Enzymatic Transformation of Secondary Metabolites in Abeliophyllum distichum Extract by Viscozyme® L Treatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Instruments and Reagents
2.3. Extraction and Preparation of Viscozyme® L-Treated A. Distichum Leaves
2.4. LC-ESI/MS Conditions
2.5. HPLC Conditions
2.6. Calibration Curve
2.7. Statistical Analysis
3. Results
3.1. LC-ESI/MS Profiling and MSEA for Chemical Structure Classification
3.2. HPLC Quantitative Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, K.; Jang, Y.J.; Lee, H.; Kim, E.; Kim, Y.; Yoo, T.K.; Hyun, T.K.; Park, J.I.; Yi, S.J.; Kim, K. Transcriptome Analysis Reveals That Abeliophyllum distichum Nakai Extract Inhibits RANKL-Mediated Osteoclastogenensis Mainly through Suppressing Nfatc1 Expression. Biology 2020, 9, 212. [Google Scholar] [CrossRef] [PubMed]
- Ong, H.G.; Jung, E.K.; Kim, Y.I.; Lee, J.H.; Kim, B.Y.; Kang, D.H.; Shin, J.S.; Kim, Y.D. Population Connectivity and Size Reductions in the Anthropocene: The Consequence of Landscapes and Historical Bottlenecks in White Forsythia Fragmented Habitats. BMC Ecol. Evol. 2024, 24, 123. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.D.; Kim, J.H.; Pang, Q.Q.; Jung, P.M.; Cho, E.J.; Lee, S. Antioxidant Activity and Acteoside Analysis of Abeliophyllum distichum. Antioxidants 2020, 9, 1148. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Kang, H.; Kim, M.; Kim, J.; Shin, H.; Kim, K. Analysis on the Components and Safety Evaluation of Abeliophyllum distichum Nakai Leaves and Stems. Korean J. Environ. Health Sci. 2014, 40, 234–244. [Google Scholar] [CrossRef]
- Moon, H.J.; Cha, Y.S.; Kim, K.A. Anti-Inflammatory Effects of Ethanolic Extract from Abeliophyllum distichum (Miseon Tree) Leaves in Mice with Dextran Sulfate Sodium-Induced Ulcerative Colitis. Food Nutr. Res. 2025, 69, 11052. [Google Scholar] [CrossRef]
- Kim, E.-Y.; Kim, M.; Lee, Y.; Kang, D.; Kwon, D.; Sohn, Y.; Jung, H.-S. Ethyl Acetate Fraction of Abeliophyllum distichum Nakai Alleviates Atopic Dermatitis-like Symptoms in Vivo and in Vitro Model. J. Tradit. Complement. Med. 2025. [Google Scholar] [CrossRef]
- Yoo, T.K.; Kim, J.S.; Hyun, T.K. Polyphenolic Composition and Anti-Melanoma Activity of White Forsythia (Abeliophyllum distichum Nakai) Organ Extracts. Plants 2020, 9, 757. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, H.; Hyun, T.K. Transcriptome Analysis of Abeliophyllum distichum Nakai Reveals Potential Molecular Markers and Candidate Genes Involved in Anthocyanin Biosynthesis Pathway. S. Afr. J. Bot. 2018, 116, 34–41. [Google Scholar] [CrossRef]
- Jang, T.W.; Park, J.H. Anti-Inflammatory Effects of Abeliophyllum distichum Nakai (Cultivar Okhwang 1) Callus through Inhibition of PI3K/Akt/NF-κB, and MAPK Signaling Pathways in Lipopolysaccharide-Induced Macrophages. Processes 2021, 9, 1071. [Google Scholar] [CrossRef]
- Jang, T.W.; Choi, J.S.; Han, S.Y.; Park, H.J.; Lee, D.Y.; Min, Y.S.; Park, J.H. Comparison of the Bioactive Compounds and Anti-Inflammatory Effects Found in Different Flower Colors from Abeliophyllum distichum Nakai. J. Appl. Biol. Chem. 2022, 65, 203–213. [Google Scholar] [CrossRef]
- Liu, Y.; Angelov, A.; Übelacker, M.; Baudrexl, M.; Ludwig, C.; Rühmann, B.; Sieber, V.; Liebl, W. Proteomic Analysis of Viscozyme L and Its Major Enzyme Components for Pectic Substrate Degradation. Int. J. Biol. Macromol. 2024, 266, 131309. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Ma, J.Y. Insight into the Hydrolytic Selectivity of β-Glucosidase to Enhance the Contents of Desired Active Phytochemicals in Medicinal Plants. Biomed Res. Int. 2018, 2018, 4360252. [Google Scholar] [CrossRef] [PubMed]
- Šamec, D.; Jurčević Šangut, I.; Karalija, E.; Šarkanj, B.; Zelić, B.; Šalić, A. 3′-8″-Biflavones: A Review of Their Structural Diversity, Natural Occurrence, Role in Plants, Extraction and Identification. Molecules 2024, 29, 4634. [Google Scholar] [CrossRef] [PubMed]
- Guerriero, G.; Berni, R.; Muñoz-Sanchez, J.A.; Apone, F.; Abdel-Salam, E.M.; Qahtan, A.A.; Alatar, A.A.; Cantini, C.; Cai, G.; Hausman, J.F.; et al. Production of Plant Secondary Metabolites: Examples, Tips and Suggestions for Biotechnologists. Genes 2018, 9, 309. [Google Scholar] [CrossRef]
- Krakowska-Sieprawska, A.; Kiełbasa, A.; Rafińska, K.; Ligor, M.; Buszewski, B. Modern Methods of Pre-Treatment of Plant Material for the Extraction of Bioactive Compounds. Molecules 2022, 27, 730. [Google Scholar] [CrossRef]
- Choi, J.; Lee, H.D.; Cho, H.; Lee, C.D.; Tran, G.H.; Kim, H.; Moon, S.K.; Lee, S. Antioxidative Phenolic Compounds from the Aerial Parts of Cyperus exaltatus var. iwasakii and Their HPLC Analysis. Appl. Biol. Chem. 2023, 66, 61. [Google Scholar] [CrossRef]
- Thomas, S.S.; Eom, J.; Sung, N.Y.; Kim, D.S.; Cha, Y.S.; Kim, K.A. Inhibitory Effect of Ethanolic Extract of Abeliophyllum distichum Leaf on 3T3–L1 Adipocyte Differentiation. Nutr. Res. Pract. 2021, 15, 555–567. [Google Scholar] [CrossRef]
- Liederer, B.M.; Borchardt, R.T. Enzymes Involved in the Bioconversion of Ester-Based Prodrugs. J. Pharm. Sci. 2006, 95, 1177–1195. [Google Scholar] [CrossRef]
- Rooseboom, M.; Commandeur, J.N.M.; Vermeulen, N.P.E. Enzyme-Catalyzed Activation of Anticancer Prodrugs. Pharmacol. Rev. 2004, 56, 53–102. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Kim, H.R.; Hou, C.T.; Kang, S.C. Bioconverted Products of Essential Fatty Acids as Potential Antimicrobial Agents. New Biotechnol. 2009, 26, 122–130. [Google Scholar] [CrossRef]
- Hong, Y.H.; Jung, E.Y.; Park, Y.; Shin, K.S.; Kim, T.Y.; Yu, K.W.; Chang, U.J.; Suh, H.J. Enzymatic Improvement in the Polyphenol Extractability and Antioxidant Activity of Green Tea Extracts. Biosci. Biotechnol. Biochem. 2013, 77, 22–29. [Google Scholar] [CrossRef]
- Kim, D.; Kim, S.; Lee, G.; Kim, H. Antioxidant Activities and Polyphenol Content of Morus alba Leaf Extracts Collected from Varying Regions. Planta Med. 2014, 80, 675–680. [Google Scholar] [CrossRef]
- Hu, L.; Luo, Y.; Yang, J.; Cheng, C. Botanical Flavonoids: Efficacy, Absorption, Metabolism and Advanced Pharmaceutical Technology for Improving Bioavailability. Molecules 2025, 30, 1184. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, S.; Chang, Q.; Zhang, L.; Wang, G.; Chen, W.; Miao, X.; Zheng, Y. A Strategy for the Improvement of the Bioavailability and Antiosteoporosis Activity of BCS IV Flavonoid Glycosides through the Formulation of Their Lipophilic Aglycone into Nanocrystals. Mol. Pharm. 2013, 10, 2534–2542. [Google Scholar] [CrossRef] [PubMed]
- Qanash, H.; Al-Rajhi, A.M.H.; Almashjary, M.N.; Basabrain, A.A.; Hazzazi, M.S.; Abdelghany, T.M. Inhibitory Potential of Rutin and Rutin Nano-Crystals against Helicobacter pylori, Colon Cancer, Hemolysis and Butyrylcholinesterase in Vitro and in Silico. Appl. Biol. Chem. 2023, 66, 79. [Google Scholar] [CrossRef]
- Lee, Y.G.; Kwon, J.E.; Choi, W.S.; Baek, N.I.; Kang, S.C. Deciphering Chemical Diversity among Five Variants of Abeliophyllum distichum Flowers through Metabolomics Analysis. Plant Direct 2024, 8, e616. [Google Scholar] [CrossRef]
- Day, A.J.; Cañada, F.J.; Díaz, J.C.; Kroon, P.A.; McLauchlan, R.; Faulds, C.B.; Plumb, G.W.; Morgan, M.R.A.; Williamson, G. Dietary Flavonoid and Isoflavone Glycosides are Hydrolysed by the Lactase Site of Lactase Phlorizin Hydrolase. FEBS Lett. 2000, 468, 166–170. [Google Scholar] [CrossRef]
- Jaganath, I.B.; Mullen, W.; Edwards, C.A.; Crozier, A. The Relative Contribution of the Small and Large Intestine to the Absorption and Metabolism of Rutin in Man. Free Radic. Res. 2006, 40, 1035–1046. [Google Scholar] [CrossRef]
- Roowi, S.; Stalmach, A.; Mullen, W.; Lean, M.E.J.; Edwards, C.A.; Crozier, A. Green Tea Flavan-3-Ols: Colonic Degradation and Urinary Excretion of Catabolites by Humans. J. Agric. Food Chem. 2010, 58, 1296–1304. [Google Scholar] [CrossRef]
- Sobreiro, M.A.; Della Torre, A.; de Araújo, M.E.M.B.; Canella, P.R.B.C.; de Carvalho, J.E.; Carvalho, P.d.O.; Ruiz, A.L.T.G. Enzymatic Hydrolysis of Rutin: Evaluation of Kinetic Parameters and Anti-Proliferative, Mutagenic and Anti-Mutagenic Effects. Life 2023, 13, 549. [Google Scholar] [CrossRef]
- Zheng, H.Z.; Kwon, S.Y.; Chung, S.K. Viscozyme L Aided Flavonoid Extraction and Identification of Quercetin from Saururus chinensis (Lour.) Baill. J. Appl. Biol. Chem. 2020, 63, 197–201. [Google Scholar] [CrossRef]
- Sharma, S. Physical Characterization of Isozymes of Endo-β-1,4-Glucanase and β-1,4-Glucosidase from Aspergillus Species. FEMS Microbiol. Lett. 1991, 79, 99–104. [Google Scholar] [CrossRef]
- Yang, Y.C.; Li, J.; Zu, Y.G.; Fu, Y.J.; Luo, M.; Wu, N.; Liu, X.L. Optimisation of Microwave-Assisted Enzymatic Extraction of Corilagin and Geraniin from Geranium sibiricum Linne and Evaluation of Antioxidant Activity. Food Chem. 2010, 122, 373–380. [Google Scholar] [CrossRef]
- Kotik, M.; Kulik, N.; Valentová, K. Flavonoids as Aglycones in Retaining Glycosidase-Catalyzed Reactions: Prospects for Green Chemistry. J. Agric. Food Chem. 2023, 71, 14890–14910. [Google Scholar] [CrossRef]
- Nishad, J.; Saha, S.; Kaur, C. Enzyme- and Ultrasound-Assisted Extractions of Polyphenols from Citrus sinensis (cv. Malta) Peel: A Comparative Study. J. Food Process. Preserv. 2019, 43, e14046. [Google Scholar] [CrossRef]
- Hwang, J.T.; Kim, H.J.; Ryuk, J.A.; Jung, D.H.; Ko, B.S. Efficiency of the Enzymatic Conversion of Flavone Glycosides Isolated from Carrot Leaves and Anti-Inflammatory Effects of Enzyme-Treated Carrot Leaves. Molecules 2023, 28, 4291. [Google Scholar] [CrossRef]
Compound | tR 1 | Calibration Equation 2 | Correlation Factor, r2 3 |
---|---|---|---|
1 | 20.7 | Y = 10,494.1X + 4.7 | 1.0000 |
2 | 21.2 | Y = 5641.9X − 2.0 | 1.0000 |
3 | 23.0 | Y = 3583.3X + 26.9 | 0.9996 |
4 | 30.3 | Y = 24,334.1X + 56.0 | 0.9999 |
tR 1 | Molecular Formula | Molecular Weight | Tentative Identification |
---|---|---|---|
4.99 | C7H6O4 | 154.0 | Pyrocatechuic acid 2 |
5.82 | C14H20O8 | 316.1 | Hydroxytyrosol 4-O-glucoside 2 |
7.38 | C7H6O3 | 138.0 | Protocatechuic aldehyde |
8.10 | C20H30O12 | 462.2 | Verbasoside 2 |
8.23 | C14H20O7 | 300.1 | Salidroside 2 |
10.59 | C8H10O4 | 170.1 | Penicillic acid 2 |
10.66 | C19H28O11 | 432.2 | Osmanthuside H 2 |
10.70 | C9H6O4 | 178.0 | Esculetin |
11.00 | C9H8O4 | 180.0 | Caffeic acid |
13.74 | C16H18O8 | 338.1 | 4-Coumaroylquinic acid 2 |
14.63 | C15H14O6 | 290.1 | Epicatechin 2 |
14.66 | C18H22O11 | 414.1 | Asperuloside 2 |
14.80 | C9H8O3 | 164.0 | o-Coumarate |
16.49 | C23H26O11 | 478.1 | Calceolarioside A |
17.08 | C29H36O16 | 640.2 | Plantamajoside |
19.22 | C27H30O16 | 610.2 | Rutin |
19.61 | C21H20O12 | 464.1 | Hyperoside |
20.02 | C29H36O15 | 624.2 | Acteoside |
20.13 | C29H36O15 | 624.2 | Isoverbascoside |
20.52 | C27H30O15 | 594.2 | Datiscin 2 |
20.85 | C21H22O10 | 434.1 | Prunin 2 |
23.90 | C15H10O7 | 302.0 | Quercetin |
24.15 | C11H12O4 | 208.1 | Caffeic acid ethyl ester |
25.30 | C15H12O5 | 272.1 | Naringenin |
25.90 | C15H10O6 | 286.0 | Kaempferol 2 |
31.63 | C30H48O5 | 488.4 | Asiatic acid |
tR 1 | Molecular Formula | Molecular Weight | Tentative Identification |
---|---|---|---|
7.34 | C7H6O3 | 138.0 | Protocatechuic aldehyde |
10.69 | C9H6O4 | 178.0 | Esculetin |
11.01 | C9H8O4 | 180.0 | Caffeic acid |
14.87 | C9H8O3 | 164.0 | o-Coumarate |
16.60 | C23H26O11 | 478.1 | Calceolarioside A |
17.01 | C29H36O16 | 640.2 | Plantamajoside |
17.77 | C23H26O11 | 478.1 | Calceolarioside B |
19.08 | C27H30O16 | 610.2 | Quercetin 3-O-neohesperidoside |
19.35 | C27H30O16 | 610.2 | Rutin |
19.69 | C21H20O12 | 464.1 | Hyperoside |
20.16 | C29H36O15 | 624.2 | Acteoside |
20.84 | C29H36O15 | 624.2 | Isoverbascoside |
23.95 | C15H10O7 | 302.0 | Quercetin |
24.21 | C11H12O4 | 208.1 | Caffeic acid ethyl ester |
25.35 | C15H12O5 | 272.1 | Naringenin |
31.67 | C30H48O5 | 488.4 | Asiatic acid |
Sample | Contents (mg/g DW) **** | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | Total | |
Control | 50.21 ± 0.01 a | 286.65 ± 0.04 a | 65.66 ± 0.07 a | 0.07 ± 0.02 b | 402.59 |
Viscozyme® L | 36.72 ± 0.03 b | 273.66 ± 0.31 b | 40.38 ± 0.45 b | 0.29 ± 0.01 a | 351.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-D.; Kim, E.-A.; Rho, H.S.; Lee, S. Enzymatic Transformation of Secondary Metabolites in Abeliophyllum distichum Extract by Viscozyme® L Treatment. Chemosensors 2025, 13, 331. https://doi.org/10.3390/chemosensors13090331
Lee C-D, Kim E-A, Rho HS, Lee S. Enzymatic Transformation of Secondary Metabolites in Abeliophyllum distichum Extract by Viscozyme® L Treatment. Chemosensors. 2025; 13(9):331. https://doi.org/10.3390/chemosensors13090331
Chicago/Turabian StyleLee, Chang-Dae, Eun-A Kim, Ho Sik Rho, and Sanghyun Lee. 2025. "Enzymatic Transformation of Secondary Metabolites in Abeliophyllum distichum Extract by Viscozyme® L Treatment" Chemosensors 13, no. 9: 331. https://doi.org/10.3390/chemosensors13090331
APA StyleLee, C.-D., Kim, E.-A., Rho, H. S., & Lee, S. (2025). Enzymatic Transformation of Secondary Metabolites in Abeliophyllum distichum Extract by Viscozyme® L Treatment. Chemosensors, 13(9), 331. https://doi.org/10.3390/chemosensors13090331