Efficient Cataluminescence Sensor for Detecting Methanol Based on NiCo2O4//MIL-Ti125 Polyhedral Composite Nano-Materials
Abstract
1. Introduction
2. Experimental Materials and Methods
2.1. Fabrication of NiCo2O4/MIL-Ti125 Composite Material
2.2. Main Analytical Instruments
2.3. CTL Devices and Detection Methods
3. Results and Discussion
3.1. Material Characterization
3.1.1. SEM Analysis
3.1.2. XRD Phase Analysis
3.1.3. FT-IR Analysis
3.1.4. BET Analysis
3.2. Effect of MIL-Ti125 Modification on NiCo2O4 CTL Performance
3.3. Effect of Working Temperature on CTL
3.4. Effect of Carrier Gas Flow Rate on CTL Intensity
3.5. The Correspondence Between the CTL Intensity and the Concentration of the Analyte
3.6. Selectivity of Sensors
3.7. Stability of NiCo2O4/MIL-Ti125 Sensing Material for Methanol
3.8. Possible Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nazir, M.A.; Naseer, M.; Ullah, S.; Ahmad, K.; Ismail, M.A.; Iqbal, R.; Najam, T.; Rosaiah, P.; Raza, M.A.; Shah, S.S.A. Designing MOF-COF hybrid materials for energy, biomedical and environment applications. Inorg. Chem. Commun. 2024, 170, 113262. [Google Scholar] [CrossRef]
- Dhiman, J.S.; Gupta, K.; Sharma, P.K. Impact of temperature-dependent viscosity on linear and weakly nonlinear stability of double-diffusive convection in viscoelastic fluid. Chin. J. Phys. 2024, 92, 1061–1077. [Google Scholar] [CrossRef]
- Li, Q.S.; Khosravi, A.; Farsaei, A.; Sun, L. Thermodynamics, economic and carbon emission analysis of power-to-methanol process through alkaline electrolysis and monoethanolamine (MEA) carbon capture. Chem. Eng. Sci. 2024, 293, 120029. [Google Scholar] [CrossRef]
- Arslan, M.M.; Zeren, C.; Aydin, Z.; Akcan, R.; Dokuyucu, R.; Keten, A.; Cekin, N. Analysis of methanol and its derivatives in illegally produced alcoholic beverages. J. Forensic Leg. Med. 2015, 33, 56–60. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, L.Y.; Zhai, Y.J.; Pan, L.; Zhao, J. Provisioning optimization of construction resources: A human-centric multi-objective computational intelligence fusion approach with AI evaluation techniques. Hum-Cent. Comput. Info. 2024, 14, 63. [Google Scholar] [CrossRef]
- Sadeghi, M.; Fakhar, M.; Hoseininejad, S.M.; Zakariaei, Z.; Sadeghi, A. The clinico-epidemiological, diagnostic and therapeutic aspects of methanol poisoning: A five-year retrospective study, northern Iran. Drug Alcohol Depen. 2023, 253, 111024. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, B.; Huang, L.; Li, W.; Lu, Q.; Wu, H.; Liang, X.; Liu, T.; Liu, F.; Liu, F.; et al. Highly selective mixed potential methanol gas sensor based on a Ce0.8Gd0.2O1.95 Solid Electrolyte and Au Sensing Electrode. ACS Sens. 2022, 7, 972–984. [Google Scholar] [CrossRef] [PubMed]
- Magalhaes, R.; Paiva, N.; Ferra, J.M.; Magalhaes, F.D.; Martins, J.M.; Carvalho, L.H. Prediction of formaldehyde and residual methanol concentration in formalin using near infrared spectroscopy. J. Near Infrared. Spec. 2022, 30, 160–168. [Google Scholar] [CrossRef]
- Gurkok, S. A novel carotenoid from LipT27: Production, extraction, partial characterization, biological activities and use in textile dyeing. Arch. Microbiol. 2022, 204, 296. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, M.M.; Asiri, A.M.; Alfaifi, S.Y.M.; Marwani, H.M. Studies of methanol electro-oxidation with ternary wet-chemically prepared ZCSO hexagonal nanodiscs with electrochemical approach. J. Ind. Eng. Chem. 2022, 106, 503–511. [Google Scholar] [CrossRef]
- Narenderan, S.T.; Meyyanathan, S.N.; Babu, B. Review of pesticide residue analysis in fruits and vegetables. Pre-treatment, extraction and detection techniques. Food Res. Int. 2020, 133, 109141. [Google Scholar] [CrossRef] [PubMed]
- Achir, N.; Servent, A.; Soto, M.; Dhuique-Mayer, C. Feasibility of Individual Carotenoid Quantification in Mixtures Using UV-Vis Spectrophotometry with Multivariate Curve Resolution Alternating Least Squares (MCR-ALS). J. Spectrosc. 2022, 2022, 4509523. [Google Scholar] [CrossRef]
- Bhatta, T.; Sharma, S.; Shrestha, K.; Shin, Y.; Seonu, S.; Lee, S.; Kim, D.; Sharifuzzaman, M.; Rana, S.M.S.; Park, J.Y. Siloxene/PVDF Composite Nanofibrous Membrane for High-Performance Triboelectric Nanogenerator and Self-Powered Static and Dynamic Pressure Sensing Applications. Adv. Funct. Mater. 2022, 32, 2202145. [Google Scholar] [CrossRef]
- Ru, J.; Zhang, R.F.; Wang, Y.X.; Ma, X.X.; Guo, Q.; Du, X.M.; Li, L.L.; Wang, Y.L. Water-stable Cd(II) metal-organic framework as multi-responsive luminescent sensor for CrO, Cr O ions and picric acid as well as its mixed matrix membranes. J. Solid State Chem. 2022, 311, 123119. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, J.X.; Muhammad, Y.; Zhang, Y.B.; Shah, S.J.; Hu, Y.; Chu, Z.; Zhao, Z.X.; Zhao, Z.X. Enhanced moisture-resistance and excellent photocatalytic performance of synchronous N/Zn-decorated MIL-125(Ti) for vaporous acetaldehyde degradation. Chem. Eng. J. 2020, 388, 124389. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Pan, Y.; Jiang, Y.; Xu, M.X.; Jiang, J.C. Wearable electrochemical gas sensor for methanol leakage detection. Microchem. J. 2023, 190, 108715. [Google Scholar] [CrossRef]
- Ye, Q.; Dai, T.; Shen, J.; Xu, Q.; Hu, X.; Shu, Y. Incorporation of fluorescent carbon quantum dots into metal–organic frameworks with peroxidase-mimicking activity for high-performance ratiometric fluorescent biosensing. J. Anal. Test. 2022, 7, 16–24. [Google Scholar] [CrossRef]
- Han, X.; Ai, Y.J.; Wang, L.S.; Liu, T.; Badshah, A.; Hu, X.J.; Huang, Z.T.; Mansoor, A.; Sun, W. Flexible electrochemical sensing: Compact and efficient detection of bisphenol a using copper nanoparticle decorated laser-Iinduced graphene-based electrode. Electroanalysis 2025, 37, 12025. [Google Scholar] [CrossRef]
- Sheng, W.L.; Huang, F.W.; Lang, X.J. NH2-MIL-125(Ti)/amorphous TiO2 microspheres for enhanced visible light photocatalytic selective oxidation of amines. Mater. Today Chem. 2023, 30, 101505. [Google Scholar] [CrossRef]
- Li, W.C.; Liu, L.Y.; Li, X.T.; Ren, H.; Zhang, L.; Parvez, M.K.; Al-Dosari, M.S.; Fan, L.M.; Liu, J.Q. A Ni(Ⅱ)MOF-based hypersensitive dual-function luminescent sensor towards the 3-nitrotyrosine biomarker and 6-propyl-2-thiouracil antithyroid drug in urine. J. Mater. Chem. B 2024, 12, 11800–11809. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.X.; Xiang, X.P.; He, Z.Y.; Zhong, W.Y.; Jia, C.H.; Gong, Z.H.; Zhang, N.; Zhao, S.J.; Chen, Y. Anionic defects engineering of NiCo2O4 for 5-hydroxymethylfurfural electrooxidation. Chem. Eng. J. 2023, 457, 141344. [Google Scholar] [CrossRef]
- Xu, Z.J.; Du, Z.Y.; Meng, Z.S.; Zhang, R.L.; Zeng, F.D.; Xu, J.; Long, B.H.; Tian, H.W. A novel template processing method for preparing spinel oxides with various morphologies to assemble high-performance supercapacitors. J. Alloys Compd. 2023, 955, 170284. [Google Scholar] [CrossRef]
- Tian, G.; Lin, J.Y.; Zhou, Y.; Huang, Z.Y.; Wei, X.P.; Li, J.P. Development of a molecularly imprinted photochemical sensor based on Bi2O3/TiO2 NTs heterojunction extended-gate field-effect transistor for the determination of trace neomycin. Microchem. J. 2023, 193, 108983. [Google Scholar] [CrossRef]
- Liu, G.Q.; Cheng, Y.W.; Qiu, M.Q.; Li, C.C.; Bao, A.Y.; Sun, Z.T.; Yang, C.Z.; Liu, D.M. Facilitating interface charge transfer via constructing NiO/NiCo O heterostructure for oxygen evolution reaction under alkaline conditions. J. Colloid Interface Sci. 2023, 643, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.S.; Zhu, P.F.; Cai, Q.H.; Bu, M.C.; Zhang, C.H.; Wu, H.; He, Y.Z.; Fu, M.; Li, S.Q.; Liu, X.Y. Fabrication of TiO/NH-MIL-125(Ti) MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chin. Chem. Lett. 2024, 35, 109524. [Google Scholar] [CrossRef]
- Huang, F.; Humayun, M.; Li, G.; Fan, T.T.; Wang, W.L.; Cao, Y.L.; Nikiforov, A.; Wang, C.D.; Wang, J. Z-scheme Bi O Br/NH-MIL-125(Ti) heterojunctions enable exceptional visible photocatalytic degradation of organic pollutant. Rare Metals 2024, 43, 3161–3172. [Google Scholar] [CrossRef]
- Wang, H.Y.; Shi, X.Q.; Liu, F.; Duan, T.M.; Sun, B. Non-invasive rapid detection of lung cancer biomarker toluene with a cataluminescence sensor based on the two-dimensional nanocomposite Pt/Ti3C2Tx-CNT. Chemosensors 2022, 10, 333. [Google Scholar] [CrossRef]
- Miti, T.; Pan, H.; Wickline, S.A. New Approach in Characterize siRNA Delivery Platform for Clinical Translation. FASEB J. 2018, 32, 570.1. [Google Scholar] [CrossRef]
- Ghani, F.; Haidry, A.A.; Raza, A.; Fatima, Q.; Weng, Y.L.; Sajjad, M.; Albaqami, M.D.; Mohammad, S. Anisotropic CO adsorption and enhanced O activation on defective TiS monolayer: A DFT study. Mater. Today Commun. 2024, 40, 109680. [Google Scholar] [CrossRef]
- Duan, Z.H.; Li, J.; Yuan, Z.; Jiang, Y.D.; Tai, H.L. Capacitive humidity sensor based on zirconium phosphate nanoplates film with wide sensing range and high response. Sens. Actuators B Chem. 2023, 394, 134445. [Google Scholar] [CrossRef]
- Alatawi, O.M. Recycling and breakdown photodegradation processes cost of BEN-TiQD via different photodegradation processes of brilliant green S dye and industrial effluents. Ceram. Int. 2024, 50, 53960–53969. [Google Scholar] [CrossRef]
- Babaei, S.; Ghasemzadeh, H.; Tesson, S. Methane adsorption of nanocomposite shale in the presence of water: Insights from molecular simulations. Chem. Eng. J. 2023, 475, 146196. [Google Scholar] [CrossRef]
- Hajji, M.; Dabbabi, S.; Ajili, M.; Jebbari, N.; Loureiro, A.G.; Kamoun, N.T. Investigations on physical properties of CuO-ZnO couple oxide sprayed thin films for environmental applications (ozone gas sensing and MB degradation). J. Mater. Sci. Mater. Electron. 2024, 35, 633. [Google Scholar] [CrossRef]
- Subhan, M.A.; Saha, P.C.; Alam, M.M.; Asiri, A.M.; Raihan, T.; Uddin, J.; Ghaan, W.; Azad, A.K.; Al-Mamun, M.; Nakata, H.; et al. NIR red luminescent doped Ag·(Y0.95 Eu0.05)2O3 nanocomposite for 3-Chlorophenol sensor probe and anti-MDR bacterial application. J. Environ. Chem. Eng. 2021, 9, 106881. [Google Scholar] [CrossRef]
- Cao, H.R.; Mao, K.; Zhang, H.; Wu, Q.Q.; Ju, H.X.; Feng, X.B. Thermal stability and micrdose-based coupling CRISPR/Cas12a biosensor for amplification-free detection of hgcA gene in paddy soil. Sci. Total Environ. 2024, 909, 168536. [Google Scholar] [CrossRef] [PubMed]
- Bagul, V.R.; Bhagure, G.R.; Tayde, D.T. Effect of Cobalt Doping on Gas Sensing Properties of SnO2 Thick Films Prepared by Chemical Co-Precipitation Method. Asian J. Chem. 2023, 35, 2911–2916. [Google Scholar] [CrossRef]
- Haiouani, K.; Hegazy, S.; Alsaeedi, H.; Bechelany, M.; Barhoum, A. Green Synthesis of Hexagonal-like ZnO Nanoparticles Modified with Phytochemicals of Clove (Syzygium aromaticum) and Extracts: Enhanced Antibacterial, Antifungal, and Antioxidant Activities. Materials 2024, 17, 4340. [Google Scholar] [CrossRef] [PubMed]
- Mamat, M.H.; Parimon, N.; Ismail, A.S.; Banu, I.B.S.; Basha, S.S.; Vijayaraghavan, G.V.; Yaakob, M.K.; Suriani, A.B.; Ahmad, M.K.; Rusop, M. Structural, optical, and electrical evolution of sol-gel-immersion grown nickel oxide nanosheet array films on aluminium doping. J. Mater. Sci. Mater. Electron. 2019, 30, 9916–9930. [Google Scholar] [CrossRef]
- Saravanan, P.; Gotipamul, P.P.; Damodarreddy, K.; Campos, C.H.; Selvaraj, A.; Mangalaraja, R.V.; Chidambaram, S. Synthesis of isolated ZnO nanorods on introducing g-C3N4 for improved photoelectrocatalytic methanol production by CO2 reduction. Inorg. Chem. Commun. 2024, 170, 113313. [Google Scholar] [CrossRef]
- Serrar, H.; Bouabellou, A.; Bouachiba, Y.; Taabouche, A.; Bouhank, A.; Bellal, Y.; Merabti, H. Effect of water and methanol solvents on the properties of CuO thin films deposited by spray pyrolysis. Thin Solid Films 2019, 686, 137282. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, J.; Qin, H.Y. Fabrication of three dimensional graphene/carbon nanotube/copper foam field emitter by electrophoretic deposition and its emission properties. Chem. Phys. Lett. 2024, 838, 141101. [Google Scholar] [CrossRef]
- Wu, Y.J.; Lin, Z.C.; Chen, N.; Wang, J.X.; Zhang, R.K. Lanthanum oxycarbonate with nanosheet-like network structure for cataluminescence sensing of tetrahydrofuran. Microchem. J. 2022, 181, 107710. [Google Scholar] [CrossRef]
- Kumar, A.; Rana, S.; Sharma, G.; Dhiman, P.; Shekh, M.I.; Stadler, F.J. Recent advances in zeolitic imidazole frameworks based photocatalysts for organic pollutant degradation and clean energy production. J. Environ. Chem. Eng. 2023, 11, 110770. [Google Scholar] [CrossRef]
- Shi, G.L.; Hu, G.P.; Gu, L.C.; Rao, Y.; Zhang, Y.X.; Ali, F. Cataluminescence sensor based on LaCO3OH microspheres for volatile organic compounds detection and pattern recognition. Sens. Actuators B Chem. 2024, 403, 135177. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, Y.; Sun, J.; Shen, J.; Lin, M.; Xia, F. Solid-state nanopore/nanochannel sensors with enhanced selectivity through pore-in modification. Anal. Chem. 2024, 96, 2277–2285. [Google Scholar] [CrossRef] [PubMed]
- Talukder, N.; Wang, Y.; Tong, X.; Lee, E.S. Chemical changes from N-doped graphene and metal-organic frameworks to N-G/MOF composites for improved electrocatalytic activity. Carbon 2025, 232, 119816. [Google Scholar] [CrossRef]
- Mei, H.X.; Peng, J.Y.; Wang, T.; Zhou, T.T.; Zhao, H.R.; Zhang, T.; Yang, Z. Overcoming the limits of cross-sensitivity: Pattern recognition methods for chemiresistive gas sensor array. Nano-Micro Lett. 2024, 16, 293–349. [Google Scholar] [CrossRef]
- Yan, Q.; Chen, S.Y.; Shi, H.F.; Wang, X.F.; Meng, S.H.; Li, J.P. Fabrication of polymer-derived SiBCN ceramic temperature sensor with excellent sensing performance. J. Eur. Ceram. Soc. 2023, 43, 7373–7380. [Google Scholar] [CrossRef]
- Chen, H.; Wu, Y.F.; Guo, H.; Li, S.; Cheng, H.L.; Wen, C.X.; Zhao, Z.Q.; Lu, X.W. Characteristic and mechanism of efficient phosphate removal by Portland cement/slag powder/coal ash-hydrate (PC/SP/CA-H). J. Environ. Chem. Eng. 2024, 12, 112372. [Google Scholar] [CrossRef]
- Priya, D.D.; Surendra, T.V.; Shajahan, S.; Muthuraja, S.; Roopan, S.M. Design and sustainable production of natural carbon incorporated CuO/C nanocomposite using biomass. Biomass Convers. Biorefin. 2023, 14, 25223–25237. [Google Scholar] [CrossRef]
- Li, L.A.; Fang, S.; Chen, W.; Li, Y.Y.; Vafadar, M.F.; Wang, D.H.; Kang, Y.; Liu, X.; Luo, Y.M.; Liang, K.; et al. Facile Semiconductor p-n Homojunction Nanowires with Strategic p-Type Doping Engineering Combined with Surface Reconstruction for Biosensing Applications. Nano-Micro Lett. 2024, 16, 192. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Liao, M.; Zhang, S.F.; Wang, L.X.; Gao, M.C.; Luo, Z.Y.; Isimjan, T.T.; Wang, B.; Yang, X.L. Valence electronic engineering of superhydrophilic Dy-evoked Ni-MOF outperforming RuO2 for highly efficient electrocatalytic oxygen evolution. J. Energy Chem. 2024, 90, 244–252. [Google Scholar] [CrossRef]
- Li, R.Q.; Bian, Y.J.; Yang, C.M.; Guo, L.; Ma, T.X.; Wang, C.T.; Fu, F.; Wang, D.J. Electronic structure regulation and built-in electric field synergistically strengthen photocatalytic nitrogen fixation performance on Ti-BiOBr/TiO heterostructure. Rare Metals 2024, 43, 1125–1138. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, S.Y.; Xu, C.M.; Chen, X.Y.; Zeng, S.W.; Li, C.Y.; Zhou, Y.; Zhou, T.H.; Niu, Y.C. Synergistic effect of electrode defect regulation and Bi catalyst deposition on the performance of iron-chromium redox flow battery. Chin. Chem. Lett. 2023, 34, 108188. [Google Scholar] [CrossRef]
- Hu, J.X.; Zhang, L.C.; Lv, Y. Recent advances in cataluminescence gas sensor: Materials and methodologies. Appl. Spectrosc. Rev. 2019, 54, 306–324. [Google Scholar] [CrossRef]
- Kumar, S.; Mirzaei, A.; Kumar, A.; Lee, M.H.; Ghahremani, Z.; Kim, T.U.; Kim, J.Y.; Kwoka, M.; Kumar, M.; Kim, S.S.; et al. Nanoparticles anchored strategy to develop 2D MoS2 and MoSe2 based room temperature chemiresistive gas sensors. Coordin. Chem. Rev. 2024, 503, 215657. [Google Scholar] [CrossRef]
- Wong, J.S.; Onizhuk, M.; Nagura, J.; Thind, A.S.; Bindra, J.K.; Wicker, C.; Grant, G.D.; Zhang, Y.X.; Niklas, J.; Poluektov, O.G.; et al. Coherent Erbium Spin Defects in Colloidal Nanocrystal Hosts. ACS Nano 2024, 18, 19110–19123. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hu, J.F.; Zhang, W.H.; Han, H.W.; Chen, Y.H.; Hu, Y. The opportunities and challenges of ionic liquids in perovskite solar cells. J. Energy Chem. 2023, 77, 157–171. [Google Scholar] [CrossRef]
- Xing, X.; Zhao, T.; Cheng, J.; Duan, X.X.; Li, W.P.; Li, G.G.; Zhang, Z.S.; Hao, Z.P. Promotional effect of Cu additive for the selective catalytic oxidation of-butylamine over CeZrO catalyst. Chin. Chem. Lett. 2022, 33, 3065–3072. [Google Scholar] [CrossRef]
Sensing Materials | Analyte | Working Temperature (°C) | Limit of Detection (ppm) | Flow Rate (mL/min) | Response Time (s) | Recovery Time (s) | Reference |
---|---|---|---|---|---|---|---|
Cobalt-doped SnO2 thick films | Methanol Analyte | 200 | 100 | 200 | 90 | 200 | [36] |
ZnO thin film | 275 | 50 | 150 | 280 | 135 | [37] | |
Flower-like In2O3 micro rods | 300 | 5 | 100 | 15 | 20 | [38] | |
ZnO nanorods | 300 | 10 | 80 | 216 | 405 | [39] | |
CuO thin film | 350 | 20 | 120 | 235 | 225 | [40] | |
Aluminium doped NiO nanotubes | 325 | 2 | 180 | 199 | 15 | [41] | |
NiCo2O4/MIL-Ti125 | 215 | 0.4 | 50 | 10 | 97 | this Study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Shao, Z.; Cai, M.; Shi, G.; Sun, B. Efficient Cataluminescence Sensor for Detecting Methanol Based on NiCo2O4//MIL-Ti125 Polyhedral Composite Nano-Materials. Chemosensors 2025, 13, 339. https://doi.org/10.3390/chemosensors13090339
Wang H, Shao Z, Cai M, Shi G, Sun B. Efficient Cataluminescence Sensor for Detecting Methanol Based on NiCo2O4//MIL-Ti125 Polyhedral Composite Nano-Materials. Chemosensors. 2025; 13(9):339. https://doi.org/10.3390/chemosensors13090339
Chicago/Turabian StyleWang, Hongyan, Ziyu Shao, Mao Cai, Guoji Shi, and Bai Sun. 2025. "Efficient Cataluminescence Sensor for Detecting Methanol Based on NiCo2O4//MIL-Ti125 Polyhedral Composite Nano-Materials" Chemosensors 13, no. 9: 339. https://doi.org/10.3390/chemosensors13090339
APA StyleWang, H., Shao, Z., Cai, M., Shi, G., & Sun, B. (2025). Efficient Cataluminescence Sensor for Detecting Methanol Based on NiCo2O4//MIL-Ti125 Polyhedral Composite Nano-Materials. Chemosensors, 13(9), 339. https://doi.org/10.3390/chemosensors13090339