From Batch to Flow Stripping Analysis with Screen-Printed Electrodes: A Possible Way to Decentralize Trace Inorganic Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Instrumental Setup
2.2. Cells and Flow System
2.3. Measurement Procedures
3. Results and Discussion
3.1. From Batch to Stopped-Flow Differential Pulse Stripping Voltammetry
3.2. From Stopped-Flow to Flow Injection Analysis in Differential Pulse Stripping Voltammetry
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ochsenkühn-Petropoulou, M.; Ochsenkühn, K.M. Comparison of inductively coupled plasma-atomic emission spectrometry, anodic stripping voltammetry and instrumental neutron-activation analysis for the determination of heavy metals in airborne particulate matter. Fres. J. Anal. Chem. 2001, 369, 629–632. [Google Scholar] [CrossRef]
- Wang, J. Analytical Electrochemistry, 3rd ed.; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Ozkan, S.A. Principles and Techniques of Electroanalytical Stripping Methods for Pharmaceutically Active Compounds in Dosage Forms and Biological Samples. Curr. Pharm. Anal. 2009, 5, 127–143. [Google Scholar] [CrossRef]
- Economou, A.; Fielden, P.R. Applications, potentialities and limitations of adsorptive stripping analysis on mercury film electrodes. Trends Anal. Chem. 1997, 16, 286–292. [Google Scholar] [CrossRef]
- Wang, J. Decentralized Electrochemical Monitoring of Trace Metals: From Disposable Strips to Remote Electrodes. Analyst 1994, 119, 763–766. [Google Scholar] [CrossRef]
- Arduini, F.; Amine, A.; Moscone, D.; Ricci, F.; Palleschi, G. Fast, sensitive and cost-effective detection of nerve agents in the gas phase using a portable instrument and an electrochemical biosensor. Anal. Bioanal. Chem. 2007, 388, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Arduini, F.; Cassisi, A.; Amine, A.; Ricci, F.; Moscone, D.; Palleschi, G. Electrocatalytic oxidation of thiocholine at chemically modified cobalt hexacyanoferrate screen-printed electrodes. J. Electroanal. Chem. 2009, 626, 66–74. [Google Scholar] [CrossRef]
- Palchetti, I.; Laschi, S.; Mascini, M. Miniaturised stripping-based carbon modified sensor for in field analysis of heavy metals. Anal. Chim. Acta 2005, 530, 61–67. [Google Scholar] [CrossRef]
- Gomez, V.S.; Barcelò, C.; Serrano, N.; Esteban, M. Antimony film screen-printed carbon electrode for stripping analysis of Cd(II), Pb(II), and Cu(II) in natural sample. Anal. Chim. Acta 2015, 855, 34–40. [Google Scholar]
- Hoĉevar, S.B.; Ogorevc, B.; Wang, J.; Pihlar, B. A Study on Operational Parameters for Advanced Use of Bismuth Film Electrode in Anodic Stripping Voltammetry. Electroanalysis 2002, 14, 1707–1712. [Google Scholar] [CrossRef]
- Romanus, A.; Mueller, H.; Kirsch, D. Application of adsorptive stripping voltammetry (AdSV) for the analysis of trace metals in brine. Fresenius J. Anal. Chem. 1991, 340, 371–376. [Google Scholar] [CrossRef]
- Economou, A. Recent developments in on-line electrochemical stripping analysis—An overview of the last 12 years. Anal. Chim. Acta 2010, 683, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Honeychurch, K.C. Screen-printed electrochemical sensors and biosensors for monitoring metal pollutants. Sci. J. 2012, 2, 1–51. [Google Scholar] [CrossRef]
- Guell, R.; Fontas, C.; Aragay, G.; Merkoci, A.; Antico, E. Screen-printed electrodes incorporated in a flow system for the decentralized monitoring of lead, cadmium and copper in natural and wastewater samples. Int. J. Environ. Anal. Chem. 2012, 93, 1–12. [Google Scholar] [CrossRef]
- Mozo, J.D.; Carbajo, J.; Sturm, J.C.; Nunez-Vergara, L.J.; Salgado, P.; Squella, J.A. Determination of Nifuroxazide by flow injection linear adsorptive stripping voltammetry on a screen-printed carbon nanofiber modified electrode. Electroanalysis 2010, 24, 676–682. [Google Scholar] [CrossRef]
- Dossi, C.; Stropeni, F.; Monticelli, D. Screen Printed Electrode-flow stripping voltammetry for inorganic analysis. In Sensors-Lecture Notes in Electrical Engineering; Compagnone, D., Baldini, F., Di Natale, C., Betta, G., Siciliano, P., Eds.; Springer: Berlin, Germany, 2015; Chapter 25; Volume 319. [Google Scholar]
- Pizeta, I.; Omanovic, D.; Branica, M. The influence of data treatment on the interpretation of experimental results in voltammetry. Anal. Chim. Acta 1999, 401, 163–172. [Google Scholar] [CrossRef]
- Mocak, J.; Bond, A.M.; Mitchell, S.; Schollary, G. A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: Application to voltammetric and stripping techniques. IUPAC Technical Report 1997. Pure Appl. Chem. 1997, 69, 297–328. [Google Scholar] [CrossRef]
- Jakubowska, M.; Piech, R.; Dzierwa, T.; Wcislo, J.; Kubiak, W.W. The evaluation method of smoothing algorithms in voltammetry. Electroanalysis 2003, 15, 1729–1736. [Google Scholar] [CrossRef]
- Margoshes, M.; Burns, D.A. Treatise on Analytical Chemistry, Part 1-Theory and Practice, 2nd ed.; Elving, P.J., Mossotti, E.V.G., Kolthoff, I.K., Eds.; Wiley: New York, NY, USA, 1984; Volume 4, p. 413. [Google Scholar]
Cell Type | Figure of Merit | Cd | Pb |
---|---|---|---|
Batch | Sensitivity (μA × L × μg−1) | 0.2831 | 0.1681 |
Intercept (μA) | −0.306 | 0.098 | |
Limit of Detection (μg/L) | 0.17 | 0.19 | |
Limit of Quantitation (μg/L) | 0.58 | 0.64 | |
Stopped-Flow | Sensitivity (μA × L × μg−1) | 0.1635 | 0.1202 |
Intercept (μA) | 0.189 | 0.279 | |
Limit of Detection (μg/L) | 0.58 | 0.62 | |
Limit of Quantitation (μg/L) | 1.98 | 2.06 |
Analyte | Peak Height (μA) | Calculated Concentration (μg/L) | Expected Concentration (μg/L) | % Recovery |
---|---|---|---|---|
Cd | 2.4449 | 15.28 | 15 | 102% |
0.8463 | 5.11 | 5 | 105% | |
4.3753 | 27.56 | 25 | 110% | |
3.3041 | 20.75 | 20 | 103% | |
1.5945 | 9.87 | 10 | 99% | |
Pb | 1.9857 | 14.49 | 15 | 96% |
0.6657 | 4.57 | 5 | 91% | |
3.4794 | 25.72 | 25 | 103% | |
2.6807 | 19.72 | 20 | 98% | |
1.3532 | 9.74 | 10 | 97% |
Measure Type | Figure of Merit | Cd | Pb |
---|---|---|---|
Electrode 1 | Sensitivity (μA × L × μg−1) | 0.1382 | 0.09095 |
Intercept (μA) | −0.1854 | −0.0936 | |
Electrode 2 | Sensitivity (μA × L × μg−1) | 0.1363 | 0.08795 |
Intercept (μA) | −0.3284 | −0.1461 | |
Electrode 3 | Sensitivity (μA × L × μg−1) | 0.1335 | 0.09007 |
Intercept (μA) | −0.450 | −0.1820 | |
Mean result of three electrodes | Limit of Detection (μg/L) | 0.32 | 0.35 |
Limit of Quantitation (μg/L) | 1.06 | 1.08 |
Cd | Pb | |||
---|---|---|---|---|
Found (μg/L) | %Recovery | Found (μg/L) | %Recovery | |
Sample 1 | 4.80 | 96% | 4.99 | 100% |
Sample 2 | 4.51 | 90% | 4.60 | 92% |
Sample 3 | 4.88 | 97% | 4.81 | 96% |
Batch | Stopped Flow | Flow Injection Analysis | ||||
---|---|---|---|---|---|---|
Cd | Pb | Cd | Pb | Cd | Pb | |
Sensitivity (μA × L × μg−1) | 0.2831 | 0.1681 | 0.1635 | 0.1202 | 0.1381 | 0.0909 |
Limit of Detection (μg/L) | 0.17 | 0.19 | 0.58 | 0.62 | 0.32 | 0.35 |
Analytical Errors | <5% | <5% | <10% | <10% | <10% | <10% |
Analysis Time a | 175 s | 175 s | 220 s | |||
Sample Volume | 10–25 mL | 1–2 mL | 0.5 mL (loop volume) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dossi, C.; Monticelli, D.; Pozzi, A.; Recchia, S. From Batch to Flow Stripping Analysis with Screen-Printed Electrodes: A Possible Way to Decentralize Trace Inorganic Analysis. Chemosensors 2018, 6, 37. https://doi.org/10.3390/chemosensors6030037
Dossi C, Monticelli D, Pozzi A, Recchia S. From Batch to Flow Stripping Analysis with Screen-Printed Electrodes: A Possible Way to Decentralize Trace Inorganic Analysis. Chemosensors. 2018; 6(3):37. https://doi.org/10.3390/chemosensors6030037
Chicago/Turabian StyleDossi, Carlo, Damiano Monticelli, Andrea Pozzi, and Sandro Recchia. 2018. "From Batch to Flow Stripping Analysis with Screen-Printed Electrodes: A Possible Way to Decentralize Trace Inorganic Analysis" Chemosensors 6, no. 3: 37. https://doi.org/10.3390/chemosensors6030037
APA StyleDossi, C., Monticelli, D., Pozzi, A., & Recchia, S. (2018). From Batch to Flow Stripping Analysis with Screen-Printed Electrodes: A Possible Way to Decentralize Trace Inorganic Analysis. Chemosensors, 6(3), 37. https://doi.org/10.3390/chemosensors6030037