Recent Advances in Smart Phone-Based Biosensors for Various Applications
Abstract
1. Introduction
2. Different Functions of Smartphones in Biosensing
2.1. Analyzer Application
2.2. Healthcare Data Platform Applications
2.3. Power Source Applications
2.4. Detector Applications
2.5. Processor Applications
2.6. Transducer Applications
3. Smartphone Applications in Biosensing
3.1. Disease Diagnosis and Monitoring
3.1.1. Chronic Disease Surveillance and Management
3.1.2. Rapid Detection of Infectious Diseases
3.1.3. Mental Health Monitoring
3.2. Food Safety Testing
3.2.1. Pesticide Residue Detection
3.2.2. Veterinary Drug Residue Testing
3.2.3. Detection of Antibiotics
3.3. Environmental Analysis
3.3.1. Biological Contaminants
3.3.2. Chemical Contaminants
4. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Wongkaew, N.; Simsek, M.; Griesche, C.; Baeumner, A.J. Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. Chem. Rev. 2019, 119, 120–194. [Google Scholar] [CrossRef]
- Comstock, M.J. Biosensor Design and Application, Copyright, 1992 Advisory Board, Foreword. In Biosensor Design and Application; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1992; Volume 511, pp. i–vi. [Google Scholar]
- Clark, L.C., Jr.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Chikkaveeraiah, B.V.; Bhirde, A.A.; Morgan, N.Y.; Eden, H.S.; Chen, X. Electrochemical Immunosensors for Detection of Cancer Protein Biomarkers. ACS Nano 2012, 6, 6546–6561. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Li, Q.; Wang, L.; Zhang, G.-J.; Fan, C. Framework-Nucleic-Acid-Enabled Biosensor Development. ACS Sensors 2018, 3, 903–919. [Google Scholar] [CrossRef]
- Gerdan, Z.; Saylan, Y.; Denizli, A. Biosensing Platforms for Cardiac Biomarker Detection. ACS Omega 2024, 9, 9946–9960. [Google Scholar] [CrossRef] [PubMed]
- Ki, H.; Jang, H.; Oh, J.; Han, G.-R.; Lee, H.; Kim, S.; Kim, M.-G. Simultaneous Detection of Serum Glucose and Glycated Albumin on a Paper-Based Sensor for Acute Hyperglycemia and Diabetes Mellitus. Anal. Chem. 2020, 92, 11530–11534. [Google Scholar] [CrossRef]
- Shi, Y.F.; Jiang, Y.P.; Wang, X.Z.; Sun, P.P.; Zhu, N.J.; Wang, K.; Zhang, Z.Q.; Liu, Y.Y.; Huo, J.; Wang, X.R.; et al. Chiral Luminescent Sensor Eu-BTB@d-Carnitine Applied in the Highly Effective Ratiometric Sensing of Curing Drugs and Biomarkers for Diabetes and Hypertension. Inorg. Chem. 2022, 61, 15921–15935. [Google Scholar] [CrossRef]
- Wang, F.; Feng, X.; Gao, Y.; Ding, X.; Wang, W.; Zhang, J. Green Synthesis of PtPdNiFeCu High-Entropy Alloy Nanoparticles for Glucose Detection. ACS Omega 2023, 8, 47773–47780. [Google Scholar] [CrossRef]
- Sun, S.; Chen, J. Recent Advances in Hydrogel-Based Biosensors for Cancer Detection. ACS Appl. Mater. Interfaces 2024, 16, 46988–47002. [Google Scholar] [CrossRef]
- Hernández, B.; Sanchez-Cortes, S.; Houzé, P.; Ghomi, M. Nonenzymatic Hydrolysis of Acetylthiocholine by Silver Nanoparticles. J. Phys. Chem. C 2019, 123, 2378–2385. [Google Scholar] [CrossRef]
- Liu, G.; Chen, H.; Peng, H.; Song, S.; Gao, J.; Lu, J.; Ding, M.; Li, L.; Ren, S.; Zou, Z.; et al. A carbon nanotube-based high-sensitivity electrochemical immunosensor for rapid and portable detection of clenbuterol. Biosens Bioelectron 2011, 28, 308–313. [Google Scholar] [CrossRef]
- Wei, S.; Dou, Y.; Song, S.; Li, T. Functionalized-Graphene Field Effect Transistor-Based Biosensor for Ultrasensitive and Label-Free Detection of β-Galactosidase Produced by Escherichia coli. Biosensors 2023, 13, 925. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Khondakar, K.R.; Mazumdar, H.; Kaushik, A.; Mishra, Y.K. AI and IoT: Supported Sixth Generation Sensing for Water Quality Assessment to Empower Sustainable Ecosystems. ACS ES&T Water 2025, 5, 490–510. [Google Scholar] [CrossRef]
- Gao, W.; Wang, J. The Environmental Impact of Micro/Nanomachines: A Review. ACS Nano 2014, 8, 3170–3180. [Google Scholar] [CrossRef] [PubMed]
- Forbes, P. Atmospheric Chemistry Analysis: A Review. Anal. Chem. 2020, 92, 455–472. [Google Scholar] [CrossRef]
- Padha, B.; Yadav, I.; Dutta, S.; Arya, S. Recent Developments in Wearable NEMS/MEMS-Based Smart Infrared Sensors for Healthcare Applications. ACS Appl. Electron. Mater. 2023, 5, 5386–5411. [Google Scholar] [CrossRef]
- Yousefi, H.; Su, H.-M.; Imani, S.M.; Alkhaldi, K.; Filipe, M.C.D.; Didar, T.F. Intelligent Food Packaging: A Review of Smart Sensing Technologies for Monitoring Food Quality. ACS Sensors 2019, 4, 808–821. [Google Scholar] [CrossRef]
- Min, J.; Tu, J.; Xu, C.; Lukas, H.; Shin, S.; Yang, Y.; Solomon, S.A.; Mukasa, D.; Gao, W. Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chem. Rev. 2023, 123, 5049–5138. [Google Scholar] [CrossRef]
- Qian, S.; Cui, Y.; Cai, Z.; Li, L. Applications of smartphone-based colorimetric biosensors. Biosens. Bioelectron. X 2022, 11, 100173. [Google Scholar] [CrossRef]
- Upadhyay, S.; Kumar, A.; Srivastava, M.; Srivastava, A.; Dwivedi, A.; Singh, R.K.; Srivastava, S.K. Recent advancements of smartphone-based sensing technology for diagnosis, food safety analysis, and environmental monitoring. Talanta 2024, 275, 126080. [Google Scholar] [CrossRef]
- You, H.; Wang, M.; Wang, S.; Xu, J.; Hu, S.; Li, T.; Yu, Z.; Tang, D.; Gan, N. Ultrasensitive and Specific Phage@DNAzyme Probe-Triggered Fluorescent Click Chemistry for On-Site Detection of Foodborne Pathogens Using a Smartphone. Anal. Chem. 2023, 95, 11211–11218. [Google Scholar] [CrossRef] [PubMed]
- Patabadige, D.E.; Jia, S.; Sibbitts, J.; Sadeghi, J.; Sellens, K.; Culbertson, C.T. Micro Total Analysis Systems: Fundamental Advances and Applications. Anal. Chem. 2016, 88, 320–338. [Google Scholar] [CrossRef]
- Xing, G.; Li, N.; Lin, H.; Shang, Y.; Pu, Q.; Lin, J.-M. Microfluidic biosensor for one-step detection of multiplex foodborne bacteria ssDNA simultaneously by smartphone. Talanta 2023, 253, 123980. [Google Scholar] [CrossRef]
- Xing, G.; Ai, J.; Wang, N.; Pu, Q. Recent progress of smartphone-assisted microfluidic sensors for point of care testing. TrAC Trends Anal. Chem. 2022, 157, 116792. [Google Scholar] [CrossRef]
- Yin, B.; Zhu, H.; Zeng, S.; Sohan, A.S.M.M.F.; Wan, X.; Liu, J.; Zhang, P.; Lin, X. Chip-based automated equipment for dual-mode point-of-care testing foodborne pathogens. Biosens. Bioelectron. 2024, 257, 116338. [Google Scholar] [CrossRef] [PubMed]
- Roda, A.; Michelini, E.; Zangheri, M.; Di Fusco, M.; Calabria, D.; Simoni, P. Smartphone-based biosensors: A critical review and perspectives. TrAC Trends Anal. Chem. 2016, 79, 317–325. [Google Scholar] [CrossRef]
- Bui, T.H.; Thangavel, B.; Sharipov, M.; Chen, K.; Shin, J.H. Smartphone-Based Portable Bio-Chemical Sensors: Exploring Recent Advancements. Chemosensors 2023, 11, 468. [Google Scholar] [CrossRef]
- Dincer, C.; Bruch, R.; Costa-Rama, E.; Fernández-Abedul, M.T.; Merkoçi, A.; Manz, A.; Urban, G.A.; Güder, F. Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Adv. Mater. 2019, 31, 1806739. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, F.; Chen, J.; Tao, C.; Li, Y.; Chen, Q.; Tang, S.; Lee, H.K.; Shen, W. Artificial intelligence-assisted smartphone-based sensing for bioanalytical applications: A review. Biosens. Bioelectron. 2023, 229, 115233. [Google Scholar] [CrossRef]
- Esch, E.W.; Bahinski, A.; Huh, D. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 2015, 14, 248–260. [Google Scholar] [CrossRef]
- Ganeeva, I.; Zmievskaya, E.; Valiullina, A.; Kudriaeva, A.; Miftakhova, R.; Rybalov, A.; Bulatov, E. Recent Advances in the Development of Bioreactors for Manufacturing of Adoptive Cell Immunotherapies. Bioengineering 2022, 9, 808. [Google Scholar] [CrossRef] [PubMed]
- Sharipov, M.; Uzokboev, S.; Nghia, N.N.; Azizov, S.; Ryu, W.; Tawfik, S.M.; Lee, Y.-I. Recent progress in Arduino- and smartphone-based sensors for biochemical and environmental analysis. TrAC Trends Anal. Chem. 2025, 183, 118103. [Google Scholar] [CrossRef]
- Huang, D.; Hua, X.; Xiu, G.-L.; Zheng, Y.-J.; Yu, X.-Y.; Long, Y.-T. Secondary ion mass spectrometry: The application in the analysis of atmospheric particulate matter. Anal. Chim. Acta 2017, 989, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Buiarelli, F.; Sonego, E.; Uccelletti, D.; Bruni, E.; Di Filippo, P.; Pomata, D.; Riccardi, C.; Perrino, C.; Marcovecchio, F.; Simonetti, G. Determination of the main bioaerosol components using chemical markers by liquid chromatography–tandem mass spectrometry. Microchem. J. 2019, 149, 103974. [Google Scholar] [CrossRef]
- Fakhrulddin, S.S.; Bhatt, V.; Gharghan, S.K. A novel predictive algorithm for integrating asthma attack monitor device with smartphone. Measurement 2025, 248, 116949. [Google Scholar] [CrossRef]
- Li, P.; Xu, S.; Dong, Z.; Liu, H.; Huang, J.; Deng, X.; Tao, Y.; Liu, H.; Lin, Z.; Li, Z. Dual-function paper-based biosensor for sensitive detection of hyaluronidase and human papillomavirus DNA using diffusion wet area as readout. Biosens. Bioelectron. 2025, 271, 117087. [Google Scholar] [CrossRef]
- Bai, Y.; Fu, J.; Qin, Z.; Gao, Q.; Li, S. Integrated biosensing system of electrochemistry and electrophysiology for cortisol and skin conductance analysis on smartphone. Sens. Actuators B Chem. 2023, 394, 134368. [Google Scholar] [CrossRef]
- Zhang, L.; Lang, Z.; Lu, B.; Yang, T.; Zhang, X.; Wang, M.; Zhang, X.; Cao, H.; Ye, D. Smartphone-based colorimetric paper chip sensor using single-atom nanozyme for the detection of carbofuran pesticide residues in vegetables. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2025, 327, 125415. [Google Scholar] [CrossRef]
- Yue, X.; Li, Y.; Xu, S.; Li, J.; Li, M.; Jiang, L.; Jie, M.; Bai, Y. A portable smartphone-assisted ratiometric fluorescence sensor for intelligent and visual detection of malachite green. Food Chem. 2022, 371, 131164. [Google Scholar] [CrossRef]
- Tong, X.; Lin, X.; Duan, N.; Wang, Z.; Wu, S. Laser-Printed Paper-Based Microfluidic Chip Based on a Multicolor Fluorescence Carbon Dot Biosensor for Visual Determination of Multiantibiotics in Aquatic Products. ACS Sensors 2022, 7, 3947–3955. [Google Scholar] [CrossRef]
- Su, K.; Pan, Y.; Wan, Z.; Zhong, L.; Fang, J.; Zou, Q.; Li, H.; Wang, P. Smartphone-based portable biosensing system using cell viability biosensor for okadaic acid detection. Sens. Actuators B Chem. 2017, 251, 134–143. [Google Scholar] [CrossRef]
- Guo, J. Uric Acid Monitoring with a Smartphone as the Electrochemical Analyzer. Anal. Chem. 2016, 88, 11986–11989. [Google Scholar] [CrossRef]
- Guo, J. Smartphone-Powered Electrochemical Dongle for Point-of-Care Monitoring of Blood β-Ketone. Anal. Chem. 2017, 89, 8609–8613. [Google Scholar] [CrossRef]
- Guo, J.; Ma, X. Simultaneous monitoring of glucose and uric acid on a single test strip with dual channels. Biosens. Bioelectron. 2017, 94, 415–419. [Google Scholar] [CrossRef] [PubMed]
- White, B.J.; James Harmon, H. Novel optical solid-state glucose sensor using immobilized glucose oxidase. Biochem. Biophys. Res. Commun. 2002, 296, 1069–1071. [Google Scholar] [CrossRef]
- Deng, W.; Dou, Y.; Song, P.; Xu, H.; Aldalbahi, A.; Chen, N.; El-Sayed, N.N.; Gao, J.; Lu, J.; Song, S.; et al. Lab on smartphone with interfaced electrochemical chips for on-site gender verification. J. Electroanal. Chem. 2016, 777, 117–122. [Google Scholar] [CrossRef]
- Xu, D.; Huang, X.; Guo, J.; Ma, X. Automatic smartphone-based microfluidic biosensor system at the point of care. Biosens. Bioelectron. 2018, 110, 78–88. [Google Scholar] [CrossRef]
- Daffara, C.; Ambrosini, D. Smartphone-based diagnostics with coherent and infrared imaging for cultural heritage. J. Phys. Photonics 2024, 6, 045006. [Google Scholar] [CrossRef]
- Li, H.; Zheng, S.; Tan, Q.-G.; Zhan, L.; Martz, T.R.; Ma, J. Toward Citizen Science-Based Ocean Acidification Observations Using Smartphone Devices. Anal. Chem. 2023, 95, 15409–15417. [Google Scholar] [CrossRef]
- Oncescu, V.; Mancuso, M.; Erickson, D. Cholesterol testing on a smartphone. Lab A Chip 2014, 14, 759–763. [Google Scholar] [CrossRef]
- Beck, J.J.; Alenicheva, V.; Rahn, K.L.; Russo, M.J.; Baldo, T.A.; Henry, C.S. Evaluating the performance of an inexpensive, commercially available, NFC-powered and smartphone controlled potentiostat for electrochemical sensing. Electroanalysis 2023, 35, e202200552. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, Q.; Lu, Y.; Liu, L.; Ji, D.; Li, S.; Liu, Q. Passive and wireless near field communication tag sensors for biochemical sensing with smartphone. Sens. Actuators B Chem. 2017, 246, 748–755. [Google Scholar] [CrossRef]
- Laksanasopin, T.; Guo, T.W.; Nayak, S.; Sridhara, A.A.; Xie, S.; Olowookere, O.O.; Cadinu, P.; Meng, F.; Chee, N.H.; Kim, J.; et al. A smartphone dongle for diagnosis of infectious diseases at the point of care. Sci. Transl. Med. 2015, 7, 273re1. [Google Scholar] [CrossRef]
- Sun, A.C.; Yao, C.; Hall, D.A. An efficient power harvesting mobile phone-based electrochemical biosensor for point-of-care health monitoring. Sens. Actuators B Chem. 2016, 235, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Mesas Gómez, M.; Julián, E.; Armengou, L.; Pividori, M.I. Evaluating smartphone-based optical readouts for immunoassays in human and veterinary healthcare: A comparative study. Talanta 2024, 275, 126106. [Google Scholar] [CrossRef]
- Yang, C.; Wang, Z.; Xiao, K.; Ushakov, N.; Kumar, S.; Li, X.; Min, R. Portable optical fiber biosensors integrated with smartphone: Technologies, applications, and challenges [Invited]. Biomed. Opt. Express 2024, 15, 1630–1650. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.-M.; Kim, S.-W.; Jeon, J.-W.; Kim, J.-H.; Kim, H.-S.; Cho, J.-H.; Lee, W.-H.; Paek, S.-H. Food contamination monitoring via internet of things, exemplified by using pocket-sized immunosensor as terminal unit. Sens. Actuators B Chem. 2016, 233, 148–156. [Google Scholar] [CrossRef]
- Song, J.; Mauk, M.G.; Hackett, B.A.; Cherry, S.; Bau, H.H.; Liu, C. Instrument-Free Point-of-Care Molecular Detection of Zika Virus. Anal. Chem. 2016, 88, 7289–7294. [Google Scholar] [CrossRef]
- Giavazzi, F.; Salina, M.; Ceccarello, E.; Ilacqua, A.; Damin, F.; Sola, L.; Chiari, M.; Chini, B.; Cerbino, R.; Bellini, T.; et al. A fast and simple label-free immunoassay based on a smartphone. Biosens. Bioelectron. 2014, 58, 395–402. [Google Scholar] [CrossRef]
- Barbosa, A.I.; Gehlot, P.; Sidapra, K.; Edwards, A.D.; Reis, N.M. Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosens. Bioelectron. 2015, 70, 5–14. [Google Scholar] [CrossRef]
- Dou, Y.; Jiang, Z.; Deng, W.; Su, J.; Chen, S.; Song, H.; Aldalbahi, A.; Zuo, X.; Song, S.; Shi, J.; et al. Portable detection of clenbuterol using a smartphone-based electrochemical biosensor with electric field-driven acceleration. J. Electroanal. Chem. 2016, 781, 339–344. [Google Scholar] [CrossRef]
- Su, K.; Qiu, X.; Fang, J.; Zou, Q.; Wang, P. An improved efficient biochemical detection method to marine toxins with a smartphone-based portable system—Bionic e-Eye. Sens. Actuators B Chem. 2017, 238, 1165–1172. [Google Scholar] [CrossRef]
- Sami, M.A.; Tayyab, M.; Hassan, U. Excitation modalities for enhanced micro and nanoparticle imaging in a smartphone coupled 3D printed fluorescent microscope. Lab A Chip 2022, 22, 3755–3769. [Google Scholar] [CrossRef]
- Park, Y.M.; Han, Y.D.; Chun, H.J.; Yoon, H.C. Ambient light-based optical biosensing platform with smartphone-embedded illumination sensor. Biosens. Bioelectron. 2017, 93, 205–211. [Google Scholar] [CrossRef]
- Benjamin, E.M. Self-Monitoring of Blood Glucose: The Basics. Clin. Diabetes 2002, 20, 45–47. [Google Scholar] [CrossRef]
- Aliyeva, N.; Saylan, Y.; Denizli, A. Chapter 26—Smartphone-based point-of-care device. In Advanced Sensors for Smart Healthcare; Nguyen, T.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2025; pp. 437–454. [Google Scholar]
- Zahra, Q.u.a.; Mohsan, S.A.H.; Shahzad, F.; Qamar, M.; Qiu, B.; Luo, Z.; Zaidi, S.A. Progress in smartphone-enabled aptasensors. Biosens. Bioelectron. 2022, 215, 114509. [Google Scholar] [CrossRef]
- Beduk, T.; Beduk, D.; Hasan, M.R.; Guler Celik, E.; Kosel, J.; Narang, J.; Salama, K.N.; Timur, S. Smartphone-Based Multiplexed Biosensing Tools for Health Monitoring. Biosensors 2022, 12, 583. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.; Hu, Q.; Xie, R.; Zhou, W.; Liu, X.; Wang, Y. Smartphone surface plasmon resonance imaging for the simultaneous and sensitive detection of acute kidney injury biomarkers with noninvasive urinalysis. Lab A Chip 2022, 22, 4941–4949. [Google Scholar] [CrossRef]
- Sreenan, B.; Gulbag, A.; Kafil, V.; Kharal, G.; Lee, B.; Zhu, X. Smartphone-based Devices for Biomarkers. In Sensing Materials and Devices for Biomarkers; Mutreja, V., Kathuria, D., Sareen, S., Park, J., Eds.; Royal Society of Chemistry: London, UK, 2024; Volume 28, pp. 191–227. [Google Scholar]
- Soni, A.; Jha, S.K. Smartphone based non-invasive salivary glucose biosensor. Anal. Chim. Acta 2017, 996, 54–63. [Google Scholar] [CrossRef]
- Ferris, M.; Zabow, G. Quantitative, high-sensitivity measurement of liquid analytes using a smartphone compass. Nat. Commun. 2024, 15, 2801. [Google Scholar] [CrossRef]
- Zhang, J.; An, J.; Han, Y.; Fang, J.; Liu, Y. Spermine induced in-situ synthesis of polychromatic carbon nanodots towards smartphone-readable ratiometric fluorescence sensing of multiple catecholamines. Talanta 2025, 285, 127292. [Google Scholar] [CrossRef]
- Promsuwan, K.; Soleh, A.; Samoson, K.; Saisahas, K.; Wangchuk, S.; Saichanapan, J.; Kanatharana, P.; Thavarungkul, P.; Limbut, W. Novel biosensor platform for glucose monitoring via smartphone based on battery-less NFC potentiostat. Talanta 2023, 256, 124266. [Google Scholar] [CrossRef] [PubMed]
- Garjonyte, R.; Malinauskas, A. Glucose biosensor based on glucose oxidase immobilized in electropolymerized polypyrrole and poly(o-phenylenediamine) films on a Prussian Blue-modified electrode. Sens. Actuators B Chem. 2000, 63, 122–128. [Google Scholar] [CrossRef]
- Pananon, P.; Sriprachuabwong, C.; Wisitsoraat, A.; Chuysinuan, P.; Tuantranont, A.; Saparpakorn, P.; Dechtrirat, D. A facile one-pot green synthesis of gold nanoparticle-graphene-PEDOT:PSS nanocomposite for selective electrochemical detection of dopamine. RSC Adv. 2018, 8, 12724–12732. [Google Scholar] [CrossRef]
- Samoson, K.; Soleh, A.; Saisahas, K.; Promsuwan, K.; Saichanapan, J.; Kanatharana, P.; Thavarungkul, P.; Chang, K.H.; Lim Abdullah, A.F.; Tayayuth, K.; et al. Facile fabrication of a flexible laser induced gold nanoparticle/chitosan/ porous graphene electrode for uric acid detection. Talanta 2022, 243, 123319. [Google Scholar] [CrossRef]
- Uzunçar, S.; Kaç, H.; Ak, M. Electro-templating of prussian blue nanoparticles in PEDOT:PSS and soluble silkworm protein for hydrogen peroxide sensing. Talanta 2023, 252, 123841. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Yang, J.; Li, Y.; Lu, C.; Hao, Y.; He, G.; Zhang, Y.; Song, Q.; Long, J.; et al. Smartphone-based urine colourimetric assay for home self-screening of HPV infection. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2025, 334, 125923. [Google Scholar] [CrossRef] [PubMed]
- Ghaderinia, M.; Abadijoo, H.; Mahdavian, A.; Kousha, E.; Shakibi, R.; Taheri, S.M.-R.; Simaee, H.; Khatibi, A.; Moosavi-Movahedi, A.A.; Khayamian, M.A. Smartphone-based device for point-of-care diagnostics of pulmonary inflammation using convolutional neural networks (CNNs). Sci. Rep. 2024, 14, 6912. [Google Scholar] [CrossRef]
- Hasan, M.R.; Sharma, P.; Singh, S.; Narang, J. Smartphone-Integrated Wireless Portable Potentiostat to Develop 5th-Generation Dengue Pocket Aptasensor toward Portronicx-Approach. ACS Appl. Bio Mater. 2024, 7, 2299–2308. [Google Scholar] [CrossRef]
- Ma, L.; Yin, L.; Li, X.; Chen, S.; Peng, L.; Liu, G.; Ye, S.; Zhang, W.; Man, S. A smartphone-based visual biosensor for CRISPR-Cas powered SARS-CoV-2 diagnostics. Biosens. Bioelectron. 2022, 195, 113646. [Google Scholar] [CrossRef] [PubMed]
- Adrover-Jaume, C.; Alba-Patiño, A.; Clemente, A.; Santopolo, G.; Vaquer, A.; Russell, S.M.; Barón, E.; González del Campo, M.d.M.; Ferrer, J.M.; Berman-Riu, M.; et al. Paper biosensors for detecting elevated IL-6 levels in blood and respiratory samples from COVID-19 patients. Sens. Actuators B Chem. 2021, 330, 129333. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Zhao, Y.; Fang, M.; Shen, P.; Xu, H.; He, Y.; Chen, S.; Si, Z.; Xu, Z. Magnetofluid-integrated biosensors based on DNase-dead Cas12a for visual point-of-care testing of HIV-1 by an up and down chip. Lab A Chip 2023, 23, 4265–4275. [Google Scholar] [CrossRef]
- Lee, J.-H.; Hwang, Y.; Cheon, K.-A.; Jung, H.-I. Emotion-on-a-chip (EOC): Evolution of biochip technology to measure human emotion using body fluids. Med. Hypotheses 2012, 79, 827–832. [Google Scholar] [CrossRef]
- Erickson, D.; O’Dell, D.; Jiang, L.; Oncescu, V.; Gumus, A.; Lee, S.; Mancuso, M.; Mehta, S. Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics. Lab A Chip 2014, 14, 3159–3164. [Google Scholar] [CrossRef]
- Torous, J.; Powell, A.C. Current research and trends in the use of smartphone applications for mood disorders. Internet Interv. 2015, 2, 169–173. [Google Scholar] [CrossRef]
- Vashist, S.K.; van Oordt, T.; Schneider, E.M.; Zengerle, R.; von Stetten, F.; Luong, J.H.T. A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets. Biosens. Bioelectron. 2015, 67, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Yang, H.; Choi, J.R.; Gong, Y.; Hu, J.; Feng, S.; Pingguan-Murphy, B.; Mei, Q.; Xu, F. Improved sensitivity of lateral flow assay using paper-based sample concentration technique. Talanta 2016, 152, 269–276. [Google Scholar] [CrossRef]
- Yang, J.-S.; Shin, J.; Choi, S.; Jung, H.-I. Smartphone Diagnostics Unit (SDU) for the assessment of human stress and inflammation level assisted by biomarker ink, fountain pen, and origami holder for strip biosensor. Sens. Actuators B Chem. 2017, 241, 80–84. [Google Scholar] [CrossRef]
- Farina, M.P.; Zhang, Z.; Donnelly, R. Anticipatory stress, state policy contexts, and mental health during the COVID-19 pandemic. SSM-Popul. Health 2023, 23, 101415. [Google Scholar] [CrossRef]
- Nuryana, Z.; Xu, W.; Kurniawan, L.; Sutanti, N.; Makruf, S.A.; Nurcahyati, I. Student stress and mental health during online learning: Potential for post-COVID-19 school curriculum development. Compr. Psychoneuroendocrinology 2023, 14, 100184. [Google Scholar] [CrossRef]
- Wu, T.; Jia, X.; Shi, H.; Niu, J.; Yin, X.; Xie, J.; Wang, X. Prevalence of mental health problems during the COVID-19 pandemic: A systematic review and meta-analysis. J. Affect. Disord. 2021, 281, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Grover, S.; Dua, D.; Sahoo, S.; Mehra, A.; Nehra, R.; Chakrabarti, S. Why all COVID-19 hospitals should have mental health professionals: The importance of mental health in a worldwide crisis! Asian J Psychiatr 2020, 51, 102147. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Wu, Q.; Chen, R.; Guan, C. Research on psychological stress and mental health of medical staff in COVID-19 prevention and control. Int. J. Disaster Risk Reduct. 2021, 65, 102524. [Google Scholar] [CrossRef] [PubMed]
- Esler, M. Mental stress and human cardiovascular disease. Neurosci Biobehav Rev 2017, 74, 269–276. [Google Scholar] [CrossRef]
- Sloover, M.; van Est, L.A.C.; Janssen, P.G.J.; Hilbink, M.; van Ee, E. A meta-analysis of mentalizing in anxiety disorders, obsessive-compulsive and related disorders, and trauma and stressor related disorders. J. Anxiety Disord. 2022, 92, 102641. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, T.; Ananiadou, S. A mental state Knowledge–aware and Contrastive Network for early stress and depression detection on social media. Inf. Process. Manag. 2022, 59, 102961. [Google Scholar] [CrossRef]
- Billeci, L.; Brunori, E.; Crifaci, G.; Tartarisco, G.; Scardigli, S.; Pioggia, G.; Maestro, G.; Morales, M.A. Skin conductance (SC) monitoring during relaxation in anorexia nervosa adolescents by wearable sensors combined with wireless technologies. Int. J. Psychophysiol. 2012, 85, 373–374. [Google Scholar] [CrossRef]
- Chugh, V.; Basu, A.; Kaushik, A.; Basu, A.K. E-skin–Based advanced wearable technology for Health Management. Curr. Res. Biotechnol. 2023, 5, 100129. [Google Scholar] [CrossRef]
- Madrid, R.E.; Ashur Ramallo, F.; Barraza, D.E.; Chaile, R.E. Smartphone-Based Biosensor Devices for Healthcare: Technologies, Trends, and Adoption by End-Users. Bioengineering 2022, 9, 101. [Google Scholar] [CrossRef]
- Manzocchi, S.; Furman, E.; Freeman, K. Comparison of 3 options for choosing control limits in biochemistry testing. Vet. Clin. Pathol. 2017, 46, 120–125. [Google Scholar] [CrossRef]
- Sacks, D.A.; Chen, W.; Wolde-Tsadik, G.; Buchanan, T.A. Fasting Plasma Glucose Test at the First Prenatal Visit as a Screen for Gestational Diabetes. Obstet. Gynecol. 2003, 101. [Google Scholar]
- Warren, B.; Lee, A.K.; Ballantyne, C.; Hoogeveen, R.; Pankow, J.S.; Kottgen, A.; Selvin, E. Abstract MP018: Performance of 1,5-anhydroglucitol Compared to the Oral Glucose Tolerance Test and Fasting Glucose for Identification of Diabetes in the Community. Circulation 2017, 135, AMP018. [Google Scholar] [CrossRef]
- Joh, D.Y.; Hucknall, A.M.; Wei, Q.; Mason, K.A.; Lund, M.L.; Fontes, C.M.; Hill, R.T.; Blair, R.; Zimmers, Z.; Achar, R.K.; et al. Inkjet-printed point-of-care immunoassay on a nanoscale polymer brush enables subpicomolar detection of analytes in blood. Proc. Natl. Acad. Sci. USA 2017, 114, E7054–E7062. [Google Scholar] [CrossRef] [PubMed]
- Mulberry, G.; White, K.A.; Vaidya, M.; Sugaya, K.; Kim, B.N. 3D printing and milling a real-time PCR device for infectious disease diagnostics. PLoS ONE 2017, 12, e0179133. [Google Scholar] [CrossRef] [PubMed]
- Cocker, C.; Minnis, H.; Sweeting, H. Potential value of the current mental health monitoring of children in state care in England. BJPsych Open 2018, 4, 486–491. [Google Scholar] [CrossRef]
- Doom, J.R.; Peckins, M.K.; Hein, T.C.; Dotterer, H.L.; Mitchell, C.; Lopez-Duran, N.L.; Brooks-Gunn, J.; McLanahan, S.; Hyde, L.W.; Abelson, J.L.; et al. Differential associations of parental harshness and parental disengagement with overall cortisol output at 15 years: Implications for adolescent mental health. Dev. Psychopathol. 2022, 34, 129–146. [Google Scholar] [CrossRef]
- Zhao, F.; He, J.; Li, X.; Bai, Y.; Ying, Y.; Ping, J. Smart plant-wearable biosensor for in-situ pesticide analysis. Biosens. Bioelectron. 2020, 170, 112636. [Google Scholar] [CrossRef]
- Zhang, C.; Guanming, S.; Shen, J.; Hu, R.-f. Productivity effect and overuse of pesticide in crop production in China. J. Integr. Agric. 2015, 14, 1903–1910. [Google Scholar] [CrossRef]
- Li, S.; Wu, X.; Liu, C.; Yin, G.; Luo, J.; Xu, Z. Application of DNA aptamers as sensing layers for detection of carbofuran by electrogenerated chemiluminescence energy transfer. Anal. Chim. Acta 2016, 941, 94–100. [Google Scholar] [CrossRef]
- Oliveira, T.M.B.F.; Ribeiro, F.W.P.; Sousa, C.P.; Salazar-Banda, G.R.; de Lima-Neto, P.; Correia, A.N.; Morais, S. Current overview and perspectives on carbon-based (bio)sensors for carbamate pesticides electroanalysis. TrAC Trends Anal. Chem. 2020, 124, 115779. [Google Scholar] [CrossRef]
- Agarwal, T.; Borrelli, M.R.; Makvandi, P.; Ashrafizadeh, M.; Maiti, T.K. Paper-Based Cell Culture: Paving the Pathway for Liver Tissue Model Development on a Cellulose Paper Chip. ACS Appl. Bio Mater. 2020, 3, 3956–3974. [Google Scholar] [CrossRef]
- Khan, S.M.; Nassar, J.M.; Hussain, M.M. Paper as a Substrate and an Active Material in Paper Electronics. ACS Appl. Electron. Mater. 2021, 3, 30–52. [Google Scholar] [CrossRef]
- Li, D.; Duan, H.; Ma, Y.; Deng, W. Headspace-Sampling Paper-Based Analytical Device for Colorimetric/Surface-Enhanced Raman Scattering Dual Sensing of Sulfur Dioxide in Wine. Anal. Chem. 2018, 90, 5719–5727. [Google Scholar] [CrossRef]
- Cao, J.; Wang, M.; She, Y.; Abd El-Aty, A.M.; Hacımüftüoğlu, A.; Wang, J.; Yan, M.; Hong, S.; Lao, S.; Wang, Y. Rapid colorimetric determination of the pesticides carbofuran and dichlorvos by exploiting their inhibitory effect on the aggregation of peroxidase-mimicking platinum nanoparticles. Mikrochim. Acta 2019, 186, 390. [Google Scholar] [CrossRef]
- Hu, Y.; Gao, Z.; Luo, J. Fluorescence detection of malachite green in fish tissue using red emissive Se,N,Cl-doped carbon dots. Food Chem. 2021, 335, 127677. [Google Scholar] [CrossRef]
- Luo, S.; Yan, G.; Sun, X. Molecular imprinting based on phosphorescent resonance energy transfer for malachite green detection in fishes and water. New J. Chem. 2018, 42, 9510–9516. [Google Scholar] [CrossRef]
- Abbasi, A.; Hanif, S.; Shakir, M. Gum acacia-based silver nanoparticles as a highly selective and sensitive dual nanosensor for Hg(ii) and fluorescence turn-off sensor for S2− and malachite green detection. RSC Advances 2020, 10, 3137–3144. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.J.; Li, N.; Liu, S.G.; Han, L.; Xiao, N.; Luo, H.Q.; Li, N.B. Ratiometric fluorescence method for malachite green detection based on dual-emission BSA-protected gold nanoclusters. Sens. Actuators B Chem. 2018, 275, 244–250. [Google Scholar] [CrossRef]
- Niu, X.; Yang, J.; Ma, J.-F. Ni/MoN nanoparticles embedded with mesoporous carbon as a high-efficiency electrocatalyst for detection of nitroimidazole antibiotics. Sens. Actuators B Chem. 2023, 387, 133819. [Google Scholar] [CrossRef]
- Qi, H.; Qiu, L.; Zhang, X.; Yi, T.; Jing, J.; Sami, R.; Alanazi, S.F.; Alqahtani, Z.; Aljabri, M.D.; Rahman, M.M. Novel N-doped carbon dots derived from citric acid and urea: Fluorescent sensing for determination of metronidazole and cytotoxicity studies. RSC Adv. 2023, 13, 2663–2671. [Google Scholar] [CrossRef]
- Simsir, E.A.; Erdemir, S.; Tabakci, M.; Tabakci, B. Nano-scale selective and sensitive optical sensor for metronidazole based on fluorescence quenching: 1H-Phenanthro[9,10-d]imidazolyl-calix[4]arene fluorescent probe. Anal. Chim. Acta 2021, 1162, 338494. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Glennon, L.; Fenelon, O.; Breslin, C.B. Electrodeposition of bismuth at a graphene modified carbon electrode and its application as an easily regenerated sensor for the electrochemical determination of the antimicrobial drug metronidazole. Talanta 2023, 251, 123758. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Fu, L.; Yin, C.; Wu, M.; Liu, H.; Niu, N.; Chen, L. Construction of biomass carbon dots@molecularly imprinted polymer fluorescent sensor array for accurate identification of 5-nitroimidazole antibiotics. Sens. Actuators B Chem. 2022, 373, 132716. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, W.; Ji, B.; Han, Y.; Xu, G.; Jie, M.; Wu, N.; Wu, Y.; Li, J.; Li, K.; et al. Application of silanized melamine sponges in matrix purification for rapid multi-residue analysis of veterinary drugs in eggs by UPLC-MS/MS. Food Chem. 2022, 369, 130894. [Google Scholar] [CrossRef]
- Lin, Y.; Su, Y.; Liao, X.; Yang, N.; Yang, X.; Choi, M.M. Determination of five nitroimidazole residues in artificial porcine muscle tissue samples by capillary electrophoresis. Talanta 2012, 88, 646–652. [Google Scholar] [CrossRef]
- Moreno-González, D.; Lara, F.J.; Jurgovská, N.; Gámiz-Gracia, L.; García-Campaña, A.M. Determination of aminoglycosides in honey by capillary electrophoresis tandem mass spectrometry and extraction with molecularly imprinted polymers. Anal. Chim. Acta 2015, 891, 321–328. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Ning, Y.; Wang, W.; Liu, Q. Multicolor emissive carbon dot-based fluorometric analysis platform for rapid quantification and discrimination of nitroimidazole antibiotic residues. Talanta 2024, 271, 125679. [Google Scholar] [CrossRef]
- Naik, L.; Sharma, R.; Mann, B.; Lata, K.; Rajput, Y.S.; Surendra Nath, B. Rapid screening test for detection of oxytetracycline residues in milk using lateral flow assay. Food Chem. 2017, 219, 85–92. [Google Scholar] [CrossRef]
- Zhou, X.; Fu, S.; Li, J.; Yi, Y.; Hu, Y.; Lu, J.; Yang, C.; Miao, J.; Xu, Y. Smartphone-based pH responsive 3-channel colorimetric biosensor for non-enzymatic multi-antibiotic residues. Food Chem. 2023, 429, 136953. [Google Scholar] [CrossRef]
- Chen, J.; Sun, R.; Pan, C.; Sun, Y.; Mai, B.; Li, Q.X. Antibiotics and Food Safety in Aquaculture. J. Agric. Food Chem. 2020, 68, 11908–11919. [Google Scholar] [CrossRef]
- Shah, B.R.; Mraz, J. Advances in nanotechnology for sustainable aquaculture and fisheries. Rev. Aquac. 2020, 12, 925–942. [Google Scholar] [CrossRef]
- Qin, S.; Sun, X.; Zhao, X. Advances in smartphone-based biosensors for food testing. Curr. Opin. Food Sci. 2025, 61, 101236. [Google Scholar] [CrossRef]
- Dzantiev, B.B.; V, Z.A.; G, R.O.; Sapegova, L.A. Development and Comparative Study of Different Immunoenzyme Techniques for Pesticides Detection. Int. J. Environ. Anal. Chem. 1996, 65, 95–111. [Google Scholar] [CrossRef]
- Zhang, H.-X.; Wei, R.-B.; Chen, C.-Z.; Tuo, X.-L.; Wang, X.-G. A novel fluorescent epoxy resin for organophosphate pesticide detection. Chin. Chem. Lett. 2015, 26, 39–42. [Google Scholar] [CrossRef]
- Balizs, G.; Hewitt, A. Determination of veterinary drug residues by liquid chromatography and tandem mass spectrometry. Anal. Chim. Acta 2003, 492, 105–131. [Google Scholar] [CrossRef]
- Wittenberg, J.B.; Simon, K.A.; Wong, J.W. Targeted Multiresidue Analysis of Veterinary Drugs in Milk-Based Powders Using Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS). J. Agric. Food Chem. 2017, 65, 7288–7293. [Google Scholar] [CrossRef]
- Majdinasab, M.; Mishra, R.K.; Tang, X.; Marty, J.L. Detection of antibiotics in food: New achievements in the development of biosensors. TrAC Trends Anal. Chem. 2020, 127, 115883. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, J.; Liang, L. Recent development of antibiotic detection in food and environment: The combination of sensors and nanomaterials. Microchim. Acta 2021, 188, 21. [Google Scholar] [CrossRef]
- Li, H.; Fang, T.; Tan, Q.-G.; Ma, J. Development of a versatile smartphone-based environmental analyzer (vSEA) and its application in on-site nutrient detection. Sci. Total Environ. 2022, 838, 156197. [Google Scholar] [CrossRef]
- Sassolas, A.; Hayat, A.; Catanante, G.; Marty, J.-L. Detection of the marine toxin okadaic acid: Assessing seafood safety. Talanta 2013, 105, 306–316. [Google Scholar] [CrossRef]
- Kim, S.; Sosnowski, K.; Hwang, D.S.; Yoon, J.-Y. Smartphone-Based Microalgae Monitoring Platform Using Machine Learning. ACS EST Eng. 2024, 4, 186–195. [Google Scholar] [CrossRef]
- Rajamanikandan, R.; Ilanchelian, M.; Ju, H. Smartphone-enabled colorimetric visual quantification of highly hazardous trivalent chromium ions in environmental waters and catalytic reduction of p-nitroaniline by thiol-functionalized gold nanoparticles. Chemosphere 2023, 340, 139838. [Google Scholar] [CrossRef]
- Buttner Mark, P.; Cruz-Perez, P.; Stetzenbach Linda, D. Enhanced Detection of Surface-Associated Bacteria in Indoor Environments by Quantitative PCR. Appl. Environ. Microbiol. 2001, 67, 2564–2570. [Google Scholar] [CrossRef] [PubMed]
- Jolly, C.; Katsiadaki, I.; Le Belle, N.; Mayer, I.; Dufour, S. Development of a stickleback kidney cell culture assay for the screening of androgenic and anti-androgenic endocrine disrupters. Aquat. Toxicol. 2006, 79, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Ollson, C.J.; Smith, E.; Herde, P.; Juhasz, A.L. Influence of co-contaminant exposure on the absorption of arsenic, cadmium and lead. Chemosphere 2017, 168, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elhakim, Y.M.; Sharkawy, N.I.E.; Moustafa, G.G. An investigation of selected chemical contaminants in commercial pet foods in Egypt. J. Vet. Diagn. Investig. 2016, 28, 70–75. [Google Scholar] [CrossRef]
- Li, G.; Xu, L.; Wu, W.; Wang, D.; Jiang, J.; Chen, X.; Zhang, W.; Poapolathep, S.; Poapolathep, A.; Zhang, Z.; et al. On-Site Ultrasensitive Detection Paper for Multiclass Chemical Contaminants via Universal Bridge-Antibody Labeling: Mycotoxin and Illegal Additives in Milk as an Example. Anal. Chem. 2019, 91, 1968–1973. [Google Scholar] [CrossRef]
- Villa, C.A.; Finlayson, S.; Limpus, C.; Gaus, C. A multi-element screening method to identify metal targets for blood biomonitoring in green sea turtles (Chelonia mydas). Sci. Total Environ. 2015, 512–513, 613–621. [Google Scholar] [CrossRef]
Category | Traditional Method | Biosensor-Based Smartphone | The Advantages of Biosensor-Based Smartphone | The Disadvantages of Biosensor-Based Smartphone | Refs. |
---|---|---|---|---|---|
Chronic Disease Surveillance and Management | Analytical methods based on desktop and benchtop detectors are used for the detection of chronic diseases (such as diabetes and asthma) | Non-invasive salivary glucose biosensor (smartphone-integrated), AAMD (Asthma Attack Monitoring Device) | Portable, no need for specialized instruments, real-time dynamic monitoring (e.g., blood glucose, asthma prediction), low cost (<$10 per test), supports remote data sharing and personalized health management | Accuracy & reliability issues, environmental sensitivity, indirect symptom tracking, false alarms & user compliance | [36,72,75,103,104,105] |
Rapid Detection of Infectious Diseases | Analytical methods based on desktop and benchtop detectors are used for the rapid detection of infectious diseases (such as HPV, HIV, etc.) | CRISPR-Cas12a-driven visual biosensor (smartphone readout), mi-crofluidic-CRISPR integrated chip | Ultrahigh sensitivity (single-copy detection), rapid results (~90 min), portable for field use, high concordance with qPCR (100% accuracy) | Preamplification dependency, manufacturing scalability issues | [37,84,85,106,107] |
Mental health monitoring | Analytical methods based on desktop benchtop detectors are used for mental health monitoring | Smartphone-LFA cortisol/CRP test strip, integrated electro chemical, eletrophysiological sensor | Real-time stress tracking wearable integration, multimodal data fusion (physiological + biochemical), AI-driven personalized feedback | Limited quantitative precision, complex calibration & interference | [38,91,108,109] |
Category | Traditional Methods | Biosensor-Based Smartphone | The Advantages and of Biosensor-Based Smartphone | The Disadvantages of Biosensor-Based Smartphone | Refs. |
---|---|---|---|---|---|
Pesticide Residue Detection | Analytical methods based on desktop and benchtop detectors are used for the rapid detection of pesticide residue detection | Ni-N-C Single-atom nanozyme colorimetric paper chip sensor (smartphone image analysis) plant-wearable electrochemical sensor (real-time in situ monitoring) | Low LOD, no sample pretreatment required, portable for field use, cost effective (<$10 per test strip) | Limited catalytic efficiency, dynamic interference | [39,110,136,137] |
Veterinary drug residue testing | Analytical methods based on desktop and benchtop detectors are used for the rapid detection of veterinary drug residues | Al-MOF/RhB ratiometric, fluorescence sensor (smartphone-assisted), multicolor carbon dot fluorescent paper sensor (visual detection) | High selectivity (multi-drug discrimination), low LOD, naked-eye readout for on-site screening, high recovery rates (81.9–108% vs. HPLC) | Smartphone hardware limitations, poor reproducibility | [40,130,138,139] |
Detection of antibiotics | Analytical methods based on desktop and benchtop detectors are used for the rapid detec-tion of antibiotic detection | pH responsive 3-channel colorimetric sensor (smartphone multiparameter analysis) Laser-printed, Microfluidic aptasensor (multitarget detection) | Multi-target detection (OTC, KAN, STR), ultra-low LOD, rapid response (15 min), portable kit for field analysis | pH dependency artifacts, aptamer degradation in complex matrices | [41,135,140,141] |
Category | Traditional Methods | Biosensor-Based Smartphone | The Advantages of Biosensor-Based Smartphone | The Disadvantages of Biosensor-Based Smartphone | Refs. |
---|---|---|---|---|---|
Biological Contaminants | Analytical methods based on desktop and benchtop detectors are used for the detection of biological contaminants | CRISPR-Cas12a visual biosensor (smartphone readout), cell viability biosensor (smartphone-integrated CCK-8 kit) | Single-copy sensitivity (e.g., SARS-CoV-2), non-invasive (e.g., algal toxin detection), rapid results (90 min), low-cost (paper-based chips) | Ambient light interference, limited contaminant specificity | [42,144,146,147,148] |
Chemical Contaminants | Analytical methods based on desktop and benchtop detectors are used for the detection of chemical contaminants | Smartphone electrochemical sensor (heavy metals), fluorescent nano-probes (smartphone RGB analysis) | Multi-parameter detection, ultralow LOD, portable (groundwater analysis), comparable accuracy to ICP-MS | Matrix fouling & interference, nanoparticle stability issues | [145,149,150,151] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, E.; Chen, H.; Xin, X.; Cui, H.; Dou, Y.; Song, S. Recent Advances in Smart Phone-Based Biosensors for Various Applications. Chemosensors 2025, 13, 221. https://doi.org/10.3390/chemosensors13070221
Xing E, Chen H, Xin X, Cui H, Dou Y, Song S. Recent Advances in Smart Phone-Based Biosensors for Various Applications. Chemosensors. 2025; 13(7):221. https://doi.org/10.3390/chemosensors13070221
Chicago/Turabian StyleXing, Enpeng, Hongfei Chen, Xianglin Xin, Haoran Cui, Yanzhi Dou, and Shiping Song. 2025. "Recent Advances in Smart Phone-Based Biosensors for Various Applications" Chemosensors 13, no. 7: 221. https://doi.org/10.3390/chemosensors13070221
APA StyleXing, E., Chen, H., Xin, X., Cui, H., Dou, Y., & Song, S. (2025). Recent Advances in Smart Phone-Based Biosensors for Various Applications. Chemosensors, 13(7), 221. https://doi.org/10.3390/chemosensors13070221