Room-Temperature Environmental Gas Detection: Performance Comparison of Nanoparticle-Based Sensors Fabricated by Electrospray, Drop-Casting, and Dry Printing Based on Spark Ablation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate
2.1.1. Drop-Casting
2.1.2. Electrospray
2.1.3. Spark Ablation Coupled with a Programmable Dry Printing System
2.2. Experimental Setup
- Gas Mixing: To obtain the target gas mixtures, calibrated gas cylinders of NO2 and CO (certified by Nippon Gases S.L.U.) were used. The reference gases were diluted using synthetic air (certified by Nippon Gases S.L.U.) by adjusting the respective flow rates through a gas mixing unit from IRay (Cáceres, Spain), maintaining a constant total flow of 100 mL min−1. This equipment allows the generation of mixtures with different humidity levels. The resulting gas mixture is passed through a stainless-steel cell, where the multisensor array is located.
- Electrical Characterization: This was carried out using a Keithley 6517 electrometer (Cleveland, OH, USA) at a constant bias voltage of 15 V.
- Optical Characterization: The sensor surface was illuminated with a UV LED (model LSM-365A Light Source) with a wavelength of 365 nm, controlled by the LDC-1 single-channel LED controller. The LED has a full width at half maximum (FWHM) of 12 nm and a nominal wavelength of 365 nm, meaning it emits light in the range of 359 nm to 371 nm. Additionally, a discrete band-pass filter is connected to the LED output to eliminate any contribution above 380 nm due to reflection or refraction effects of the light itself. This source allows the emission of different types of signals, as well as power modulation. The LED is connected to the cell at a 45° angle relative to the sensor surface, and the generated photoluminescence is collected at a 90° angle using the HR2 UV-VIS spectrometer. All equipment used for the optical characterization of the sensors was provided by Ocean Insight (Largo, FL, USA).
3. Results
3.1. Sensitive Layer Characterization
3.1.1. Characterization of Drop-Casting Samples
3.1.2. Characterization of Electrospray Samples
3.1.3. Characterization of Spark Ablation Coupled with a Programmable Dry Printing System Samples
3.2. Electrical Characterization
3.2.1. NO2 Sensing Performance
3.2.2. CO Sensing Performance
3.3. Optical Characterization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Environment Agency Air Pollution and Health—European Environment Agency. Available online: https://www.eea.europa.eu/publications/zero-pollution/health/air-pollution (accessed on 21 August 2024).
- Beloconi, A.; Vounatsou, P. Revised EU and WHO Air Quality Thresholds: Where Does Europe Stand? Atmos. Env. 2023, 314, 120110. [Google Scholar] [CrossRef]
- Potyrailo, R.A. Multivariable Sensors for Ubiquitous Monitoring of Gases in the Era of Internet of Things and Industrial Internet. Chem. Rev. 2016, 116, 11877–11923. [Google Scholar] [CrossRef] [PubMed]
- Dennler, N.; Rastogi, S.; Fonollosa, J.; van Schaik, A.; Schmuker, M. Drift in a Popular Metal Oxide Sensor Dataset Reveals Limitations for Gas Classification Benchmarks. Sens. Actuators B Chem. 2022, 361, 131668. [Google Scholar] [CrossRef]
- Berwal, P.; Sihag, S.; Rani, S.; Kumar, A.; Jatrana, A.; Singh, P.; Dahiya, R.; Kumar, A.; Dhillon, A.; Sanger, A.; et al. Hybrid Metal Oxide Nanocomposites for Gas-Sensing Applications: A Review. Ind. Eng. Chem. Res. 2023, 62, 14835–14852. [Google Scholar] [CrossRef]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doǧan, S.; Avrutin, V.; Cho, S.J.; Morko̧, H. A Comprehensive Review of ZnO Materials and Devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef]
- Krishna, K.G.; Parne, S.; Pothukanuri, N.; Kathirvelu, V.; Gandi, S.; Joshi, D. Nanostructured Metal Oxide Semiconductor-Based Gas Sensors: A Comprehensive Review. Sens. Actuators A Phys. 2022, 341, 113578. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, Y.; Xu, J.; Debliquy, M. Room Temperature Conductive Type Metal Oxide Semiconductor Gas Sensors for NO2 Detection. Sens. Actuators A Phys. 2019, 289, 118–133. [Google Scholar] [CrossRef]
- Wang, Z.; Bu, M.; Hu, N.; Zhao, L. An Overview on Room-Temperature Chemiresistor Gas Sensors Based on 2D Materials: Research Status and Challenge. Compos. B Eng. 2023, 248, 110378. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Neri, G.; Pinna, N. Nanostructured Materials for Room-Temperature Gas Sensors. Adv. Mater. 2016, 28, 795–831. [Google Scholar] [CrossRef]
- Hyodo, T.; Urata, K.; Kamada, K.; Ueda, T.; Shimizu, Y. Semiconductor-Type SnO2-Based NO2 Sensors Operated at Room Temperature under UV-Light Irradiation. Sens. Actuators B Chem. 2017, 253, 630–640. [Google Scholar] [CrossRef]
- Sayago, I.; Sánchez-Vicente, C.; Santos, J.P. Highly Sensitive and Selective SnO2-Gr Sensor Photoactivated for Detection of Low NO2 Concentrations at Room Temperature. Nanomaterials 2024, 14, 1994. [Google Scholar] [CrossRef] [PubMed]
- Doyan, A.; Susilawati; Muliyadi, L.; Hakim, S.; Munandar, H.; Taufik, M. The Effect of Dopant Material to Optical Properties: Energy Band Gap Tin Oxide Thin Film. J. Phys. Conf. Ser. 2021, 1816, 012114. [Google Scholar] [CrossRef]
- Gomes, J.B.A.; Rodrigues, J.J.P.C.; Rabêlo, R.A.L.; Kumar, N.; Kozlov, S. IoT-Enabled Gas Sensors: Technologies, Applications, and Opportunities. J. Sens. Actuator Netw. 2019, 8, 57. [Google Scholar] [CrossRef]
- Sayago, I.; Santos, J.P.; Sánchez-Vicente, C. The Effect of Rare Earths on the Response of Photo UV-Activate ZnO Gas Sensors. Sensors 2022, 22, 8150. [Google Scholar] [CrossRef]
- Santos, J.P.; Sanchez-Vicente, C.; Azabal, A.; Ruiz-Valdepenas, S.; Lozano, J.; Sayago, I.; Sanjurjo, J.L. Automation and Optimization Device for the Fabrication of Sensors with Nanomaterials. In Proceedings of the 2021 13th Spanish Conference on Electron Devices, CDE, Sevilla, Spain, 9–11 June 2021; pp. 129–131. [Google Scholar]
- Ternero, P.; Sedrpooshan, M.; Wahlqvist, D.; Meuller, B.O.; Ek, M.; Hübner, J.M.; Westerström, R.; Messing, M.E. Effect of the Carrier Gas on the Structure and Composition of Co–Ni Bimetallic Nanoparticles Generated by Spark Ablation. J. Aerosol Sci. 2023, 170, 106146. [Google Scholar] [CrossRef]
- Reinmann, R.; Akram, M. Temporal Investigation of a Fast Spark Discharge in Chemically Inert Gases. J. Phys. D Appl. Phys. 1997, 30, 1125. [Google Scholar] [CrossRef]
- van Ginkel, H.J.; Mitterhuber, L.; van de Putte, M.W.; Huijben, M.; Vollebregt, S.; Zhang, G. Nanostructured Thermoelectric Films Synthesised by Spark Ablation and Their Oxidation Behaviour. Nanomaterials 2023, 13, 1778. [Google Scholar] [CrossRef]
- Sacco, L.N.; Egger, L.; Popov, M.; Dösinger, C.; Romaner, L.; Schouten, N.; Köck, A. OT5.252 - Printing Nanoporous Layers (NPL) Generated by Spark Ablation for Gas Sensing Applications. Lectures 2024, 141–142. [Google Scholar] [CrossRef]
- Sacco, L.N.; Schouten, N.; Egger, L.; Popov, M.; Köck, A.; Dösinger, C.; Romaner, L. Multiarray Gas Sensors Based on Nanoporous Layers Produced à La Carte by Spark Ablation Using Metal Oxides, Binary and Ternary Alloys. In Proceedings of the IEEE Sensors, Kobe, Japan, 20–23 October 2024. [Google Scholar] [CrossRef]
- Sharon, D.; Bennington, P.; Liu, C.; Kambe, Y.; Dong, B.X.; Burnett, V.F.; Dolejsi, M.; Grocke, G.; Patel, S.N.; Nealey, P.F. Interrogation of Electrochemical Properties of Polymer Electrolyte Thin Films with Interdigitated Electrodes. J. Electrochem. Soc. 2018, 165, H1028–H1039. [Google Scholar] [CrossRef]
- Tang, H.; Li, Y.; Sokolovskij, R.; Sacco, L.; Zheng, H.; Ye, H.; Yu, H.; Fan, X.; Tian, H.; Ren, T.L.; et al. Ultra-High Sensitive NO2 Gas Sensor Based on Tunable Polarity Transport in CVD-WS2/IGZO p-N Heterojunction. ACS Appl. Mater. Interfaces 2019, 11, 40850–40859. [Google Scholar] [CrossRef]
- Potyrailo, R.A.; Go, S.; Sexton, D.; Li, X.; Alkadi, N.; Kolmakov, A.; Amm, B.; St-Pierre, R.; Scherer, B.; Nayeri, M.; et al. Extraordinary Performance of Semiconducting Metal Oxide Gas Sensors Using Dielectric Excitation. Nat. Electron. 2020, 3, 280–289. [Google Scholar] [CrossRef]
- Rothschild, A.; Komem, Y. The Effect of Grain Size on the Sensitivity of Nanocrystalline Metal-Oxide Gas Sensors. J. Appl. Phys. 2004, 95, 6374–6380. [Google Scholar] [CrossRef]
- Ji, H.; Zeng, W.; Li, Y. Gas Sensing Mechanisms of Metal Oxide Semiconductors: A Focus Review. Nanoscale 2019, 11, 22664–22684. [Google Scholar] [CrossRef] [PubMed]
- Gaskov, A.; Rumyantseva, M.; Marikutsa, A. 7- Tin Oxide Nanomaterials: Active Centers and Gas Sensor Properties. Tin Oxide Mater. 2020, 163–218. [Google Scholar] [CrossRef]
Electrode | Potential [kV] | Current [mA] | Printing Speed [mm s−1] | Number of Passes |
---|---|---|---|---|
Sn | 1.3 | 10 | 0.2 | 4 |
Zn | 1.3 | 10 | 0.2 | 2 |
Quantification Results | SnO2 | ZnO |
---|---|---|
O1s | 49.12% | 35.67% |
Sn3d | 25.00% | — |
Zn2p3/2 | — | 36.62% |
Gases | Bottle Concentration | Measured Concentrations |
---|---|---|
NO2 | 1.14 ppm | 100, 200, 300, 400 and 500 ppb |
CO | 10 ppm | 1, 2, 3, 4 and 5 ppm |
Material Generation Technique | Sensing Material | Measurable Range [ppm] | Linear Range [ppm] | S [%/ppm] | R-Squared Coefficient | RMS Noise [ppm−1] | LOD [ppm] | Response Time-R90 @ 0.3 ppm [Min] | Recovery Time-R10 @ 0.3 ppm [Min] |
---|---|---|---|---|---|---|---|---|---|
Electrospray | ZnO | ND | - | - | - | 0.13 | - | 4.5 | 10.25 |
SnO2 | ND | - | - | - | 0.42 | - | 1.5 | 4.5 | |
Drop-casting | ZnO | 0.1–0.5 | 0.1–0.3 | 63.3 ± 0.2 | 0.97 | 0.22 | 0.01 | 3.25 | 4.75 |
SnO2 | ND | 0.1–0.3 | 130 ± 14 | 0.999 | 0.7 | 0.017 | 2.25 | 4.75 | |
Spark Ablation | ZnO | 0.1–0.5 | 0.3–0.5 | 214 ± 28 | 0.96 | 0.05 | - | 13.25 | 3 |
SnO2 | 0.1–0.5 | 0.1–0.3 | 370 ± 25 | 0.99 | 0.005 | 0.0055 | 4.75 | 3 |
Material Generation Technique | Sensing Material | Measurable Range [ppm] | Linear Range [ppm] | S [%/ppm] | R-Squared Coefficient | RMS Noise [ppm−1] | LOD [ppm] | Response Time-R90 @ 3 ppm [Min] | Recovery Time-R10 @ 3 ppm [Min] |
---|---|---|---|---|---|---|---|---|---|
Electrospray | ZnO | 1–5 | 1–5 | 1 ± 0.2 | 0.83 | 0.11 | 0.4 | 12 | 6 |
SnO2 | ND | - | - | - | 0.75 | - | 11 | 9.75 | |
Drop-casting | ZnO | ND | - | - | 0.18 | - | - | - | |
SnO2 | ND | - | - | 1.22 | - | - | - | ||
Spark Ablation | ZnO | 1–5 | 1–5 | 0.29 ± 0.04 | 0.9 | 0.036 | 0.61 | 6.75 | 7.5 |
SnO2 | 1–5 | 1–5 | 0.69 ± 0.05 | 0.97 | 0.02 | 0.1 | 9.75 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Vicente, C.; Santos, J.P.; Sayago, I.; Mazzola, V.; Sacco, L. Room-Temperature Environmental Gas Detection: Performance Comparison of Nanoparticle-Based Sensors Fabricated by Electrospray, Drop-Casting, and Dry Printing Based on Spark Ablation. Chemosensors 2025, 13, 219. https://doi.org/10.3390/chemosensors13060219
Sánchez-Vicente C, Santos JP, Sayago I, Mazzola V, Sacco L. Room-Temperature Environmental Gas Detection: Performance Comparison of Nanoparticle-Based Sensors Fabricated by Electrospray, Drop-Casting, and Dry Printing Based on Spark Ablation. Chemosensors. 2025; 13(6):219. https://doi.org/10.3390/chemosensors13060219
Chicago/Turabian StyleSánchez-Vicente, Carlos, José Pedro Santos, Isabel Sayago, Vincent Mazzola, and Leandro Sacco. 2025. "Room-Temperature Environmental Gas Detection: Performance Comparison of Nanoparticle-Based Sensors Fabricated by Electrospray, Drop-Casting, and Dry Printing Based on Spark Ablation" Chemosensors 13, no. 6: 219. https://doi.org/10.3390/chemosensors13060219
APA StyleSánchez-Vicente, C., Santos, J. P., Sayago, I., Mazzola, V., & Sacco, L. (2025). Room-Temperature Environmental Gas Detection: Performance Comparison of Nanoparticle-Based Sensors Fabricated by Electrospray, Drop-Casting, and Dry Printing Based on Spark Ablation. Chemosensors, 13(6), 219. https://doi.org/10.3390/chemosensors13060219