A Carbon Black-Based Non-Enzymatic Electrochemical Sensor for the Detection of Sunset Yellow in Beverages
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Pd-CeO2/CB Composite
2.3. Sensor Fabrication
2.4. Preparation of Sunset Yellow Standard Solutions
2.5. Electrochemical Detection
3. Results
3.1. Characterization of the Sensing Material
3.2. Electrocatalysis of Sunset Yellow by Pd-CeO2-CB
3.3. Optimization of Detection Conditions for a Sunset Yellow Electrochemical Sensor
3.4. Detection of Sunset Yellow by Pd-CeO2/CB Electrochemical Sensor
3.5. Sensor Selectivity, Consistency, and Stability Studies
3.6. Real Beverage Sample Testing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cruz, L.; Basílio, N.; Mateus, N.; de Freitas, V.; Pina, F. Natural and synthetic flavylium-based dyes: The chemistry behind the color. Chem. Rev. 2022, 122, 1416–1481. [Google Scholar] [CrossRef]
- Dey, S.; Nagababu, B.H. Applications of food color and bio-preservatives in the food and its effect on the human health. Food Chem. Adv. 2022, 1, 100019. [Google Scholar] [CrossRef]
- Kobylewski, S.; Jacobson, M.F. Toxicology of food dyes. Int. J. Occup. Environ. Health 2012, 18, 220–246. [Google Scholar] [CrossRef] [PubMed]
- Kanarek, R. Artificial food dyes and attention deficit hyperactivity disorder. Nutr. Rev. 2011, 69, 385–391. [Google Scholar] [CrossRef]
- Martins, N.; Roriz, C.L.; Morales, P.; Barros, L.; Ferreira, I.C.F.R. Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends Food Sci. Technol. 2016, 52, 1–15. [Google Scholar] [CrossRef]
- Ji, L.; Cheng, Q.; Wu, K.; Yang, X. Cu-BTC frameworks-based electrochemical sensing platform for rapid and simple determination of Sunset yellow and Tartrazine. Sens. Actuators B 2016, 231, 12–17. [Google Scholar] [CrossRef]
- Abbey, J.; Fields, B.; O’Mullane, M.; Tomaska, L.D. Food Additives: Colorants. In Encyclopedia of Food Safety; Motarjemi, Y., Ed.; Academic Press: Waltham, MA, USA, 2014; pp. 459–465. [Google Scholar]
- Millichap, J.G.; Yee, M.M. The diet factor in attention-deficit/hyperactivity disorder. Pediatrics 2012, 129, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, T.; Zhang, T.; Wang, M.; Gao, L.; Yang, Z.; Yang, Z. Rational design of ultrahigh sensitive sunset yellow sensor based on 3D hierarchical porous graphitic carbon with sub-nanopores. Food Chem. 2021, 365, 130631. [Google Scholar] [CrossRef]
- Wu, H.; Guo, J.B.; Du, L.M.; Tian, H.; Hao, C.X.; Wang, Z.F.; Wang, J.Y. A rapid shaking-based ionic liquid dispersive liquid phase microextraction for the simultaneous determination of six synthetic food colourants in soft drinks, sugar- and gelatin-based confectionery by high-performance liquid chromatography. Food Chem. 2013, 141, 182–186. [Google Scholar] [CrossRef]
- Sorouraddin, M.-H.; Rostami, A.; Saadati, M. A simple and portable multi-colour light emitting diode based photocolourimeter for the analysis of mixtures of five common food dyes. Food Chem. 2011, 127, 308–313. [Google Scholar] [CrossRef]
- Rovina, K.; Prabakaran, P.P.; Siddiquee, S.; Shaarani, S.M. Methods for the analysis of Sunset Yellow FCF (E110) in food and beverage products- a review. TrAC Trends Anal. Chem. 2016, 85, 47–56. [Google Scholar] [CrossRef]
- Kolozof, P.-A.; Florou, A.B.; Spyrou, K.; Hrbac, J.; Prodromidis, M.I. In-situ tailoring of the electrocatalytic properties of screen-printed graphite electrodes with sparked generated molybdenum nanoparticles for the simultaneous voltammetric determination of sunset yellow and tartrazine. Sens. Actuators B 2020, 304, 127268. [Google Scholar] [CrossRef]
- Karimi, F.; Demir, E.; Aydogdu, N.; Shojaei, M.; Taher, M.A.; Asrami, P.N.; Alizadeh, M.; Ghasemi, Y.; Cheraghi, S. Advancement in electrochemical strategies for quantification of Brown HT and Carmoisine (Acid Red 14) From Azo Dyestuff class. Food Chem. Toxicol. 2022, 165, 113075. [Google Scholar] [CrossRef] [PubMed]
- Dmukhailo, A.; Tvorynska, S.; Trukhym, M.; Dubenska, L. Electrochemical behavior of the synthetic food diazo dye Brilliant Black BN (E151) and the first voltammetric method for its determination. Talanta 2025, 293, 128119. [Google Scholar] [CrossRef]
- Zheng, Y.; Mao, S.; Zhu, J.; Fu, L.; Zare, N.; Karimi, F. Current status of electrochemical detection of sunset yellow based on bibliometrics. Food Chem. Toxicol. 2022, 164, 113019. [Google Scholar] [CrossRef] [PubMed]
- Georgescu State, R.; van Staden, J.F.; Staden, R.-I.S.-v. Review—Recent trends on the electrochemical sensors used for the determination of tartrazine and sunset yellow FCF from food and beverage products. J. Electrochem. Soc. 2022, 169, 017509. [Google Scholar] [CrossRef]
- Cougo, C.M.d.S.; Pezzin, S.H.; Pachekoski, W.M.; Amico, S.C. 14—Multiscale hybrid composites with carbon-based nanofillers. In Nanocarbon and Its Composites; Khan, A., Jawaid, M., Inamuddin, Asiri, A.M., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 449–470. [Google Scholar]
- Cao, H.; Zhu, M.; Li, Y. Decoration of carbon nanotubes with iron oxide. J. Solid State Chem. 2006, 179, 1208–1213. [Google Scholar] [CrossRef]
- Evtugyn, G.; Hianik, T. Chapter 9—Electroanalytical bioplatforms based on carbon nanostructures as new tools for diagnosis. In Nanotechnology and Biosensors; Nikolelis, D.P., Nikoleli, G.-P., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 269–306. [Google Scholar]
- Vicentini, F.C.; Raymundo-Pereira, P.A.; Janegitz, B.C.; Machado, S.A.S.; Fatibello-Filho, O. Nanostructured carbon black for simultaneous sensing in biological fluids. Sens. Actuators B Chem. 2016, 227, 610–618. [Google Scholar] [CrossRef]
- Tang, H.; Peng, Z.; Tian, R.; Ye, L.; Zhang, J.; Rao, M.; Li, G. Platinum-group metals: Demand, supply, applications and their recycling from spent automotive catalysts. J. Environ. Chem. Eng. 2023, 11, 110237. [Google Scholar] [CrossRef]
- Xu, C.; Qu, X. Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 2014, 6, e90. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Sun, Y.; Li, K.; Shang, T.; Wan, Y. Recent advances and perspectives of CeO2-based catalysts: Electronic properties and applications for energy storage and conversion. Front. Chem. 2022, 10, 1089708. [Google Scholar] [CrossRef]
- Wang, G.; Guo, Y.; Lu, G. Promotional effect of cerium on Mo–V–Te–Nb mixed oxide catalyst for ammoxidation of propane to acrylonitrile. Fuel Process. Technol. 2015, 130, 71–77. [Google Scholar] [CrossRef]
- Cargnello, M.; Doan-Nguyen, V.V.T.; Gordon, T.R.; Diaz, R.E.; Stach, E.A.; Gorte, R.J.; Fornasiero, P.; Murray, C.B. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 2013, 341, 771–773. [Google Scholar] [CrossRef]
- Rao, R.G.; Blume, R.; Hansen, T.W.; Fuentes, E.; Dreyer, K.; Moldovan, S.; Ersen, O.; Hibbitts, D.D.; Chabal, Y.J.; Schlögl, R.; et al. Interfacial charge distributions in carbon-supported palladium catalysts. Nat. Commun. 2017, 8, 340. [Google Scholar] [CrossRef]
- Alemayehu, A.; Biesuz, M.; Javan, K.Y.; Tkach, A.; Vilarinho, P.M.; Sglavo, V.M.; Tyrpekl, V. Ultrafast high-temperature sintering of gadolinia-doped ceria. J. Eur. Ceram. Soc. 2023, 43, 4837–4843. [Google Scholar] [CrossRef]
- Sanchez, S.I.; Small, M.W.; Zuo, J.-m.; Nuzzo, R.G. Structural characterization of Pt–Pd and Pd–Pt core–shell nanoclusters at atomic resolution. J. Am. Chem. Soc. 2009, 131, 8683–8689. [Google Scholar] [CrossRef]
- Eom, N.; Messing, M.E.; Johansson, J.; Deppert, K. General trends in core–shell preferences for bimetallic nanoparticles. ACS Nano 2021, 15, 8883–8895. [Google Scholar] [CrossRef] [PubMed]
- Aneggi, E.; Wiater, D.; de Leitenburg, C.; Llorca, J.; Trovarelli, A. Shape-dependent activity of ceria in soot combustion. ACS Catal. 2014, 4, 172–181. [Google Scholar] [CrossRef]
- Yu, H.; Davydova, E.S.; Ash, U.; Miller, H.A.; Bonville, L.; Dekel, D.R.; Maric, R. Palladium-ceria nanocatalyst for hydrogen oxidation in alkaline media: Optimization of the Pd–CeO2 interface. Nano Energy 2019, 57, 820–826. [Google Scholar] [CrossRef]
- Gan, T.; Sun, J.; Cao, S.; Gao, F.; Zhang, Y.; Yang, Y. One-step electrochemical approach for the preparation of graphene wrapped-phosphotungstic acid hybrid and its application for simultaneous determination of sunset yellow and tartrazine. Electrochim. Acta 2012, 74, 151–157. [Google Scholar] [CrossRef]
- Li, L.; Zheng, H.; Guo, L.; Qu, L.; Yu, L. Construction of novel electrochemical sensors based on bimetallic nanoparticle functionalized graphene for determination of sunset yellow in soft drink. J. Electroanal. Chem. 2019, 833, 393–400. [Google Scholar] [CrossRef]
- Pogacean, F.; Coros, M.; Mirel, V.; Magerusan, L.; Barbu-Tudoran, L.; Vulpoi, A.; Stefan-van Staden, R.-I.; Pruneanu, S. Graphene-based materials produced by graphite electrochemical exfoliation in acidic solutions: Application to Sunset Yellow voltammetric detection. Microchem. J. 2019, 147, 112–120. [Google Scholar] [CrossRef]
- Qiu, X.; Lu, L.; Leng, J.; Yu, Y.; Wang, W.; Jiang, M.; Bai, L. An enhanced electrochemical platform based on graphene oxide and multi-walled carbon nanotubes nanocomposite for sensitive determination of Sunset Yellow and Tartrazine. Food Chem. 2016, 190, 889–895. [Google Scholar] [CrossRef]
- Jampasa, S.; Siangproh, W.; Duangmal, K.; Chailapakul, O. Electrochemically reduced graphene oxide-modified screen-printed carbon electrodes for a simple and highly sensitive electrochemical detection of synthetic colorants in beverages. Talanta 2016, 160, 113–124. [Google Scholar] [CrossRef]
- Tajik, S.; Beitollahi, H. Hydrothermal synthesis of CuFe2O4 nanoparticles for highly sensitive electrochemical detection of sunset yellow. Food Chem. Toxicol. 2022, 165, 113048. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xie, N.; Huang, W.; Chen, J.; Yu, L. Vertically Aligned manganese-doped ZnO nanorods synthesized on glassy carbon electrode for detection of colorants in soft drinks. Int. J. Electrochem. Sci. 2020, 15, 9146–9153. [Google Scholar] [CrossRef]
Nano-Catalytic Materials | Linear Range (μM) | Limit of Detection (nM) | Ref. |
---|---|---|---|
PDDA-Gr-(Pd–Pt)/GCE | 0.02–10.0 | 6.0 | [34] |
PDDA-Gr-(Pt-Cu)/GCE | 0.02–10.0 | 4 | [34] |
PDDA-Gr-(Co-Ni)/GCE | 0.08–10.0 | 2 | [34] |
GCE/EGr-1 | 6.0–100.0 | 1800.0 | [35] |
GO/MWCNTs/GCE | 0.09–8.0 | 25.0 | [36] |
ERGO/SPCE | 0.01–20.0 | 0.5 | [37] |
CuFe2O4/SPE | 0.03–100.0 | 9.0 | [38] |
MZO/GCE | 0–1.0 | 5.2 | [39] |
Pd-CeO2/CB/SPE | 0.001–0.1 | 0.056 | This work |
Samples | Spiked (nM) | Measured (nM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Orange juice | 80.00 | 79.29 | 99.11 | 2.40 |
50.00 | 50.64 | 100.13 | 2.02 | |
30.00 | 29.89 | 99.65 | 0.73 | |
Carbonated orange juice | 80.00 | 81.07 | 101.34 | 0.44 |
50.00 | 49.96 | 99.93 | 1.09 | |
30.00 | 30.09 | 100.31 | 3.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Chen, W.; Wan, Q.; Li, H.; Wang, X.; Xu, P.; Zhang, Y.; Zhu, Y.; Li, X. A Carbon Black-Based Non-Enzymatic Electrochemical Sensor for the Detection of Sunset Yellow in Beverages. Chemosensors 2025, 13, 330. https://doi.org/10.3390/chemosensors13090330
Li Z, Chen W, Wan Q, Li H, Wang X, Xu P, Zhang Y, Zhu Y, Li X. A Carbon Black-Based Non-Enzymatic Electrochemical Sensor for the Detection of Sunset Yellow in Beverages. Chemosensors. 2025; 13(9):330. https://doi.org/10.3390/chemosensors13090330
Chicago/Turabian StyleLi, Zihui, Wenxue Chen, Qiongya Wan, Haoliang Li, Xuefeng Wang, Pengcheng Xu, Yuan Zhang, Yongheng Zhu, and Xinxin Li. 2025. "A Carbon Black-Based Non-Enzymatic Electrochemical Sensor for the Detection of Sunset Yellow in Beverages" Chemosensors 13, no. 9: 330. https://doi.org/10.3390/chemosensors13090330
APA StyleLi, Z., Chen, W., Wan, Q., Li, H., Wang, X., Xu, P., Zhang, Y., Zhu, Y., & Li, X. (2025). A Carbon Black-Based Non-Enzymatic Electrochemical Sensor for the Detection of Sunset Yellow in Beverages. Chemosensors, 13(9), 330. https://doi.org/10.3390/chemosensors13090330