Deep Transfer Learning for Automatic Analysis of Ignitable Liquid Residues in Fire Debris Samples
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Analysis
2.1.1. Intra-Laboratory Samples
2.1.2. Inter-Laboratory Samples
2.2. Transfer Learning Model Preparation
2.2.1. Data Set Construction
2.2.2. GC/MS Data-to-Image Transformation
2.2.3. Transfer Learning with CNNs
2.3. Performance Assessment
3. Results
3.1. Generating Images from GC/MS Data Results
3.2. Training Results
3.3. Model Performance on Intra-Laboratory Data
3.4. Model Performance on Inter-Laboratory Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The U.S. Fire Administration (USFA). Residential Fire Estimate Summaries (2014–2023). Available online: https://www.usfa.fema.gov/statistics/residential-fires/intentional.html (accessed on 8 August 2025).
- The U.S. Fire Administration (USFA). Nonresidential Building Intentional Fire Trends (2014–2023). Available online: https://www.usfa.fema.gov/statistics/nonresidential-fires/intentional.html (accessed on 8 August 2025).
- National Fire Protection Association (NFPA). Intentional Structure Fires. Available online: https://www.nfpa.org//-/media/Files/News-and-Research/Fire-statistics-and-reports/US-Fire-Problem/Fire-causes/osintentional.pdf (accessed on 15 March 2025).
- Stauffer, É.; Dolan, J.A.; Newman, R. Flammable and Combustible Liquids; Elsevier: Amsterdam, The Netherlands, 2008; pp. 199–233. [Google Scholar] [CrossRef]
- Stauffer, É.; Dolan, J.A.; Newman, R. Fire debris Analysis; Academic Press: Cambridge, MA, USA, 2008; p. 168. [Google Scholar]
- Almirall, J.R.; Furton, K.G. Analysis and Interpretation of Fire Scene Evidence; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- American Society for Testing and Materials (ASTM). Standard Test Method for Ignitable Liquid Residues in Extracts from Fire Debris Samples by Gas Chromatography-Mass Spectrometry. Available online: https://www.astm.org/e1618-19.html (accessed on 15 March 2025).
- Baerncopf, J.; Hutches, K. A review of modern challenges in fire debris analysis. Forensic Sci. Int. 2014, 244, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Martín-Alberca, C.; Ortega-Ojeda, F.E.; García-Ruiz, C. Analytical tools for the analysis of fire debris. A review: 2008–2015. Anal. Chim. Acta. 2016, 928, 1–19. [Google Scholar] [CrossRef]
- Sigman, M.E.; Williams, M.R. Chemometric applications in fire debris analysis. WIREs Forensic Sci. 2020, 2, e1368. [Google Scholar] [CrossRef]
- Misolas, A.A.; Ferreiro-González, M.; Palma, M. Intelligent and automatic characterization of ignitable liquid residues by using total ion spectrum and machine learning. Microchem. J. 2024, 207, 111757. [Google Scholar] [CrossRef]
- Waddell, E.E.; Williams, M.R.; Sigman, M.E. Progress toward the determination of correct classification rates in Fire Debris Analysis II: Utilizing Soft Independent Modeling of Class Analogy (SIMCA). J. Forensic Sci. 2014, 59, 927–935. [Google Scholar] [CrossRef]
- Waddell, E.E.; Song, E.T.; Rinke, C.N.; Williams, M.R.; Sigman, M.E. Progress toward the determination of correct classification rates in fire debris Analysis. J. Forensic Sci. 2013, 58, 887–896. [Google Scholar] [CrossRef]
- Williams, M.R.; Sigman, M.E.; Lewis, J.; Pitan, K.M. Combined target factor analysis and Bayesian soft-classification of interference-contaminated samples: Forensic Fire Debris Analysis. Forensic Sci. Int. 2012, 222, 373–386. [Google Scholar] [CrossRef]
- Sigman, M.E.; Williams, M.R.; Castelbuono, J.A.; Colca, J.G.; Clark, C.D. Ignitable liquid classification and identification using the summed-ion mass spectrum. Instrum. Sci. Technol. 2008, 36, 375–393. [Google Scholar] [CrossRef]
- Waddell, E.E.; Frisch-Daiello, J.L.; Williams, M.R.; Sigman, M.E. Hierarchical cluster analysis of ignitable liquids based on the total ion spectrum. J. Forensic Sci. 2014, 59, 1198–1204. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.Q.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data. 2021, 8, 53. [Google Scholar] [CrossRef]
- Debus, B.; Parastar, H.; De B Harrington, P.; Kirsanov, D. Deep learning in analytical Chemistry. TrAC Trends Anal. Chem. 2021, 145, 116459. [Google Scholar] [CrossRef]
- Ting, F.F.; Tan, Y.J.; Sim, K.S. Convolutional neural network improvement for breast cancer classification. Expert Syst. Appl. 2019, 120, 103–115. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Prakash, U.M.; Iniyan, S.; Dutta, A.K.; Alsubai, S.; Ramesh, J.V.N.; Mohanty, S.N.; Dudekula, K.V. Multi-scale feature fusion of deep convolutional neural networks on cancerous tumor detection and classification using biomedical images. Sci. Rep. 2025, 15, 1105. [Google Scholar] [CrossRef]
- Mzoughi, H.; Njeh, I.; BenSlima, M.; Farhat, N.; Mhiri, C. Vision transformers (ViT) and deep convolutional neural network (D-CNN)-based models for MRI brain primary tumors images multi-classification supported by explainable artificial intelligence (XAI). Vis. Comput. 2024, 41, 2123–2142. [Google Scholar] [CrossRef]
- Houssein, E.H.; Abdelkareem, D.A.; Hu, G.; Hameed, M.A.; Ibrahim, I.A.; Younan, M. An effective multiclass skin cancer classification approach based on deep convolutional neural network. Clust. Comput. 2024, 27, 12799–12819. [Google Scholar] [CrossRef]
- Warin, K.; Limprasert, W.; Paipongna, T.; Chaowchuen, S.; Vicharueang, S. Deep convolutional neural network for automatic segmentation and classification of jaw tumors in contrast-enhanced computed tomography images. Int. J. Oral Surg. 2025, 54, 374–382. [Google Scholar] [CrossRef]
- Venkateswara, S.M.; Padmanabhan, J. Deep learning based agricultural pest monitoring and classification. Sci. Rep. 2025, 15, 8684. [Google Scholar] [CrossRef]
- Shafik, W.; Tufail, A.; De Silva, C.L.; Apong, R.H.M. A novel hybrid inception-xception convolutional neural network for efficient plant disease classification and detection. Sci. Rep. 2025, 15, 3936. [Google Scholar] [CrossRef]
- Balasundaram, A.; Sundaresan, P.; Bhavsar, A.; Mattu, M.; Kavitha, M.S.; Shaik, A. Tea leaf disease detection using segment anything model and deep convolutional neural networks. Results Eng. 2024, 25, 103784. [Google Scholar] [CrossRef]
- Huang, Z.; Pan, Z.; Lei, B. Transfer learning with deep convolutional neural network for SAR target classification with limited labeled data. Remote Sens. 2017, 9, 907. [Google Scholar] [CrossRef]
- Bogdal, C.; Schellenberg, R.; Lory, M.; Bovens, M.; Höpli, O. Recognition of gasoline in fire debris using machine learning: Part II, application of a neural network. Forensic Sci. Int. 2022, 332, 111177. [Google Scholar] [CrossRef]
- Akmeemana, A.; Williams, M.R.; Sigman, M.E. Convolutional neural network applications in fire debris classification. Chemosensors 2022, 10, 377. [Google Scholar] [CrossRef]
- Park, C.; Lee, J.; Park, W.; Lee, D. Fire accelerant classification from GC–MS data of suspected arson cases using machine–learning models. Forensic Sci. Int. 2023, 346, 111646. [Google Scholar] [CrossRef] [PubMed]
- Sigman, M.E.; Williams, M.R.; Tang, L.; Booppasiri, S.; Prakash, N. In silico created fire debris data for Machine learning. Forensic Chem. 2024, 42, 100633. [Google Scholar] [CrossRef]
- National Center for Forensic Science. Ignitable Liquids Database. Available online: https://ilrc.ucf.edu/index.php (accessed on 15 March 2025).
- National Center for Forensic Science. Substrate Database. Available online: https://ilrc.ucf.edu/substrate/index.php (accessed on 15 March 2025).
- National Center for Forensic Science. Fire Debris Database. Available online: https://ilrc.ucf.edu/firedebris/index.php (accessed on 15 March 2025).
- National Center for Forensic Science. ILRC-Substrate-Fire Debris. Available online: https://ilrc.ucf.edu/ (accessed on 8 August 2025).
- Sigman, M.E.; Williams, M.R.; Thurn, N.; Wood, T. Validation of ground truth fire debris classification by supervised machine learning. Forensic Chem. 2021, 26, 100358. [Google Scholar] [CrossRef]
- American Society for Testing and Materials (ASTM). Standard Practice for Separation of Ignitable Liquid Residues from Fire Debris Samples by Passive Headspace Concentration with Activated Charcoal. 2019. Available online: https://www.astm.org/e1412-19.html (accessed on 15 March 2025).
- The MathWorks. Continuous Wavelet Transform and Scale-Based Analysis. Available online: https://www.mathworks.com/help/wavelet/gs/continuous-wavelet-transform-and-scale-based-analysis.html (accessed on 8 August 2025).
- The MathWorks. Cwtfilterbank. Available online: https://www.mathworks.com/help/wavelet/ref/cwtfilterbank.html (accessed on 8 August 2025).
- Huang, T.Y.; Yu, J.C.C. Intelligent framework for cannabis classification using visualization of gas chromatography/mass spectrometry data and transfer learning. Front. Anal. Sci. 2023, 3, 1125049. [Google Scholar] [CrossRef]
- Kim, H.E.; Cosa-Linan, A.; Santhanam, N.; Jannesari, M.; Maros, M.E.; Ganslandt, T. Transfer learning for medical image classification: A literature review. BMC Med. Imaging 2022, 22, 69. [Google Scholar] [CrossRef]
- Iman, M.; Arabnia, H.R.; Rasheed, K. A review of deep transfer learning and recent advancements. Technologies 2023, 11, 40. [Google Scholar] [CrossRef]
- Zhao, Z.; Lian, F.; Jiang, Y. Recognition of rice species based on gas chromatography-ion mobility spectrometry and deep learning. Agriculture 2024, 14, 1552. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Iandola, F.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception architecture for computer vision. arXiv 2016, arXiv:1512.00567. [Google Scholar]
- Egbert, J.; Plonsky, L. Bootstrapping Techniques; Springer: Berlin, Germany, 2020; pp. 593–610. [Google Scholar]
HS-SPME-GC/MS Analysis | Conditions | |
---|---|---|
HS-SPME steps | Pre-incubation time (s) | 300 |
Incubation temperature (°C) | 80 | |
Extraction time (s) | 120 | |
Desorption time (s) | 120 | |
GC/MS parameters | Column | HP-5ms capillary column |
Carrier gas | Helium (purity > 99.999%) | |
Flow rate (mL/min) | 1 | |
Back inlet heater (°C) | 250 (splitless) | |
GC oven initial temperature (°C) | 40 | |
Hold time (min) | 2 | |
Rate #1 (°C/min), Oven temperature #1 (°C), Hold time #1 (min) | 10, 150, 0 | |
Rate #2 (°C/min), Oven temperature #2 (°C), Hold time #2 (min) | 30, 300, 0 | |
Solvent delay (min) | 2 | |
Source temperature (°C) | 230 | |
Scan mass (m/z) | 45–450 |
Data Set | Class | Sample | Number of GC/MS Data Acquired | Total Number of Data | |||
---|---|---|---|---|---|---|---|
Training | Positive of gasoline | Neat gasoline samples | Brand A–E | 0.4–100 μg gasoline/20 mL HS vial | 315 | 390 | |
Negative of gasoline | Burned substrate samples | 0.05 g 0.15 g 0.25 g 0.35 g 0.45 g | 75 | ||||
Verification | Intra-lab | Positive of gasoline | Neat gasoline samples | Brand A–E | 0.4–100 μg gasoline/20 mL HS vial | 90 | 195 |
Simulated fire debris samples (Challenging samples) | Brand A–E | Spiked 0.4–100 μg gasoline to 250 mg of burned substrates /20 mL HS vial | 90 | ||||
Negative of gasoline | Burned substrate samples | 0.05 g 0.15 g 0.25 g 0.35 g 0.45 g | 15 | ||||
Inter-lab | Positive of gasoline | Neat gasoline samples (Challenging samples) | Various brands Various stages of weathering | 36 | 81 | ||
Simulated fire debris samples (Challenging samples) | Various stages of weathering Various sample matrices | 28 | |||||
Negative of gasoline | Burned substrate samples (Challenging samples) | Burned Nylon carpets | 17 |
Information | GoogLeNet | AlexNet | SqueezeNet | VGG-16 | ResNet-50 | Inception-v3 |
---|---|---|---|---|---|---|
Layers | 22 | 8 | 18 | 16 | 50 | 48 |
Image input size | 224-by-224-by-3 | 227-by-227-by-3 | 227-by-227-by-3 | 224-by-224-by-3 | 224-by-224-by-3 | 299-by-299-by-3 |
Number of parameters | 4 million | 62.3 million | 50 x fewer than AlexNet | 138 million | >23 million | <25 million |
Modified network parameters | newDropoutLayer newConnectedLayer newClassLayer | fullyConnectedLayer softmaxLayer classificationLayer | newDropoutLayer newLearnableLayer newClassLayer | fullyConnectedLayer softmaxLayer classificationLayer | fullyConnectedLayer softmaxLayer classificationLayer | fullyConnectedLayer softmaxLayer classificationLayer |
WeightLearn- RateFactor | 5 | 20 | 10 | 20 | 10 | 10 |
BiasLearn-RateFactor | 5 | 20 | 10 | 20 | 10 | 10 |
MiniBatchSize | 15 | 10 | 10 | 10 | 10 | 10 |
MaxEpochs | 15 | 6 | 15 | 6 | 6 | 6 |
InitialLearnRate | 1 × 10−4 | 1 × 10−4 | 3 × 10−4 | 1 × 10−4 | 1 × 10−4 | 1 × 10−4 |
Validation-Frequency | 10 | 3 | 31 | 3 | 3 | 3 |
GoogLeNet | AlexNet | SqueezeNet | VGG-16 | ResNet-50 | Inception-v3 | |
---|---|---|---|---|---|---|
Training time | 2 min 5 s | 58 s | 1 min 1 s | 11 min 23 s | 18 min 35 s | 5 min 30 s |
Epoch that maintained the highest validation accuracy | Epoch 5 | Epoch 5 | Epoch 13 | Epoch 4 | Epoch 6 | Epoch 6 |
Validation accuracy | 98.72% | 100% | 100% | 100% | 100% | 91.03% |
(a) Neat gasoline samples (1.6–100 μg gasoline/20 mL HS vial) vs. burned substrate samples. | ||||||
GoogLeNet | AlexNet | SqueezeNet | VGG-16 | ResNet-50 | Inception-v3 | |
Accuracy | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 0.99 ± 0.00 |
Precision | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 0.99 ± 0.00 |
Sensitivity (TPR) | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 |
Specificity (TNR) | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 0.93 ± 0.00 |
(b) Simulated fire debris samples (spiked 1.6–100 μg gasoline on 250 mg of burned substrates/20 mL HS vial) vs. burned substrate samples. | ||||||
GoogLeNet | AlexNet | SqueezeNet | VGG-16 | ResNet-50 | Inception-v3 | |
Accuracy | 0.47 ± 0.01 | 0.40 ± 0.01 | 0.36 ± 0.01 | 0.38 ± 0.01 | 0.41 ± 0.01 | 0.52 ± 0.01 |
Precision | 1.00 ± 0.03 | 1.00 ± 0.04 | 1.00 ± 0.05 | 1.00 ± 0.05 | 1.00 ± 0.04 | 0.97 ± 0.03 |
Sensitivity (TPR) | 0.39 ± 0.02 | 0.30 ± 0.03 | 0.26 ± 0.04 | 0.28 ± 0.03 | 0.31 ± 0.03 | 0.45 ± 0.01 |
Specificity (TNR) | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 0.93 ± 0.02 |
(c) Simulated fire debris samples (LOD of each CNN) vs. burned substrate samples. | ||||||
GoogLeNet | AlexNet | SqueezeNet | VGG-16 | ResNet-50 | Inception-v3 | |
LOD (μg/20 mL HS vial) | 25 | 25 | 50 | 25 | 25 | 12.5 |
Accuracy | 0.98 ± 0.01 | 0.92 ± 0.01 | 0.97 ± 0.01 | 0.89 ± 0.00 | 0.91 ± 0.01 | 0.93 ± 0.01 |
Precision | 1.00 ± 0.01 | 1.00 ± 0.02 | 1.00 ± 0.01 | 1.00 ± 0.02 | 1.00 ± 0.02 | 0.96 ± 0.01 |
Sensitivity (TPR) | 0.97 ± 0.01 | 0.88 ± 0.02 | 0.95 ± 0.01 | 0.83 ± 0.02 | 0.86 ± 0.01 | 0.92 ± 0.01 |
Specificity (TNR) | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 | 0.93 ± 0.02 |
(a) Neat gasoline samples vs. burned substrate samples. | ||||||
GoogLeNet | AlexNet | SqueezeNet | VGG-16 | ResNet-50 | Inception-v3 | |
Accuracy | 0.91 ± 0.01 | 0.87 ± 0.01 | 0.36 ± 0.01 | 0.86 ± 0.01 | 0.88 ± 0.01 | 0.73 ± 0.01 |
Precision | 0.88 ± 0.01 | 0.84 ± 0.01 | 0.76 ± 0.02 | 0.83 ± 0.01 | 0.89 ± 0.01 | 0.72 ± 0.00 |
Sensitivity (TPR) | 1.00 ± 0.00 | 1.00 ± 0.00 | 0.77 ± 0.02 | 1.00 ± 0.00 | 0.94 ± 0.01 | 1.00 ± 0.00 |
Specificity (TNR) | 0.71 ± 0.03 | 0.59 ± 0.04 | 0.48 ± 0.06 | 0.58 ± 0.05 | 0.76 ± 0.03 | 0.17 ± 0.08 |
(b) Simulated fire debris samples vs. burned substrate samples. | ||||||
GoogLeNet | AlexNet | SqueezeNet | VGG-16 | ResNet-50 | Inception-v3 | |
Accuracy | 0.8 ± 0.01 | 0.72 ± 0.02 | 0.69 ± 0.01 | 0.63 ± 0.02 | 0.84 ± 0.01 | 0.64 ± 0.01 |
Precision | 0.83 ± 0.02 | 0.76 ± 0.02 | 0.72 ± 0.02 | 0.72 ± 0.03 | 0.86 ± 0.02 | 0.65 ± 0.01 |
Sensitivity (TPR) | 0.86 ± 0.02 | 0.79 ± 0.03 | 0.81 ± 0.02 | 0.66 ± 0.03 | 0.89 ± 0.02 | 0.93 ± 0.01 |
Specificity (TNR) | 0.71 ± 0.03 | 0.59 ± 0.04 | 0.48 ± 0.06 | 0.58 ± 0.05 | 0.76 ± 0.03 | 0.17 ± 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.-Y.; Yu, J.C.C. Deep Transfer Learning for Automatic Analysis of Ignitable Liquid Residues in Fire Debris Samples. Chemosensors 2025, 13, 320. https://doi.org/10.3390/chemosensors13090320
Huang T-Y, Yu JCC. Deep Transfer Learning for Automatic Analysis of Ignitable Liquid Residues in Fire Debris Samples. Chemosensors. 2025; 13(9):320. https://doi.org/10.3390/chemosensors13090320
Chicago/Turabian StyleHuang, Ting-Yu, and Jorn Chi Chung Yu. 2025. "Deep Transfer Learning for Automatic Analysis of Ignitable Liquid Residues in Fire Debris Samples" Chemosensors 13, no. 9: 320. https://doi.org/10.3390/chemosensors13090320
APA StyleHuang, T.-Y., & Yu, J. C. C. (2025). Deep Transfer Learning for Automatic Analysis of Ignitable Liquid Residues in Fire Debris Samples. Chemosensors, 13(9), 320. https://doi.org/10.3390/chemosensors13090320