Deposition Time and Annealing Effects of ZnO Seed Layer on Enhancing Vertical Alignment of Piezoelectric ZnO Nanowires
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Z.L.; Song, J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Mallampati, B.; Nair, S.V.; Ruda, H.E.; Philipose, U. ZnO Nanowire Based Photoconductor with High Photoconductive Gain. Mater. Res. Soc. Symp. Proc. 2015, 1805, 720–726. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Z.; Li, Z.; She, J.; Deng, S.; Xu, N.; Chen, J. Investigation of the temperature dependent field emission from individual ZnO nanowires for evidence of field-induced hot electrons emission. J. Phys. Condens. Matter 2018, 30, 315002. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.T.; Raza, S.R.; Jeon, P.J.; Ha, R.; Choi, H.J.; Im, S. Long single ZnO nanowire for logic and memory circuits: NOT, NAND, NOR gate, and SRAM. Nanoscale 2013, 5, 4181–4185. [Google Scholar] [CrossRef] [PubMed]
- Lamson, T.L.; Khan, S.; Wang, Z.; Zhang, Y.K.; Yu, Y.; Chen, Z.S.; Xu, H. Patterned synthesis of ZnO nanorod arrays for nanoplasmonic waveguide applications. Opt. Commun. 2018, 411, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Kiliç, B.; Wang, L.; Ozdemir, O.; Lu, M.; Tüzemen, S. One-Dimensional (1D) ZnO Nanowires Dye Sensitized Solar Cell. J. Nanosci. Nanotechnol. 2013, 13, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Galstyan, V.; Comini, E.; Ponzoni, A.; Sberveglieri, V.; Sberveglieri, G. ZnO Quasi-1D Nanostructures: Synthesis, Modeling, and Properties for Applications in Conductometric. Chem. Sens. 2016, 4, 6. [Google Scholar]
- Song, J.; Zhou, J.; Wang, Z.L. Piezoelectric and Semiconducting Coupled Power Generating Process of a Single ZnO Belt/Wire. A Technology for Harvesting Electricity from the Environment. Nano Lett. 2006, 6, 1656–1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malakooti, M.H.; Patterson, B.A.; Hwang, H.S.; Sodano, H.A. ZnO nanowire interfaces for high strength multifunctional composites with embedded energy harvesting. Energy Environ. Sci. 2016, 9, 634–643. [Google Scholar] [CrossRef]
- Zhu, G.; Zhou, Y.; Wang, S.; Yang, R.; Ding, Y.; Wang, X.; Bando, Y.; Wang, Z.L. Synthesis of vertically aligned ultra-long ZnO nanowires on heterogeneous substrates with catalyst at the root. Nanotechnology 2012, 23, 055604. [Google Scholar] [CrossRef] [PubMed]
- Falyouni, F.; Benmamas, L.; Thiandoume, C.; Barjon, J.; Lusson, A.; Galtier, P.; Sallet, V. Metal organic chemical vapor deposition growth and luminescence of ZnO micro- and nanowires. J. Vac. Sci. Technol. B 2009, 27, 1662–1666. [Google Scholar] [CrossRef]
- Liu, P.; Li, Y.; Guo, Y.; Zhang, Z. Growth of catalyst-free high-quality ZnO nanowires by thermal evaporation under air ambient. Nanoscale Res. Lett. 2012, 7, 220–222. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Ehlert, G.; Sodano, H.A. Increased Interface Strength in Carbon Fiber Composites through a ZnO Nanowire Interphase. Adv. Funct. Mater. 2009, 19, 2654–2660. [Google Scholar] [CrossRef]
- Majumdar, A.; Singh Butola, B.; Awasthi, N.; Chauhan, I.; Hatua, P. Improving the Mechanical Properties of p-Aramid Fabrics and Composites by Developing ZnO Nanostructures. Polym. Compos. 2017, 39, 3300–3306. [Google Scholar] [CrossRef]
- Lim, Z.H.; Chia, Z.X.; Kevin, M.; Wong, A.S.W.; Ho, G.W. A facile approach towards ZnO nanorods conductive textile for room temperature multifunctional sensors. Sens. Actuators B Chem. 2010, 151, 121–126. [Google Scholar] [CrossRef]
- Opoku, C.; Dahiya, A.S.; Oshman, C.; Daumont, C.; Cayrel1, F.; Poulin-Vittrant, G.; Alquier, D.; Camara, N. Fabrication of high performance field-effect transistors and practical Schottky contacts using hydrothermal ZnO nanowires. Nanotechnology 2015, 26, 355704. [Google Scholar] [CrossRef] [PubMed]
- Opoku, C.; Dahiya, A.S.; Cayrel, F.; Poulin-Vittrant, G.; Alquier, D.; Camara, N. Fabrication of field-effect transistors and functional nanogenerators using hydrothermally grown ZnO nanowires. RSC Adv. 2015, 5, 69925–69931. [Google Scholar] [CrossRef]
- Boubenia, S.; Dahiya, A.S.; Poulin-Vittrant, G.; Morini, F.; Nadaud, K.; Alquier, D. A facile hydrothermal approach for the density tunable growth of ZnO nanowires and their electrical characterizations. Sci. Rep. 2017, 7, 15187. [Google Scholar] [CrossRef] [PubMed]
- Pal, U.; Santiago, P. Controlling the Morphology of ZnO Nanostructures in a Low-Temperature Hydrothermal Process. J. Phys. Chem. B 2005, 109, 15317–15321. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Huang, X.; Liu, J.; Li, Y.; Ji, X.; Li, G. Growth and comparison of different morphologic ZnO nanorod arrays by a simple aqueous solution route. Matter. Lett. 2007, 61, 4362–4365. [Google Scholar] [CrossRef]
- Cross, R.B.M.; De Souza, M.M.; Sankara Narayanan, E.M. A low temperature combination method for for the production of ZnO nanowires. Nanotechnology 2005, 16, 2188–2192. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.H.; Whang, W.T. A novel low-temperature growth and characterization of single crystal ZnO nanorods. Mater. Chem. Phys. 2003, 82, 705–710. [Google Scholar] [CrossRef]
- Song, J.; Lim, S. Effect of Seed Layer on the Growth of ZnO Nanorods. J. Phys. Chem. C 2007, 111, 596–600. [Google Scholar] [CrossRef]
- Ji, L.W.; Peng, S.M.; Wu, J.S.; Shih, W.S.; Wu, C.S.; Tang, I.T. Effect of seed layer on the growth of well-aligned ZnO nanowires. J. Phys. Chem. Solids 2009, 70, 1359–1362. [Google Scholar] [CrossRef]
- Ghayour, H.; Rezaie, H.R.; Mirdamadi, S.; Nourbakhsh, A.A. The effect of seed layer thickness on alignment and morphology of ZnO nanorods. Vacuum 2011, 86, 101–105. [Google Scholar] [CrossRef]
- Wu, W.Y.; Yeh, C.C.; Ting, J.M. Effects of Seed Layer Characteristics on the Synthesis of ZnO Nanowires. J. Am. Ceram. Soc. 2009, 92, 2718–2723. [Google Scholar] [CrossRef]
- Malakooti, M.H.; Zhou, Z.; Sodano, H.A. Enhanced energy harvesting through nanowire based functionally graded interfaces. Nano Energy 2018, 52, 171–182. [Google Scholar] [CrossRef]
- Malakooti, M.H.; Zhou, Z.; Spears, J.H.; Shankwitz, T.J.; Sodano, H.A. Biomimetic nanostructured interfaces for hierarchical composites. Adv. Mater. Interfaces 2016, 2, 1500404. [Google Scholar] [CrossRef]
- Kamieniecki, E.; Foggiato, G. Analysis and contol of electrically active contaminants by surface charge analysis. In Handbook of Semiconductor Wafer Cleaning Technology: Science, Technology and Applications; Werner Kern Associates: Westwood, NJ, USA, 1993; pp. 497–535. [Google Scholar]
- Xu, S.; Qin, Y.; Xu, C.; Wei, Y.; Yang, R.; Wang, Z.L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373. [Google Scholar] [CrossRef]
- Kenanakis, G.; Vernardou, D.; Koudoumas, E.; Katsarakis, N. Growth of c-axis oriented ZnO nanowires from aqueous solution: The decisive role of a seed layer for controlling the wires’ diameter. J. Cryst. Growth 2009, 311, 4799–4804. [Google Scholar] [CrossRef]
- Zhang, Y.; Ram, M.K.; Stefanakos, E.K.; Yogi Goswami, D. Synthesis, Characterization, and Applications of ZnO Nanowires. J. Nanomater. 2012, 624520, 1–22. [Google Scholar] [CrossRef]
- Xu, S.; Lao, C.; Weintraub, B.; Wang, Z.L. Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces. J. Mater. Res. 2008, 23, 2072–2077. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.-H.; Hu, J.; Li, S.-S.; Zhang, F.; Liu, J.; Shi, J.; Li, X.; Tian, Z.-Q.; Chen, Y. Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires. Nanotechnology 2011, 22, 245601. [Google Scholar] [CrossRef] [PubMed]
- Sugunan, A.; Warad, H.C.; Boman, M.; Dutta, J. Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine. J. Sol-Gel Sci. Technol. 2006, 39, 49–56. [Google Scholar] [CrossRef]
- Singh, D.; Narasimulu, A.A.; Garcia-Gancedo, L.; Fu, Y.Q.; Soin, N.; Shao, G.; Luo, J.K. Novel ZnO Nanorod Films by Chemical Solution Deposition for Planar Device Applications. Nanotechnology 2013, 24, 275601. [Google Scholar] [CrossRef]
- Strano, V.; Urso, R.G.; Scuderi, M.; Iwu, K.O.; Simone, F.; Ciliberto, E.; Spinella, C.; Mirabella, S. Double Role of HMTA in ZnO Nanorods Grown by Chemical Bath Deposition. J. Phys. Chem. C 2014, 118, 28189–28195. [Google Scholar] [CrossRef]
- Govender, K.; Boyle, D.S. Understanding the factors that govern the deposition and morphology of thin film of ZnO from aqueous solution. J. Mater. Chem. 2004, 14, 2575–2591. [Google Scholar] [CrossRef]
- Skompska, M.; Zarębska, K. Electrodeposition of ZnO Nanorod Arrays on Transparent Conducting Substrates. Electron. Acta 2014, 127, 467–488. [Google Scholar] [CrossRef]
- Lupan, O.; Pauporté, T.; Chow, L.; Viana, B.; Pellé, F.; Ono, L.K.; Roldan Cuenya, B.; Heinrich, H. Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Appl. Surf. Sci. 2010, 256, 1895–1907. [Google Scholar] [CrossRef]
- Chen, S.-W.; Wu, J.-M. Nucleation mechanisms and their influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method. Acta Mater. 2011, 59, 841–847. [Google Scholar] [CrossRef]
- Chung, J.; Lee, J.; Lim, S. Annealing effects of ZnO nanorods on dye-sensitized solar cell efficiency. Phys. B Condens. Matter 2010, 405, 2593–2598. [Google Scholar] [CrossRef]
- Kim, W.Y.; Kim, S.W.; Yoo, D.H.; Kim, E.J.; Hahn, S.H. Annealing Effect of ZnO Seed Layer on Enhancing Photocatalytic Activity of ZnO/TiO2 Nanostructure. Int. J. Photoenergy 2013, 2013. [Google Scholar] [CrossRef]
- Guillemin, S.; Consonni, V.; Appert, E.; Puyoo, E.; Rapenne, L.; Roussel, H. Critical nucleation effects on the structural relationship between ZnO seed layer and nanowires. J. Phys. Chem. C 2012, 116, 25106–25111. [Google Scholar] [CrossRef]
- Dahiya, A.S.; Morini, F.; Boubenia, S.; Nadaud, K.; Alquier, D.; Poulin-Vittrant, G. Organic/Inorganic hybrid stretchable piezoelectric nanogenerators for self-powered wearable electronics. Adv. Mater. Technol. 2017, 3, 1700249. [Google Scholar] [CrossRef]
- Hinchet, R.; Lee, S.; Ardila, G.; Montès, L.; Mouis, M.; Wang, Z.L. Performance Optimization of Vertical Nanowire-based Piezoelectric Nanogenerators. Adv. Funct. Mater. 2014, 24, 971–977. [Google Scholar] [CrossRef]
- Yang, D.; Qiu, Y.; Jiang, Q.; Guo, Z.; Song, W.; Xu, J.; Zong, Y.; Feng, Q.; Sun, X. Patterned growth of ZnO nanowires on flexible substrates for enhanced performance of flexible piezoelectric nanogenerators. Appl. Phys. Lett. 2017, 110, 063901. [Google Scholar] [CrossRef]
Deposition time | 1 min 36 s | 3 min 12 s | 16 min | 32 min |
Thickness obtained | 5 nm | 10 nm | 50 nm | 100 nm |
Seed layer state | Non annealed | Non annealed | Non annealed | Non annealed |
Annealed | Annealed | Annealed | Annealed |
Thickness of Seed Layer (nm) | NWs Density (NWs/cm²) | NWs Mean Diameter (nm) | NWs Mean Length (nm) | NWs Aspect Ratio L/d | |
---|---|---|---|---|---|
Non-annealed seed layer | 100 | 35 ± 1.8 | 70 ± 30 | 570 ± 180 | 8 |
50 | 45 ± 2.3 | 60 ± 30 | 530 ± 160 | 8 | |
10 | 52 ± 2.6 | 60 ± 20 | 570 ± 130 | 10 | |
5 | 54 ± 2.7 | 70 ± 30 | 620 ± 130 | 9 | |
Annealed seed layer | 100 | 50 ± 2.5 | 70 ± 30 | 490 ± 130 | 8 |
50 | 52 ± 2.6 | 60 ± 30 | 460 ± 100 | 7 | |
10 | 73 ± 3.7 | 80 ± 20 | 440 ± 60 | 6 | |
5 | 71 ± 3.5 | 90 ± 20 | 480 ± 40 | 6 |
Thickness of Seed Layer (nm) | FWHM for Non-Annealed NWs (nm) | FWHM for Annealed NWs (nm) |
---|---|---|
100 nm | 400 | 325 |
50 nm | 333 | 291 |
10 nm | 308 | 208 |
5 nm | 216 | 150 |
Thickness of Seed Layer (nm) | Roughness for Non-Annealed Seed Layer (nm) | Roughness for Annealed Seed Layer (nm) |
---|---|---|
100 nm | 2.50 | 2.86 |
50 nm | 1.73 | 2.07 |
10 nm | 1.62 | 1.66 |
5 nm | 1.48 | 1.58 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slimani Tlemcani, T.; Justeau, C.; Nadaud, K.; Poulin-Vittrant, G.; Alquier, D. Deposition Time and Annealing Effects of ZnO Seed Layer on Enhancing Vertical Alignment of Piezoelectric ZnO Nanowires. Chemosensors 2019, 7, 7. https://doi.org/10.3390/chemosensors7010007
Slimani Tlemcani T, Justeau C, Nadaud K, Poulin-Vittrant G, Alquier D. Deposition Time and Annealing Effects of ZnO Seed Layer on Enhancing Vertical Alignment of Piezoelectric ZnO Nanowires. Chemosensors. 2019; 7(1):7. https://doi.org/10.3390/chemosensors7010007
Chicago/Turabian StyleSlimani Tlemcani, Taoufik, Camille Justeau, Kevin Nadaud, Guylaine Poulin-Vittrant, and Daniel Alquier. 2019. "Deposition Time and Annealing Effects of ZnO Seed Layer on Enhancing Vertical Alignment of Piezoelectric ZnO Nanowires" Chemosensors 7, no. 1: 7. https://doi.org/10.3390/chemosensors7010007
APA StyleSlimani Tlemcani, T., Justeau, C., Nadaud, K., Poulin-Vittrant, G., & Alquier, D. (2019). Deposition Time and Annealing Effects of ZnO Seed Layer on Enhancing Vertical Alignment of Piezoelectric ZnO Nanowires. Chemosensors, 7(1), 7. https://doi.org/10.3390/chemosensors7010007