google Scholar] [CrossRef]
- Tian, Z.R.; Voigt, J.A.; Liu, J.; Mckenzie, B.; Mcdermott, M.J.; Rodriguez, M.A.; Konishi, H.; Xu, H. Complex and oriented ZnO nanostructures. Nat. Mater. 2003, 2, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Al-Dossary, O.; Kumar, G.; Umar, A. Zinc Oxide Nanostructures for NO2 Gas- Sensor Application; A Review. Nano-Micro Lett. 2015, 7, 97–120. [Google Scholar] [CrossRef] [PubMed]
- Neri, G. First fifty years of chemoresistive gas sensors. Chemosensors 2015, 3, 1–20. [Google Scholar] [CrossRef]
- Seiyama, T.; Kato, A. A new detector for gaseous components using semiconductor thin film. Anal. Chem. 1962, 34, 1502–1503. [Google Scholar] [CrossRef]
- Zhu, L.; Zeng, W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuators A Phys. 2017, 267, 242–261. [Google Scholar] [CrossRef]
- Leonardi, S.G. Two-Dimensional Zinc Oxide Nanostructures for Gas Sensor Applications. Chemosensors 2017, 5, 17. [Google Scholar] [CrossRef]
- Xu, F.; Ho, H. Light-Activated Metal Oxide Gas Sensors: A Review. Micromachines 2017, 8, 333. [Google Scholar] [CrossRef] [PubMed]
- Mun, Y.; Park, S.; An, S.; Lee, C.; Kim, H.W. NO2 gas sensing properties of Au- functionalized porous ZnO nanosheets enhanced by UV irradiation. Ceram. Int. 2013, 39, 8615–8622. [Google Scholar] [CrossRef]
- Meng, L.; Xu, Q.; Sun, Z.; Li, G.; Bai, S.; Wang, Z.; Qin, Y. Enhancing the performance of room temperature ZnO microwire gas sensor through a combinedtechnology of surface etching and UV illumination. Mater. Lett. 2018, 212, 296–298. [Google Scholar] [CrossRef]
- Alenezi, M.R.; Henley, S.J.; Silva, S.R. On-chip Fabrication of High Performance Nanostructured ZnO UV Detectors. Sci. Rep. 2014, 5, 8516. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, S.; Ko, H.; Lee, C. Light- enhanced gas sensing of ZnS- core/ ZnO-shell nanowire at room temperature. J. Electroceram. 2014, 33, 75–81. [Google Scholar] [CrossRef]
- Dhara, S.; Giri, P.K. Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowire. Nanoscale Res. Lett. 2011, 6, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Bruno, E.; Strano, V.; Mirabella, S.; Donato, N.; Leonardi, S.G.; Neri, G. Comparison of the Sensing Properties of ZnO Nanowalls-Based Sensors toward Low Concentration of CO and NO2. Chemosensors 2017, 5, 20. [Google Scholar] [CrossRef]
- Iwu, K.O.; Strano, V.; Di Mauro, A.; Impellizzeri, G.; Mirabella, S. Enhanced quality, growth kinetics, and photocatalysis of ZnO nanowalls prepared by chimica bath deposition. Cryst. Growth Des. 2015, 15, 4206–4212. [Google Scholar] [CrossRef]
- Image J. Available online: https://imagej.nih.gov/ij/docs/guide (accessed on 2 October 2012).
- Barbagiovanni, E.G.; Reitano, R.; Franzò, G.; Strano, V.; Terrasi, A.; Mirabella, S. Radiative mechanism and surface modification of four visible deep level defect states in ZnO nanorods. Nanoscale 2015, 8, 995–1006. [Google Scholar] [CrossRef] [PubMed]
- Scuderi, M.; Strano, V.; Spinella, C.; Nicotra, G.; Mirabella, S. Low-cost synthesis of pure ZnO nanowalls showing three-fold symmetry. Nanotechnology 2018, 29, 135707–135715. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, S.J.; Hosseinpour, M.; Javadi, F.; Tayebee, R. optimization Study on Formation and Decomposition of Zinc Hydroxynitrates to Pure Zinc Oxide Nanoparticles in Supercritical Water. Ind. Eng. Chem. Res. 2013, 52, 1448–1454. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pellegrino, D.; Franzò, G.; Strano, V.; Mirabella, S.; Bruno, E. Improved Synthesis of ZnO Nanowalls: Effects of Chemical Bath Deposition Time and Annealing Temperature. Chemosensors 2019, 7, 18. https://doi.org/10.3390/chemosensors7020018
Pellegrino D, Franzò G, Strano V, Mirabella S, Bruno E. Improved Synthesis of ZnO Nanowalls: Effects of Chemical Bath Deposition Time and Annealing Temperature. Chemosensors. 2019; 7(2):18. https://doi.org/10.3390/chemosensors7020018
Chicago/Turabian StylePellegrino, Domenico, Giorgia Franzò, Vincenzina Strano, Salvo Mirabella, and Elena Bruno. 2019. "Improved Synthesis of ZnO Nanowalls: Effects of Chemical Bath Deposition Time and Annealing Temperature" Chemosensors 7, no. 2: 18. https://doi.org/10.3390/chemosensors7020018
APA StylePellegrino, D., Franzò, G., Strano, V., Mirabella, S., & Bruno, E. (2019). Improved Synthesis of ZnO Nanowalls: Effects of Chemical Bath Deposition Time and Annealing Temperature. Chemosensors, 7(2), 18. https://doi.org/10.3390/chemosensors7020018