Rapid High-Accuracy Quantitative Analysis of Water Hardness by Combination of One-Point Calibration Laser-Induced Breakdown Spectroscopy and Aerosolization
Abstract
1. Introduction
2. Experimental and Methods
2.1. Experimental Setup
2.2. Methods
- (a)
- First, instead of the Boltzmann plot, the ME–SB plot is used to calculate plasma temperature by the LIBS spectrum of the standard sample. The ME–SB plot, proposed by Aguilera et al., is a method of calculating the plasma temperature by utilizing the atomic spectral lines in plasma emissions [29]. Since its algorithm uses the known content values of elements in the sample, the calculated plasma temperature is quite accurate.
- (b)
- Second, the correction factor used in CF–LIBS for quantifying the unknown sample is calculated by:
- (c)
- Third, CF–LIBS is performed to quantify the unknown sample by using the calculated .
2.3. Samples
2.4. Delay and Gate Width Parameter Optimization
3. Results and Discussion
3.1. Standard Calibration Models
3.2. OPC–LIBS
3.3. Comparative Analysis of Quantitative Results with Real Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LIBS | Laser-Induced Breakdown Spectroscopy |
CF–LIBS | Calibration-Free Laser-Induced Breakdown Spectroscopy |
OPC–LIBS | One-Point Calibration Laser-Induced Breakdown Spectroscopy |
ME–SB Plot | Multi-Element Saha–Boltzmann Plot |
ICP–OES | Inductively Coupled Plasma Optical Emission Spectroscopy |
EDTA | Ethylene Diamine Tetra Acetic Acid Titration |
ASV | Anodic Stripping Voltammetry |
LOD | Limit of Detections |
SNR | Signal-to-Noise Ratio |
RE | Relative Error |
ARE | Average Relative Error |
R2 | Coefficient of Determination |
References
- Mansouri, S. Recent Developments of (Bio)-Sensors for Detection of Main Microbiological and Non-Biological Pollutants in Plastic Bottled Water Samples: A Critical Review. Talanta 2024, 274, 125962. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.; Barros, M.; Oliveira, C.M.; Da Silva, R.J.N.B. Quantification of the Uncertainty of the Visual Detection of the end-point of a Titration: Determination of Total Hardness in Water. Microchem. J. 2019, 146, 856–863. [Google Scholar] [CrossRef]
- Niu, Y.; Lu, H.; Yang, L.; Shao, L.; Hu, J. High-Sensitivity Microfiber Interferometer Water Hardness Sensor. Measurement 2022, 201, 111710. [Google Scholar] [CrossRef]
- Han, J.; Zhang, L.; Ye, B.; Gao, S.; Yao, X.; Shi, X. The Standards for Drinking Water Quality of China (2022 Edition) Will Take Effect. China CDC Wkly. 2023, 5, 297–300. [Google Scholar] [PubMed]
- Lefkowitz, R.J. Identification of Adenylate Cyclase-Coupled Beta-Adrenergic Receptors with Radiolabeled Beta-Adrenergic Antagonists. Biochem. Pharmacol. 1975, 24, 1651–1658. [Google Scholar] [CrossRef] [PubMed]
- Bykowska-Derda, A.; Spychala, M.; Czlapka-Matyasik, M.; Sojka, M.; Bykowski, J.; Ptak, M. The Relationship between Mortality from Cardiovascular Diseases and Total Drinking Water Hardness: Systematic Review with Meta-Analysis. Foods 2023, 12, 3255. [Google Scholar] [CrossRef] [PubMed]
- Liyanage, D.N.D.; Diyabalanage, S.; Dunuweera, S.P.; Rajapakse, S.; Rajapakse, R.M.G.; Chandrajith, R. Significance of Mg-Hardness and Fluoride in Drinking Water on Chronic Kidney Disease of Unknown Etiology in Monaragala, Sri Lanka. Environ. Res. 2022, 203, 111779. [Google Scholar] [CrossRef] [PubMed]
- Kozisek, F. Regulations for Calcium, Magnesium or Hardness in Drinking Water in the European Union Member States. Regul. Toxicol. Pharmacol. 2020, 112, 104589. [Google Scholar] [CrossRef] [PubMed]
- Jalilov, M.; Jalilova, A.; Feyziyeva, G.; Azimova, M. A New Technology to Prevent the Formation of Limescale in Hot Water Supply Systems. Key Eng. Mater. 2020, 841, 36–40. [Google Scholar] [CrossRef]
- Yappert, M.C.; DuPre, D.B. Complexometric Titrations: Competition of Complexing Agents in the Determination of Water Hardness with EDTA. J. Chem. Educ. 1997, 74, 1422. [Google Scholar] [CrossRef]
- Gao, Y.; Feng, B.; Miao, L.; Chen, Y.; Di, J. Determination of Cr(III) Ions Based on Plasmonic Sensing and Anodic Stripping Voltammetry with Amplification of Ag Nanoparticles. Microchem. J. 2020, 157, 104995. [Google Scholar] [CrossRef]
- Song, M.; Yang, D.; Ramu, A.G.; Choi, D. An Onsite Risk Assessment of Water Quality and Heavy Metal Contamination in Kandal Kampong Speu and Kampong Chhnang Province of Cambodia. Chem. Pap. 2024, 78, 4239–4247. [Google Scholar] [CrossRef]
- Meyer, G.A.; Roeck, J.S.; Johnson, T. Continuous Determination by Inductively Coupled Plasma Emission Spectrometry of Calcium and Magnesium in Chemical Streams Containing up to 2% Dissolved Salt Levels. Spectrochim. Acta Part B At. Spectrosc. 1985, 40, 237–244. [Google Scholar] [CrossRef]
- Boppana, N.P.D.; Snow, R.; Simone, P.S.; Emmert, G.L.; Brown, M.A. A Low-Cost Automated Titration System for Colorimetric Endpoint Detection. Analyst 2023, 148, 2133–2140. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.L.; Fritz, J.S. Rapid Determination of Magnesium and Calcium Hardness in Water by Ion Chromatography. Anal. Chim. Acta 1988, 204, 87–93. [Google Scholar] [CrossRef]
- Borrill, A.J.; Reily, N.E.; Macpherson, J.V. Addressing the Practicalities of Anodic Stripping Voltammetry for Heavy Metal Detection: A Tutorial Review. Analyst 2019, 144, 6834–6849. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Maier, C.S.; Koley, D. Anodic Stripping Voltammetry on a Carbon-Based Ion-Selective Electrode. Electrochim. Acta 2021, 390, 138855. [Google Scholar] [CrossRef] [PubMed]
- Mandindi, W.Z.; Nyaba, L.; Mketo, N.; Nomngongo, P.N. Seasonal Variation of Drinking Water Quality and Human Health Risk Assessment: A Case Study in Rural Village of the Eastern Cape, South Africa. Water 2022, 14, 2013. [Google Scholar] [CrossRef]
- Tang, Y.; Zhao, N. A Review of Development in the Research of Self-Absorption on Laser-Induced Breakdown Spectroscopy. Atom. Spectrosc. 2024, 45, 336–357. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Yin, X.; Zhang, C.; Li, X.; Fang, L. Research on Water Heavy Metal Element Detection Using Surface-Enhanced LIBS Based on Coffee Ring Enrichment. Measurement 2024, 224, 113869. [Google Scholar] [CrossRef]
- Choi, D.; Gong, Y.; Nam, S.-H.; Han, S.-H.; Yoo, J.; Lee, Y. Laser-Induced Breakdown Spectroscopy (LIBS) Analysis of Calcium Ions Dissolved in Water Using Filter Paper Substrates: An Ideal Internal Standard for Precision Improvement. Appl. Spectrosc. 2014, 68, 198–212. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Oh, S.-W.; Han, S.-H. Laser-Induced Breakdown Spectroscopy (LIBS) of Heavy Metal Ions at the Sub-Parts per Million Level in Water. Appl. Spectrosc. 2012, 66, 1385–1396. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Salam, Z.; Abdelhamid, M.; Khalil, S.M.; Harith, M.A.; Harith, M.A. LIBS New Application: Determination of Metallic Alloys Surface Hardness. In Proceedings of the AIP Conference Proceedings, Cairo, Egypt, 27 September 2009; AIP: Melville, NY, USA, 2009; pp. 49–52. [Google Scholar]
- Iqhrammullah, M.; Abdulmadjid, S.N.; Suyanto, H.; Rahmi; Marlina; Kemala, P. A Review of Membrane-Facilitated Liquid-Solid Conversion: Adding Laser-Induced Breakdown Spectroscopy (LIBS) Multi-Applicability for Metal Analysis. J. Phys. Conf. Ser. 2021, 1951, 012044. [Google Scholar] [CrossRef]
- Kumar, A.; Yueh, F.Y.; Miller, T.; Singh, J.P. Detection of Trace Elements in Liquids by Laser-Induced Breakdown Spectroscopy with a Meinhard Nebulizer. Appl. Opt. 2003, 42, 6040. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chu, Y.; Hu, Z.; Zhang, S.; Ma, S.; Khan, M.S.; Chen, F.; Zhang, D.; Guo, L.; Lau, C. High-Sensitivity Determination of Trace Lead and Cadmium in Cosmetics Using Laser-Induced Breakdown Spectroscopy with Ultrasound-Assisted Extraction. Microchem. J. 2020, 158, 105322. [Google Scholar] [CrossRef]
- Ma, S.; Tang, Y.; Ma, Y.; Chu, Y.; Chen, F.; Hu, Z.; Zhu, Z.; Guo, L.; Zeng, X.; Lu, Y. Determination of Trace Heavy Metal Elements in Aqueous Solution Using Surface-Enhanced Laser-Induced Breakdown Spectroscopy. Opt. Express 2019, 27, 15091. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, G.H.; Teixeira, D.V.; Legnaioli, S.; Lorenzetti, G.; Pardini, L.; Palleschi, V. One-Point Calibration for Calibration-Free Laser-Induced Breakdown Spectroscopy Quantitative Analysis. Spectrochim. Acta Part B At. Spectrosc. 2013, 87, 51–56. [Google Scholar] [CrossRef]
- Aguilera, J.A.; Aragón, C. Multi-Element Saha–Boltzmann and Boltzmann Plots in Laser-Induced Plasmas. Spectrochim. Acta Part B At. Spectrosc. 2007, 62, 378–385. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, Z.; Zhao, Z.; Chen, F.; Tang, Y.; Sheng, Z.; Zhang, D.; Zhang, Z.; Jin, H.; Pu, H.; et al. Quantitative Analysis of Mineral Elements in Hair and Nails Using Calibration-Free Laser-Induced Breakdown Spectroscopy. Optik 2021, 242, 167067. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, F.; Zhang, D.; Chu, Y.; Wang, W.; Tang, Y.; Guo, L. A Method for Improving the Accuracy of Calibration-Free Laser-Induced Breakdown Spectroscopy by Exploiting Self-Absorption. Anal. Chim. Acta 2021, 1183, 339008. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ban, D.; Li, N.; Song, J.; Zhang, J.; Luo, Y.; Guan, J.; Zhang, C.; Xue, C. Performance Improvement of Underwater LIBS Qualitative and Quantitative Analysis by Irradiating with Long Nanosecond Pulses. Analyst 2024, 149, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Schlatter, N.; Lottermoser, B.G.; Illgner, S.; Schmidt, S. Utilising Portable Laser-Induced Breakdown Spectroscopy for Quantitative Inorganic Water Testing. Chemosensors 2023, 11, 479. [Google Scholar] [CrossRef]
- Xia, Y.; Jian, H.; Liang, Q.; Wang, X. Research on Enhancement of LIBS Signal Stability Through the Selection of Spectral Lines Based on Plasma Characteristic Parameters. Chemosensors 2025, 13, 42. [Google Scholar] [CrossRef]
Serial Number | Sample Set 1 | Serial Number | Sample Set 2 | |||
---|---|---|---|---|---|---|
Mg (mg/L) | Ca (mg/L) | Mg (mg/L) | Ca (mg/L) | Sr (mg/L) | ||
1 | 50 | 50 | 7 | 25 | 25 | 500 |
2 | 100 | 100 | 8 | 50 | 50 | 500 |
3 | 200 | 200 | 9 | 100 | 100 | 500 |
4 | 400 | 400 | 10 | 200 | 200 | 500 |
5 | 600 | 600 | 11 | 300 | 300 | 500 |
6 | 1000 | 1000 | 12 | 500 | 500 | 500 |
Test Samples Ca, Mg, Sr (mg/L) | Standard Samples Ca, Mg, Sr (mg/L) | Quantitative Results | |||
---|---|---|---|---|---|
Ca (mg/L) | Mg (mg/L) | ||||
T-1 | 50, 50, 500 | S-1 | 50, 50, 500 | 53.53 | 51.42 |
S-2 | 200, 200, 500 | 53.62 | 50.61 | ||
S-3 | 500, 500, 500 | 55.12 | 52.78 | ||
T-2 | 200, 200, 500 | S-1 | 50, 50, 500 | 201.90 | 196.77 |
S-2 | 200, 200, 500 | 202.27 | 193.67 | ||
S-3 | 500, 500, 500 | 207.90 | 201.95 | ||
T-3 | 600, 600, 500 | S-1 | 50, 50, 500 | 583.58 | 568.49 |
S-2 | 200, 200, 500 | 584.65 | 559.56 | ||
S-3 | 500, 500, 500 | 600.93 | 583.44 |
Samples | Methods | Ca (mg/L) | Mg (mg/L) |
---|---|---|---|
Yangtze River water | ICP–OES | 50.20 | 21.08 |
External standard | 38.19 | 27.71 | |
Internal standard | 43.07 | 27.47 | |
OPC–LIBS | 45.79 | 21.83 | |
groundwater | ICP–OES | 41.68 | 20.49 |
External standard | 34.53 | 27.47 | |
Internal standard | 34.09 | 27.87 | |
OPC–LIBS | 38.70 | 22.51 | |
reservoir water | ICP–OES | 19.74 | 2.74 |
External standard | 28.13 | Not detected | |
Internal standard | 14.11 | ||
OPC–LIBS | 21.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, T.; Huang, W.; Chen, R.; Chen, F.; Chen, J.; Hu, Z.; Nie, J. Rapid High-Accuracy Quantitative Analysis of Water Hardness by Combination of One-Point Calibration Laser-Induced Breakdown Spectroscopy and Aerosolization. Chemosensors 2025, 13, 271. https://doi.org/10.3390/chemosensors13080271
Luo T, Huang W, Chen R, Chen F, Chen J, Hu Z, Nie J. Rapid High-Accuracy Quantitative Analysis of Water Hardness by Combination of One-Point Calibration Laser-Induced Breakdown Spectroscopy and Aerosolization. Chemosensors. 2025; 13(8):271. https://doi.org/10.3390/chemosensors13080271
Chicago/Turabian StyleLuo, Ting, Weihua Huang, Riheng Chen, Furong Chen, Jinke Chen, Zhenlin Hu, and Junfei Nie. 2025. "Rapid High-Accuracy Quantitative Analysis of Water Hardness by Combination of One-Point Calibration Laser-Induced Breakdown Spectroscopy and Aerosolization" Chemosensors 13, no. 8: 271. https://doi.org/10.3390/chemosensors13080271
APA StyleLuo, T., Huang, W., Chen, R., Chen, F., Chen, J., Hu, Z., & Nie, J. (2025). Rapid High-Accuracy Quantitative Analysis of Water Hardness by Combination of One-Point Calibration Laser-Induced Breakdown Spectroscopy and Aerosolization. Chemosensors, 13(8), 271. https://doi.org/10.3390/chemosensors13080271