Real-Time Detection of Heavy Metals and Some Other Pollutants in Wastewater Using Chemical Sensors: A Strategy to Limit the Spread of Antibiotic-Resistant Bacteria
Abstract
1. Introduction
2. Heavy Metals and Antibiotic-Resistant Bacteria
2.1. Cadmium (Cd)
2.2. Arsenic (As)
2.3. Chromium (Cr)
2.4. Copper (Cu)
2.5. Lead (Pb)
2.6. Mercury (Hg)
2.7. Nickel (Ni)
2.8. Other Less Common Toxic Metals
3. Chemical Sensors Used in Wastewater Monitoring
3.1. Types of Sensors for the Detection of Pollutants in Wastewater
3.1.1. Electrochemical Sensors
3.1.2. Optical Sensors
3.1.3. Biosensors
3.1.4. Molecularly Imprinted Polymer Sensors
3.2. Real-Time Monitoring of Pollutants in Wastewater
4. Real-Time Detection of Heavy Metals Using Chemical Sensors
4.1. Integration with IoT for Remote Monitoring
4.2. Wearable, Portable, and On-Site Devices
4.3. Autonomous and Self-Powered Systems
4.4. Multi-Metal Detection and Selectivity Challenges
4.5. Data Processing and Predictive Analysis
5. Challenges and Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Alazaiza, M.Y.D.; Alzghoul, T.M.; Ramu, M.B.; Amr, S.S.A.; Abushammala, M.F.M.; Nassani, D.E. Global Perspectives on Industrial Wastewater Management: A Bibliometric Analysis of Research Output. J. Hazard. Mater. Adv. 2025, 17, 100567. [Google Scholar] [CrossRef]
- Wu, C.; Liu, W.; Deng, H. Urbanization and the Emerging Water Crisis: Identifying Water Scarcity and Environmental Risk with Multiple Applications in Urban Agglomerations in Western China. Sustainability 2023, 15, 12977. [Google Scholar] [CrossRef]
- Silva, J.A. Water Supply and Wastewater Treatment and Reuse in Future Cities: A Systematic Literature Review. Water 2023, 15, 3064. [Google Scholar] [CrossRef]
- Oladimeji, T.E.; Oyedemi, M.; Emetere, M.E.; Agboola, O.; Adeoye, J.B.; Odunlami, O.A. Review on the Impact of Heavy Metals from Industrial Wastewater Effluent and Removal Technologies. Heliyon 2024, 10, e40370. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, M.; Lan, J.; Huang, Y.; Zhang, J.; Huang, S.; Yang, Y.; Ru, J. Water Quality Degradation Due to Heavy Metal Contamination: Health Impacts and Eco-Friendly Approaches for Heavy Metal Remediation. Toxics 2023, 11, 828. [Google Scholar] [CrossRef]
- Joseph, O.J.; Ogunleye, G.E.; Oyinlola, K.A.; Balogun, A.I.; Olumeko, D.T. Co-Occurrence of Heavy Metals and Antibiotics Resistance in Bacteria Isolated from Metal-Polluted Soil. Environ. Anal. Health Toxicol. 2023, 38, e2023024. [Google Scholar] [CrossRef]
- Vats, P.; Kaur, U.J.; Rishi, P. Heavy Metal-Induced Selection and Proliferation of Antibiotic Resistance: A Review. J. Appl. Microbiol. 2022, 132, 4058–4076. [Google Scholar] [CrossRef]
- Anedda, E.; Farrell, M.L.; Morris, D.; Burgess, C.M. Evaluating the Impact of Heavy Metals on Antimicrobial Resistance in the Primary Food Production Environment: A Scoping Review. Environ. Pollut. 2023, 320, 121035. [Google Scholar] [CrossRef]
- Yan, Q.; Zhong, Z.; Li, X.; Cao, Z.; Zheng, X.; Feng, G. Characterization of Heavy Metal, Antibiotic Pollution, and Their Resistance Genes in Paddy with Secondary Municipal-Treated Wastewater Irrigation. Water Res. 2024, 252, 121208. [Google Scholar] [CrossRef]
- Seiler, C.; Berendonk, T.U. Heavy Metal Driven Co-Selection of Antibiotic Resistance in Soil and Water Bodies Impacted by Agriculture and Aquaculture. Front. Microbiol. 2012, 3, 399. [Google Scholar] [CrossRef]
- Sánchez-Corona, C.G.; Gonzalez-Avila, L.U.; Hernández-Cortez, C.; Rojas-Vargas, J.; Castro-Escarpulli, G.; Castelán-Sánchez, H.G. Impact of Heavy Metal and Resistance Genes on Antimicrobial Resistance: Ecological and Public Health Implications. Genes 2025, 16, 625. [Google Scholar] [CrossRef]
- Kusi, J.; Ojewole, C.O.; Ojewole, A.E.; Nwi-Mozu, I. Antimicrobial Resistance Development Pathways in Surface Waters and Public Health Implications. Antibiotics 2022, 11, 821. [Google Scholar] [CrossRef]
- Samreen; Ahmad, I.; Malak, H.A.; Abulreesh, H.H. Environmental Antimicrobial Resistance and Its Drivers: A Potential Threat to Public Health. J. Glob. Antimicrob. Resist. 2021, 27, 101–111. [Google Scholar] [CrossRef]
- Gillieatt, B.F.; Coleman, N. V Unravelling the Mechanisms of Antibiotic and Heavy Metal Resistance Co-Selection in Environmental Bacteria. FEMS Microbiol. Rev. 2024, 48, fuae017. [Google Scholar] [CrossRef] [PubMed]
- Muteeb, G.; Rehman, M.T.; Shahwan, M.; Aatif, M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals 2023, 16, 1615. [Google Scholar] [CrossRef] [PubMed]
- Perelomov, L.; Sizova, O.; Gertsen, M.; Perelomova, I.; Arlyapov, V.; Atroshchenko, Y. Antibiotic Resistance in Metal-Tolerant Microorganisms from Treatment Facilities. Antibiotics 2023, 12, 1678. [Google Scholar] [CrossRef] [PubMed]
- Murray, L.M.; Hayes, A.; Snape, J.; Kasprzyk-Hordern, B.; Gaze, W.H.; Murray, A.K. Co-Selection for Antibiotic Resistance by Environmental Contaminants. NPJ Antimicrob. Resist. 2024, 2, 9. [Google Scholar] [CrossRef] [PubMed]
- Galgano, M.; Pellegrini, F.; Catalano, E.; Capozzi, L.; Del Sambro, L.; Sposato, A.; Lucente, M.S.; Vasinioti, V.I.; Catella, C.; Odigie, A.E.; et al. Acquired Bacterial Resistance to Antibiotics and Resistance Genes: From Past to Future. Antibiotics 2025, 14, 222. [Google Scholar] [CrossRef]
- Shu, Y.; Li, D.; Xie, T.; Zhao, K.; Zhou, L.; Li, F. Antibiotics-Heavy Metals Combined Pollution in Agricultural Soils: Sources, Fate, Risks, and Countermeasures. Green Energy Environ. 2025, 10, 869–897. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Nuruzzaman, M.; Bahar, M.M.; Naidu, R. Diffuse Soil Pollution from Agriculture: Impacts and Remediation. Sci. Total Environ. 2025, 962, 178398. [Google Scholar] [CrossRef]
- Balta, I.; Lemon, J.; Gadaj, A.; Cretescu, I.; Stef, D.; Pet, I.; Stef, L.; McCleery, D.; Douglas, A.; Corcionivoschi, N. The Interplay between Antimicrobial Resistance, Heavy Metal Pollution, and the Role of Microplastics. Front. Microbiol. 2025, 16, 1550587. [Google Scholar] [CrossRef]
- Liu, C.; Li, G.; Qin, X.; Xu, Y.; Wang, J.; Wu, G.; Feng, H.; Ye, J.; Zhu, C.; Li, X.; et al. Profiles of Antibiotic- and Heavy Metal-Related Resistance Genes in Animal Manure Revealed Using a Metagenomic Analysis. Ecotoxicol. Environ. Saf. 2022, 239, 113655. [Google Scholar] [CrossRef] [PubMed]
- Mazhar, S.H.; Li, X.; Rashid, A.; Su, J.; Xu, J.; Brejnrod, A.D.; Su, J.-Q.; Wu, Y.; Zhu, Y.-G.; Zhou, S.G.; et al. Co-Selection of Antibiotic Resistance Genes, and Mobile Genetic Elements in the Presence of Heavy Metals in Poultry Farm Environments. Sci. Total Environ. 2021, 755, 142702. [Google Scholar] [CrossRef]
- Duchenne-Moutien, R.A.; Neetoo, H. Climate Change and Emerging Food Safety Issues: A Review. J. Food Prot. 2021, 84, 1884–1897. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Wang, Y.; Liu, H.; Wang, N.; Zhang, Y.; Li, X. Review of the Presence and Phage-Mediated Transfer of ARGs in Biofilms. Microorganisms 2025, 13, 997. [Google Scholar] [CrossRef] [PubMed]
- Bolan, S.; Padhye, L.P.; Jasemizad, T.; Govarthanan, M.; Karmegam, N.; Wijesekara, H.; Amarasiri, D.; Hou, D.; Zhou, P.; Biswal, B.K.; et al. Impacts of Climate Change on the Fate of Contaminants Through Extreme Weather Events. Sci. Total Environ. 2024, 909, 168388. [Google Scholar] [CrossRef]
- Primost, M.A.; Chierichetti, M.A.; Castaños, C.; Bigatti, G.; Miglioranza, K.S.B. Persistent Organic Pollutants (POPs), Current Use Pesticides (CUPs) and Polycyclic Aromatic Hydrocarbons (PAHs) in Edible Marine Invertebrates from a Patagonian Harbor. Mar. Pollut. Bull. 2024, 207, 116940. [Google Scholar] [CrossRef]
- Ibáñez, A.; Garrido-Chamorro, S.; Barreiro, C. Microorganisms and Climate Change: A Not so Invisible Effect. Microbiol. Res. 2023, 14, 918–947. [Google Scholar] [CrossRef]
- Rasheela, A.R.P.; Khalid, M.F.; Abumaali, D.A.; Alatalo, J.M.; Ahmed, T. Impact of Abiotic Stressors on Soil Microbial Communities: A Focus on Antibiotics and Their Interactions with Emerging Pollutants. Soil. Syst. 2024, 9, 2. [Google Scholar] [CrossRef]
- Fdez-Sanromán, A.; Bernárdez-Rodas, N.; Rosales, E.; Pazos, M.; González-Romero, E.; Sanromán, M.Á. Biosensor Technologies for Water Quality: Detection of Emerging Contaminants and Pathogens. Biosensors 2025, 15, 189. [Google Scholar] [CrossRef] [PubMed]
- Fuente-Ballesteros, A.; Ares, A.M.; Bernal, J. Paving the Way towards Green Contaminant Analysis: Strategies and Considerations for Sustainable Analytical Chemistry. Green Anal. Chem. 2025, 12, 100221. [Google Scholar] [CrossRef]
- Oon, Y.-L.; Oon, Y.-S.; Ayaz, M.; Deng, M.; Li, L.; Song, K. Waterborne Pathogens Detection Technologies: Advances, Challenges, and Future Perspectives. Front. Microbiol. 2023, 14, 1286923. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shen, X.; Jiang, W.; Xi, Y.; Li, S. Comprehensive Review of Emerging Contaminants: Detection Technologies, Environmental Impact, and Management Strategies. Ecotoxicol. Environ. Saf. 2024, 278, 116420. [Google Scholar] [CrossRef]
- Oliveira, S.; Sharifuzzaman, M.; Moro, G.; Sinibaldi, A.; Altintas, Z.; Kumar, S.; Chiavaioli, F.; Marques, C. Advances in Optical Devices for the Detection of Contaminants in Food and Water. TrAC Trends Anal. Chem. 2025, 184, 118139. [Google Scholar] [CrossRef]
- Zheng, W.; Yang, Y.; Liu, C.; Zhou, W. Recent Advancements in Sensor Technologies for Healthcare and Biomedical Applications. Sensors 2023, 23, 3218. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Biosensors Applications in Medical Field: A Brief Review. Sens. Int. 2021, 2, 100100. [Google Scholar] [CrossRef]
- Albu, C.; Chira, A.; Radu, G.-L.; Eremia, S.A.V. Advances in Cost-Effective Chemosensors for Sustainable Monitoring in Food Safety and Processing. Chemosensors 2025, 13, 113. [Google Scholar] [CrossRef]
- Simonetti, F.; Brillarelli, S.; Agostini, M.; Mancini, M.; Gioia, V.; Murtas, S.; Migliorati, V. A Review on the Latest Frontiers in Water Quality in the Era of Emerging Contaminants: A Focus on Perfluoroalkyl Compounds. Environ. Pollut. 2025, 381, 126402. [Google Scholar] [CrossRef]
- Nguyen, D.H.H.; Muthu, A.; Elsakhawy, T.; Sheta, M.H.; Abdalla, N.; El-Ramady, H.; Prokisch, J. Carbon Nanodots-Based Sensors: A Promising Tool for Detecting and Monitoring Toxic Compounds. Nanomaterials 2025, 15, 725. [Google Scholar] [CrossRef]
- Sivaranjanee, R.; Senthil Kumar, P.; Saravanan, R.; Govarthanan, M. Electrochemical Sensing System for the Analysis of Emerging Contaminants in Aquatic Environment: A Review. Chemosphere 2022, 294, 133779. [Google Scholar] [CrossRef]
- Son, A.; Kim, W.; Park, J.; Park, Y.; Lee, W.; Lee, S.; Kim, H. Mass Spectrometry Advancements and Applications for Biomarker Discovery, Diagnostic Innovations, and Personalized Medicine. Int. J. Mol. Sci. 2024, 25, 9880. [Google Scholar] [CrossRef]
- Margaritis, M.; Gkazeli, E.; Atzemi, M. Removal of Heavy Metals from Industrial Wastewater Using Natural and Organically Modified Minerals. Sustain. Futures 2025, 9, 100644. [Google Scholar] [CrossRef]
- Abd Elnabi, M.K.; Elkaliny, N.E.; Elyazied, M.M.; Azab, S.H.; Elkhalifa, S.A.; Elmasry, S.; Mouhamed, M.S.; Shalamesh, E.M.; Alhorieny, N.A.; Abd Elaty, A.E.; et al. Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review. Toxics 2023, 11, 580. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Alomar, S.Y.; Nepovimova, E.; Kuca, K.; Valko, M. Heavy Metals: Toxicity and Human Health Effects. Arch. Toxicol. 2025, 99, 153–209. [Google Scholar] [CrossRef] [PubMed]
- McCorquodale-Bauer, K.; Flores Orozco, D.; Grosshans, R.; Zvomuya, F.; Cicek, N. Reduction of Antimicrobial Resistance Genes in Wastewater through Phytoremediation. Front. Synth. Biol. 2025, 2, 1513580. [Google Scholar] [CrossRef]
- Davidova, S.; Milushev, V.; Satchanska, G. The Mechanisms of Cadmium Toxicity in Living Organisms. Toxics 2024, 12, 875. [Google Scholar] [CrossRef]
- Ayach, J.; El Malti, W.; Duma, L.; Lalevée, J.; Al Ajami, M.; Hamad, H.; Hijazi, A. Comparing Conventional and Advanced Approaches for Heavy Metal Removal in Wastewater Treatment: An In-Depth Review Emphasizing Filter-Based Strategies. Polymers 2024, 16, 1959. [Google Scholar] [CrossRef]
- Sharafi, K.; Omer, A.K.; Mansouri, B.; Massahi, T.; Soleimani, H.; Moradi, M.; Parnoon, K.; Ebrahimzadeh, G. Transfer of Heavy Metals from Soil to Vegetables: A Comparative Assessment of Different Irrigation Water Sources. Heliyon 2024, 10, e32575. [Google Scholar] [CrossRef]
- Mashhadikhan, S.; Ebadi Amooghin, A.; Sanaeepur, H.; Shirazi, M.M.A. A Critical Review on Cadmium Recovery from Wastewater towards Environmental Sustainability. Desalination 2022, 535, 115815. [Google Scholar] [CrossRef]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in Soils and Groundwater: A Review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Din, G.; Farooqi, A.; Sajjad, W.; Irfan, M.; Gul, S.; Ali Shah, A. Cadmium and Antibiotic-Resistant Acinetobacter Calcoaceticus Strain STP14 Reported from Sewage Treatment Plant. J. Basic. Microbiol. 2021, 61, 230–240. [Google Scholar] [CrossRef]
- Pan, J.; Zheng, N.; An, Q.; Li, Y.; Sun, S.; Zhang, W.; Song, X. Effects of Cadmium and Copper Mixtures on Antibiotic Resistance Genes in Rhizosphere Soil. Ecotoxicol. Environ. Saf. 2023, 259, 115008. [Google Scholar] [CrossRef]
- Kaur, U.J.; Preet, S.; Rishi, P. Augmented Antibiotic Resistance Associated with Cadmium Induced Alterations in Salmonella Enterica Serovar Typhi. Sci. Rep. 2018, 8, 12818. [Google Scholar] [CrossRef]
- Abbas, S.Z.; Rafatullah, M.; Ismail, N.; Lalung, J. Isolation, Identification, and Characterization of Cadmium Resistant Pseudomonas Sp. M3 from Industrial Wastewater. J. Waste Manag. 2014, 2014, 160398. [Google Scholar] [CrossRef]
- Zhao, W.; Han, Q.; Yang, R.; Wen, W.; Deng, Z.; Li, H.; Zheng, Z.; Ma, Z.; Yu, G. Exposure to Cadmium Induced Gut Antibiotic Resistance Genes (ARGs) and Microbiota Alternations of Babylonia Areolata. Sci. Total Environ. 2023, 865, 161243. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Guha, B.; Lippincott, L.; Cach, S.; Wei, J.; Su, T.-L.; Meng, X. Challenges of Arsenic Removal from Municipal Wastewater by Coagulation with Ferric Chloride and Alum. Sci. Total Environ. 2020, 725, 138351. [Google Scholar] [CrossRef]
- Zhang, M.; Wan, K.; Zeng, J.; Lin, W.; Ye, C.; Yu, X. Co-Selection and Stability of Bacterial Antibiotic Resistance by Arsenic Pollution Accidents in Source Water. Environ. Int. 2020, 135, 105351. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Tahir, K.; Aslam, S.; Cheema, S.M.; Rabaan, A.A.; Turkistani, S.A.; Garout, M.; Halwani, M.A.; Aljeldah, M.; Al Shammari, B.R.; et al. Heavy Metal (Arsenic) Induced Antibiotic Resistance among Extended-Spectrum β-Lactamase (ESBL) Producing Bacteria of Nosocomial Origin. Pharmaceuticals 2022, 15, 1426. [Google Scholar] [CrossRef]
- Irshad, M.A.; Sattar, S.; Nawaz, R.; Al-Hussain, S.A.; Rizwan, M.; Bukhari, A.; Waseem, M.; Irfan, A.; Inam, A.; Zaki, M.E.A. Enhancing Chromium Removal and Recovery from Industrial Wastewater Using Sustainable and Efficient Nanomaterial: A Review. Ecotoxicol. Environ. Saf. 2023, 263, 115231. [Google Scholar] [CrossRef]
- Ramli, N.N.; Othman, A.R.; Kurniawan, S.B.; Abdullah, S.R.S.; Hasan, H.A. Metabolic Pathway of Cr(VI) Reduction by Bacteria: A Review. Microbiol. Res. 2023, 268, 127288. [Google Scholar] [CrossRef]
- Yuan, B.; Yang, Z.; Wu, P.; Yin, X.; Liu, C.; Sun, F.; He, J.; Jiang, W. Efficient Treatment of Chromium-Containing Wastewater Based on Auxiliary Intelligent Model with Rapid-Response Adsorbents. Sep. Purif. Technol. 2025, 363, 132037. [Google Scholar] [CrossRef]
- Wu, H.; Yu, Y.; Su, Q.; Zhang, T.C.; Du, D.; Du, Y. Combined Impact of Antibiotics and Cr(VI) on Antibiotic Resistance, ARGs, and Growth of Bacillussp. SH-1: A Functionl Analysis from Gene to Protease. Bioresour. Technol. 2024, 414, 131579. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, H.; Cui, Y.; Chen, N. Removal of Copper Ions from Wastewater: A Review. Int. J. Environ. Res. Public. Health 2023, 20, 885. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Luo, J.; Wang, C.; Kapilevich, L.; Zhang, X. Roles and Mechanisms of Copper Homeostasis and Cuproptosis in Osteoarticular Diseases. Biomed. Pharmacother. 2024, 174, 116570. [Google Scholar] [CrossRef] [PubMed]
- Yadu, A.; Sahariah, B.P.; Anandkumar, J. Treatment and Management Strategies for Industrial Wastewater. In Biological Treatment of Industrial Wastewater; The Royal Society of Chemistry: London, UK, 2021; pp. 53–73. [Google Scholar]
- Binesh, A.; Venkatachalam, K. Copper in Human Health and Disease: A Comprehensive Review. J. Biochem. Mol. Toxicol. 2024, 38, e70052. [Google Scholar] [CrossRef]
- Gao, Y.-X.; Li, X.; Fan, X.-Y.; Zhao, J.-R.; Zhang, Z.-X. Fates of Antibiotic Resistance Genes and Bacterial/Archaeal Communities of Activated Sludge Under Stress of Copper: Gradient Increasing/Decreasing Exposure Modes. Bioresour. Technol. 2022, 363, 127937. [Google Scholar] [CrossRef]
- Kumar, V.; Dwivedi, S.K.; Oh, S. A Critical Review on Lead Removal from Industrial Wastewater: Recent Advances and Future Outlook. J. Water Process Eng. 2022, 45, 102518. [Google Scholar] [CrossRef]
- Ahmad, I.; Asad, U.; Maryam, L.; Masood, M.; Saeed, M.F.; Jamal, A.; Mubeen, M. Treatment Methods for Lead Removal from Wastewater. In Lead Toxicity: Challenges and Solution; Springer: Berlin/Heidelberg, Germany, 2023; pp. 197–226. [Google Scholar]
- Folvarska, V.; Thomson, S.M.; Lu, Z.; Adelgren, M.; Schmidt, A.; Newton, R.J.; Wang, Y.; McNamara, P.J. The Effects of Lead, Copper, and Iron Corrosion Products on Antibiotic Resistant Bacteria and Antibiotic Resistance Genes. Environ. Sci. Adv. 2024, 3, 808–818. [Google Scholar] [CrossRef]
- Eggers, S.; Safdar, N.; Kates, A.; Sethi, A.K.; Peppard, P.E.; Kanarek, M.S.; Malecki, K.M.C. Urinary Lead Level and Colonization by Antibiotic Resistant Bacteria. Environ. Epidemiol. 2021, 5, e175. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahim, K. Industrial Wastewater Bacteria, Resistant to Lead, Selenium and Antibiotics. J. Environ. Stud. 2021, 25, 51–55. [Google Scholar] [CrossRef]
- Suess, E.; Berg, M.; Bouchet, S.; Cayo, L.; Hug, S.J.; Kaegi, R.; Voegelin, A.; Winkel, L.H.E.; Tessier, E.; Amouroux, D.; et al. Mercury Loads and Fluxes from Wastewater: A Nationwide Survey in Switzerland. Water Res. 2020, 175, 115708. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Guo, J.; Fan, R.; Zhang, T.; Wang, X.; Chen, H.; Huang, S.; Hu, Y.; Zhang, G. Mercury Discharge Inventory Based on Sewage Treatment Process in China. Processes 2024, 12, 1534. [Google Scholar] [CrossRef]
- Yuan, L.; Li, Z.-H.; Zhang, M.-Q.; Shao, W.; Fan, Y.-Y.; Sheng, G.-P. Mercury/Silver Resistance Genes and Their Association with Antibiotic Resistance Genes and Microbial Community in a Municipal Wastewater Treatment Plant. Sci. Total Environ. 2019, 657, 1014–1022. [Google Scholar] [CrossRef]
- Noman, E.; Al-Gheethi, A.; Saphira Radin Mohamed, R.M.; Al-Sahari, M.; Hossain, M.S.; Vo, D.-V.N.; Naushad, M. Sustainable Approaches for Nickel Removal from Wastewater Using Bacterial Biomass and Nanocomposite Adsorbents: A Review. Chemosphere 2022, 291, 132862. [Google Scholar] [CrossRef]
- Alboghobeish, H.; Tahmourespour, A.; Doudi, M. The Study of Nickel Resistant Bacteria (NiRB) Isolated from Wastewaters Polluted with Different Industrial Sources. J. Environ. Health Sci. Eng. 2014, 12, 44. [Google Scholar] [CrossRef]
- Hu, H.-W.; Wang, J.-T.; Li, J.; Shi, X.-Z.; Ma, Y.-B.; Chen, D.; He, J.-Z. Long-Term Nickel Contamination Increases the Occurrence of Antibiotic Resistance Genes in Agricultural Soils. Environ. Sci. Technol. 2017, 51, 790–800. [Google Scholar] [CrossRef]
- Willner, J.; Fornalczyk, A.; Jablonska-Czapla, M.; Grygoyc, K.; Rachwal, M. Studies on the Content of Selected Technology Critical Elements (Germanium, Tellurium and Thallium) in Electronic Waste. Materials 2021, 14, 3722. [Google Scholar] [CrossRef]
- Deng, R.; Chen, Y.; Deng, X.; Huang, Z.; Zhou, S.; Ren, B.; Jin, G.; Hursthouse, A. A Critical Review of Resistance and Oxidation Mechanisms of Sb-Oxidizing Bacteria for the Bioremediation of Sb(III) Pollution. Front. Microbiol. 2021, 12, 738596. [Google Scholar] [CrossRef]
- Majerová, H.; Konyariková, Z.; Strašiftáková, D.; Puhr, C.; Kautmanová, I.; Faragó, T.; Šottník, P.; Lalinská-Voleková, B. Antimony Resistant Bacteria Isolated from Budúcnosť Adit (Pezinok-Kolársky Vrch Deposit) in Western Slovakia. Heliyon 2024, 10, e39853. [Google Scholar] [CrossRef]
- Balado, M.; Rey-Varela, D.; Albela, A.M.; Lemos, M.L. Susceptibility to Bismuth(III) of Aquaculture Bacterial Pathogens: Effectiveness of Bismuth–Deferiprone Therapy Against Vibrio Anguillarum Infection in Fish. Microorganisms 2021, 9, 2399. [Google Scholar] [CrossRef]
- Rosário, J.d.S.; Moreira, F.H.; Rosa, L.H.F.; Guerra, W.; Silva-Caldeira, P.P. Biological Activities of Bismuth Compounds: An Overview of the New Findings and the Old Challenges Not Yet Overcome. Molecules 2023, 28, 5921. [Google Scholar] [CrossRef]
- Xia, Y.; Wei, X.; Gao, P.; Wang, C.; de Jong, A.; Chen, J.H.K.; Rodríguez-Sánchez, M.J.; Rodríguez-Nogales, A.; Diez-Echave, P.; Gálvez, J.; et al. Bismuth-Based Drugs Sensitize Pseudomonas Aeruginosa to Multiple Antibiotics by Disrupting Iron Homeostasis. Nat. Microbiol. 2024, 9, 2600–2613. [Google Scholar] [CrossRef]
- Weerasinghe, M.; Jayathilaka, K.; Vithanage, M. Sensors for Detection and Monitoring of Contaminants in Wastewater. Curr. Opin. Environ. Sci. Health 2025, 45, 100609. [Google Scholar] [CrossRef]
- Bounegru, A.V.; Dinu Iacob, A.; Iticescu, C.; Georgescu, P.L. Electrochemical Sensors and Biosensors for the Detection of Pharmaceutical Contaminants in Natural Waters—A Comprehensive Review. Chemosensors 2025, 13, 65. [Google Scholar] [CrossRef]
- Me, M.F.H.; Ang, W.L.; Othman, A.R.; Mohammad, A.W.; Nasharuddin, A.A.A.; Aris, A.M.; Khor, B.C.; Lim, S.S. Assessment of the Microbial Electrochemical Sensor (SENTRYTM) as a Potential Wastewater Quality Monitoring Tool for Common Pollutants Found in Malaysia. Environ. Monit. Assess. 2024, 196, 366. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, R.F.; Zaiat, M. Development of a Low-Cost Electrochemical Sensor for Monitoring Components in Wastewater Treatment Processes. Environ. Technol. 2023, 44, 3883–3896. [Google Scholar] [CrossRef]
- Cui, X.; Han, J.; Chen, G.; Wang, L.; Luo, Z.; Chang, C.; Zhang, J.; Fu, Q. Development of a Highly Sensitive Imprinted Electrochemical Sensor for the Detection of Hydrocortisone in Wastewater. J. Electrochem. Soc. 2021, 168, 057508. [Google Scholar] [CrossRef]
- Yuan, C.; Shu, M.; Fu, Z.; Zhou, L.; Guo, L.; Ding, D.; Wang, Y.; Xu, Z.; Wang, J.; Wang, D. Electrochemical Biosensors: Rapid Detection Methods in Wastewater-Based Epidemiology Research. Environ. Sci. 2024, 10, 316–338. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, X.; Li, Y. Electrochemical Sensors Based on Polyaniline Nanocomposites for Detecting Cd(II) in Wastewater. Int. J. Electrochem. Sci. 2024, 19, 100519. [Google Scholar] [CrossRef]
- Shabib, A.; Maraqa, M.A.; Mohammad, A.F.; Awwad, F. Design, Fabrication, and Application of Electrochemical Sensors for Microplastic Detection: A State-of-the-Art Review and Future Perspectives. Environ. Sci. Eur. 2025, 37, 94. [Google Scholar] [CrossRef]
- Kumar, M.; Khamis, K.; Stevens, R.; Hannah, D.M.; Bradley, C. In-Situ Optical Water Quality Monitoring Sensors—Applications, Challenges, and Future Opportunities. Front. Water 2024, 6, 1380133. [Google Scholar] [CrossRef]
- Szczerska, M.; Cierpiak, K.; Kosowska, M.; Wityk, P.; García-Galán, S.; Sokołowski, P.; Fudala-Książek, S.; Tomczak, M.T.; Ye, B.; Łuczkiewicz, A. Remote Real-Time Wastewater Surveillance by the Optical Sensor Supported by Machine Learning. Sens. Actuators Rep. 2025, 10, 100346. [Google Scholar] [CrossRef]
- El-Sewify, I.M.; Radwan, A.; Elghazawy, N.H.; Fritzsche, W.; Azzazy, H.M.E. Optical Chemosensors for Environmental Monitoring of Toxic Metals Related to Alzheimer’s Disease. RSC Adv. 2022, 12, 32744–32755. [Google Scholar] [CrossRef]
- Chong, S.; Aziz, A.; Harun, S. Fibre Optic Sensors for Selected Wastewater Characteristics. Sensors 2013, 13, 8640–8668. [Google Scholar] [CrossRef]
- Almawgani, A.H.M.; Surve, J.; Parmar, T.; Armghan, A.; Aliqab, K.; Ali, G.A.; Patel, S.K. A Graphene-Metasurface-Inspired Optical Sensor for the Heavy Metals Detection for Efficient and Rapid Water Treatment. Photonics 2023, 10, 56. [Google Scholar] [CrossRef]
- Bourgeois, W.; Burgess, J.E.; Stuetz, R.M. On-Line Monitoring of Wastewater Quality: A Review. J. Chem. Technol. Biotechnol. 2001, 76, 337–348. [Google Scholar] [CrossRef]
- Goblirsch, T.; Mayer, T.; Penzel, S.; Rudolph, M.; Borsdorf, H. In Situ Water Quality Monitoring Using an Optical Multiparameter Sensor Probe. Sensors 2023, 23, 9545. [Google Scholar] [CrossRef]
- Anchidin-Norocel, L.; Iatcu, O.C.; Lobiuc, A.; Covasa, M. Heavy Metal–Gut Microbiota Interactions: Probiotics Modulation and Biosensors Detection. Biosensors 2025, 15, 188. [Google Scholar] [CrossRef]
- Inês, A.; Cosme, F. Biosensors for Detecting Food Contaminants—An Overview. Processes 2025, 13, 380. [Google Scholar] [CrossRef]
- Mao, K.; Zhang, H.; Pan, Y.; Yang, Z. Biosensors for Wastewater-Based Epidemiology for Monitoring Public Health. Water Res. 2021, 191, 116787. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Villacorta, W.; Rojas-Flores, S.; De La Cruz-Noriega, M.; Chinchay Espino, H.; Diaz, F.; Gallozzo Cardenas, M. Microbial Biosensors for Wastewater Monitoring: Mini-Review. Processes 2022, 10, 2002. [Google Scholar] [CrossRef]
- Azubuike, C.C.; Couceiro, F.; Robson, S.C.; Piccinni, M.Z.; Watts, J.E.M.; Williams, J.B.; Callaghan, A.J.; Howard, T.P. Developing Biosensors for SARS-CoV-2 Wastewater-Based Epidemiology: A Systematic Review of Trends, Limitations and Future Perspectives. Sustainability 2022, 14, 16761. [Google Scholar] [CrossRef]
- Yamashita, T.; Ookawa, N.; Ishida, M.; Kanamori, H.; Sasaki, H.; Katayose, Y.; Yokoyama, H. A Novel Open-Type Biosensor for the in-Situ Monitoring of Biochemical Oxygen Demand in an Aerobic Environment. Sci. Rep. 2016, 6, 38552. [Google Scholar] [CrossRef]
- Tsai, S.-T.; Cheng, W.-J.; Zhang, Q.-X.; Yeh, Y.-C. Gold-Specific Biosensor for Monitoring Wastewater Using Genetically Engineered Cupriavidus Metallidurans CH34. ACS Synth. Biol. 2021, 10, 3576–3582. [Google Scholar] [CrossRef]
- Mendes, F.; Machado, B.O.; Castro, B.B.; Sousa, M.J.; Chaves, S.R. Harnessing the Power of Biosensors for Environmental Monitoring of Pesticides in Water. Appl. Microbiol. Biotechnol. 2025, 109, 92. [Google Scholar] [CrossRef]
- Li, Y.; Luo, L.; Kong, Y.; Li, Y.; Wang, Q.; Wang, M.; Li, Y.; Davenport, A.; Li, B. Recent Advances in Molecularly Imprinted Polymer-Based Electrochemical Sensors. Biosens. Bioelectron. 2024, 249, 116018. [Google Scholar] [CrossRef]
- Gkika, D.A.; Tolkou, A.K.; Lambropoulou, D.A.; Bikiaris, D.N.; Kokkinos, P.; Kalavrouziotis, I.K.; Kyzas, G.Z. Application of Molecularly Imprinted Polymers (MIPs) as Environmental Separation Tools. RSC Appl. Polym. 2024, 2, 127–148. [Google Scholar] [CrossRef]
- Ogulewe, F.E.; Oladipo, A.A.; Gazi, M. Molecularly Imprinted Polymers and Metal-Organic Framework-Based Nanomaterial Sensors for Food and Beverage Analysis and Safety—A Review. Talanta Open 2025, 11, 100448. [Google Scholar] [CrossRef]
- Ramajayam, K.; Ganesan, S.; Ramesh, P.; Beena, M.; Kokulnathan, T.; Palaniappan, A. Molecularly Imprinted Polymer-Based Biomimetic Systems for Sensing Environmental Contaminants, Biomarkers, and Bioimaging Applications. Biomimetics 2023, 8, 245. [Google Scholar] [CrossRef]
- Al Faysal, A.; Cetinkaya, A.; Kaya, S.I.; Erdoğan, T.; Ozkan, S.A.; Gölcü, A. Development and Fabrication of a Molecularly Imprinted Polymer-Based Electroanalytical Sensor for the Determination of Acyclovir. ACS Omega 2024, 9, 9564–9576. [Google Scholar] [CrossRef] [PubMed]
- Mokwebo, K.V.; Douman, S.F.; Januarie, K.C.; Oranzie, M.; Sanga, N.A.; Leve, Z.D.; Cox, M.; Ross, N.; Iwuoha, E.I. Electromimetic Molecularly Imprinted Polymersensor for Wastewater Emtricitabine. Anal. Chim. Acta 2024, 1329, 343184. [Google Scholar] [CrossRef] [PubMed]
- Sarti, C.; Falcon, L.; Cincinelli, A.; Martellini, T.; Chianella, I. Development of Molecularly Imprinted Polymer-Based Electrochemical Sensors for the Detection of UV Filters in Aquatic Ecosystems. Talanta 2025, 285, 127375. [Google Scholar] [CrossRef] [PubMed]
- Metwally, M.; Benhawy, A.; Khalifa, R.; El Nashar, R.; Trojanowicz, M. Application of Molecularly Imprinted Polymers in the Analysis of Waters and Wastewaters. Molecules 2021, 26, 6515. [Google Scholar] [CrossRef]
- Mumtaz, F.; Atif, M.; Naz, F.; Li, B.; Wang, K.; AlShehhi, M.R. Advanced Hybrid Molecular Imprinted Polymers for Antibiotics Remediation from Wastewater. Chem. Bio. Eng. Rev. 2024, 11, 495–512. [Google Scholar] [CrossRef]
- Korostynska, O.; Mason, A.; Al-Shamma’a, A.I. Monitoring Pollutants in Wastewater: Traditional Lab Based versus Modern Real-Time Approaches. In Smart Sensors for Real-Time Water Quality Monitoring; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–24. [Google Scholar]
- Durgun, Y. Real-Time Water Quality Monitoring Using AI-Enabled Sensors: Detection of Contaminants and UV Disinfection Analysis in Smart Urban Water Systems. J. King Saud. Univ. Sci. 2024, 36, 103409. [Google Scholar] [CrossRef]
- Jørgensen, M.B.; Dan, J.B.; Nielsen, K.R.; Vulpius, T.; Christensen, J.H. Real-Time Monitoring of Contaminants of Emerging Concern in Effluent Wastewater with Dynamic Headspace Gas Chromatography Mass Spectrometry Analysis. J. Chromatogr. A 2025, 1749, 465895. [Google Scholar] [CrossRef]
- Antonini, G.; Pearce, J.M.; Berruti, F.; Santoro, D. A Novel Camera-Based Sensor for Real-Time Wastewater Quality Monitoring. Water Pract. Technol. 2024, 19, 3778–3793. [Google Scholar] [CrossRef]
- Post, C.; Heyden, N.; Reinartz, A.; Foerderer, A.; Bruelisauer, S.; Linnemann, V.; Hug, W.; Amann, F. Possibilities of Real Time Monitoring of Micropollutants in Wastewater Using Laser-Induced Raman & Fluorescence Spectroscopy (LIRFS) and Artificial Intelligence (AI). Sensors 2022, 22, 4668. [Google Scholar] [CrossRef]
- Fazzino, F.; Roccaro, P.; Di Bella, A.; Gagliano, E.; Vagliasindi, F.G.A.; Korshin, G.V. Use of Fluorescence for Real-Time Monitoring of Contaminants of Emerging Concern in (Waste)Water: Perspectives for Sensors Implementation and Process Control. J. Environ. Chem. Eng. 2025, 13, 115916. [Google Scholar] [CrossRef]
- Chauhan, S.; Dahiya, D.; Sharma, V.; Khan, N.; Chaurasia, D.; Nadda, A.K.; Varjani, S.; Pandey, A.; Bhargava, P.C. Advances from Conventional to Real Time Detection of Heavy Metal(Loid)s for Water Monitoring: An Overview of Biosensing Applications. Chemosphere 2022, 307, 136124. [Google Scholar] [CrossRef]
- Huang, Y.; Khan, A.; Ganguly, A.; Kaswan, K.; Suresh, S.; Cheng, Y.; Lee, K.; Yu, J.; Lin, Z. Real-Time Wireless Detection of Heavy Metal Ions Using a Self-Powered Triboelectric Nanosensor Integrated with an Autonomous Thermoelectric Generator-Powered Robotic System. Adv. Sci. 2025, 12, 2410424. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.; Durlik, I.; Kostecka, E.; Kozlovska, P.; Łobodzińska, A.; Sokołowska, S.; Nowy, A. Integrating Artificial Intelligence Agents with the Internet of Things for Enhanced Environmental Monitoring: Applications in Water Quality and Climate Data. Electronics 2025, 14, 696. [Google Scholar] [CrossRef]
- Lahari, S.A.; Kumawat, N.; Amreen, K.; Ponnalagu, R.N.; Goel, S. IoT Integrated and Deep Learning Assisted Electrochemical Sensor for Multiplexed Heavy Metal Sensing in Water Samples. NPJ Clean Water 2025, 8, 10. [Google Scholar] [CrossRef]
- Mukherjee, S.; Bhattacharyya, S.; Ghosh, K.; Pal, S.; Halder, A.; Naseri, M.; Mohammadniaei, M.; Sarkar, S.; Ghosh, A.; Sun, Y.; et al. Sensory Development for Heavy Metal Detection: A Review on Translation from Conventional Analysis to Field-Portable Sensor. Trends Food Sci. Technol. 2021, 109, 674–689. [Google Scholar] [CrossRef]
- Rauf, M.F.; Lin, Z.; Rauf, M.K.; Lin, J.-M. Innovative Microfluidic Technologies for Rapid Heavy Metal Ion Detection. Chemosensors 2025, 13, 149. [Google Scholar] [CrossRef]
- Alqattan, Z.A.; Artiola, J.F.; Walls, D.; Ramírez-Andreotta, M.D. Evaluating the Portable X-Ray Fluorescence Reliability for Metal(Loid)s Detection and Soil Contamination Status. Environ. Monit. Assess. 2024, 196, 765. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Yu, H.; Tian, L.; Wang, Z. Portable and Smart Devices for Monitoring Heavy Metal Ions Integrated with Nanomaterials. TrAC Trends Anal. Chem. 2018, 98, 190–200. [Google Scholar] [CrossRef]
- Yang, B.; Wang, L.; Sun, B. Advances in Self-Powered Electrochemical Systems for Sports Applications: Harnessing Energy and Sensing. Int. J. Electrochem. Sci. 2025, 20, 101080. [Google Scholar] [CrossRef]
- De Vito-Francesco, E.; Farinelli, A.; Yang, Q.; Nagar, B.; Álvarez, R.; Merkoçi, A.; Knutz, T.; Haider, A.; Stach, W.; Ziegenbalg, F.; et al. An Innovative Autonomous Robotic System for On-Site Detection of Heavy Metal Pollution Plumes in Surface Water. Environ. Monit. Assess. 2022, 194, 122. [Google Scholar] [CrossRef]
- Tarapoulouzi, M.; Ortone, V.; Cinti, S. Heavy Metals Detection at Chemometrics-Powered Electrochemical (Bio)Sensors. Talanta 2022, 244, 123410. [Google Scholar] [CrossRef] [PubMed]
- Vilela, D.; Parmar, J.; Zeng, Y.; Zhao, Y.; Sánchez, S. Graphene-Based Microbots for Toxic Heavy Metal Removal and Recovery from Water. Nano Lett. 2016, 16, 2860–2866. [Google Scholar] [CrossRef] [PubMed]
- Robert, B.; Kalpathy, S.K. Future Prospects, Challenges and Opportunities in Detecting Heavy Metal Ions in Water. J. Water Process Eng. 2025, 75, 107992. [Google Scholar] [CrossRef]
- Shrivastav, J.; Khansili, N. Recent Progress on Multiplexed Detection Strategies of Heavy Metals with Emphasis on Quantum Dots. Trends Environ. Anal. Chem. 2024, 44, e00244. [Google Scholar] [CrossRef]
- Si, L.; Wu, Q.; Jin, Y.; Wang, Z. Research Progress in the Detection of Trace Heavy Metal Ions in Food Samples. Front. Chem. 2024, 12, 1423666. [Google Scholar] [CrossRef]
- Wilschefski, S.; Baxter, M. Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clin. Biochem. Rev. 2019, 40, 115–133. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, C.; Song, H.; Wang, W. Deep Learning Model Based on Urban Multi-Source Data for Predicting Heavy Metals (Cu, Zn, Ni, Cr) in Industrial Sewer Networks. J. Hazard. Mater. 2022, 432, 128732. [Google Scholar] [CrossRef]
- Xiong, B.; Chen, K.; Ke, C.; Zhao, S.; Dang, Z.; Guo, C. Prediction of Heavy Metal Removal Performance of Sulfate-Reducing Bacteria Using Machine Learning. Bioresour. Technol. 2024, 397, 130501. [Google Scholar] [CrossRef]
- Xu, X.; Pan, J.; Zhang, H.; Lin, H. Progress in Remote Sensing of Heavy Metals in Water. Remote Sens. 2024, 16, 3888. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Alhalimi, F.L. Heavy Metal Adsorption Efficiency Prediction Using Biochar Properties: A Comparative Analysis for Ensemble Machine Learning Models. Sci. Rep. 2025, 15, 13434. [Google Scholar] [CrossRef]
- Matheri, A.N.; Mohamed, B.; Ntuli, F.; Ngila, J.C.; Zvinowanda, C. Computational Modelling of Geochemical Speciation of the Trace Metals in the Wastewater Treatment Process Optimization. Appl. Water Sci. 2022, 12, 279. [Google Scholar] [CrossRef]
Types of Sensors | Target Analytes | Processes That Generate the Analytical Signal | References |
---|---|---|---|
Impedimetric aptasensor-based TiO2-g-C3N4 and gold nanoparticles | Antibiotics (Amoxicillin) | Oxidation | [88] |
Nitrogen-doped carbon nanodots and nanosized cobalt phthalocyanine conjugate-modified glassy carbon electrode | Anti-inflammatory, analgesic, and antipyretic drugs (ibuprofen, aspirin) | Oxidation | [88] |
Carbon paper electrode | Anti-inflammatory, analgesic, and antipyretic drug (ketoprofen) | Reversible redox process | [88] |
Microbial Electrochemical Sensor (SENTRY™, MFC-based) | Biodegradable organic matter (e.g., ethanol, poultry blood, toxic dilutions) | Electroactive bacteria oxidize organics, producing electrons that generate a measurable electric current correlated with pollutant concentration | [89] |
Low-cost electrochemical copper electrode | Chemical oxygen demand (COD); volatile fatty acids (VFAs); sodium bicarbonate | Oxidation/reduction reactions at the copper electrode surface are analyzed via chemometric models (PCR, PLS, ANN) to predict concentrations based on the electrode current response | [90] |
Molecularly Imprinted Polymer (MIP) sensor, composed of polydopamine/electro-reduced graphene oxide, enhanced with Prussian blue nanoparticles | Hydrocortisone | Indirect detection: Prussian blue redox activity decreases proportionally to hydrocortisone concentration, measured via cyclic voltammetry or DPV | [91] |
Aptamer-based sensors | Small molecules or biomarkers | Aptamer–target binding leads to measurable changes in current or electrical properties | [92] |
Polyaniline–gold nanoparticle (PANI–AuNP) modified glassy carbon electrode | Cadmium ions (Cd2+) | Cd2+ undergoes oxidation at the electrode surface during voltammetric scans; amplified electron transfer through PANI–Au synergy generates a current peak proportional to Cd concentration | [93] |
Nanostructured potentiometric sensors | Cd2+, Cu2+ | Voltage shift at ion-selective membranes due to ion activity | [94] |
Voltammetric sensors (SWASV, DPV) | Cd2+, Pb2+, Cr3+ | Oxidation/reduction peaks during potential sweep; current intensity correlates with ion concentration | [94] |
Electrochemiluminescent sensors | Pb2+, Hg2+ | Light emission generated by redox-triggered reactions involving the metal ion | [94] |
Types of Sensors | Target Analytes | Processes that Generate the Analytical Signal | References |
---|---|---|---|
Optical absorbance/scattering sensor | Water quality indicators (e.g., turbidity, organic load, pollution events) | Measures light absorbance and scattering at selected wavelengths; changes correlate with water composition | [96] |
Fluorescence | Pb2+, As3+ | Rely on quenching/enhancement due to metal–ligand or metal–nanomaterial interactions. | [97] |
Absorbance | Hg2+, Cd2+, As3+ | Rely on electronic transition changes (colorimetric). | [97] |
AI-enhanced optical system | Pattern recognition of normal vs. abnormal wastewater states | Machine learning algorithms analyze spectral patterns to classify, detect anomalies, and predict pollution events | [96] |
Fiber-optic absorbance sensors | Wastewater color | Changes in light absorbance through fiber strands due to colored dissolved species | [98] |
Fiber-optic fluorescence sensors | COD (Chemical Oxygen Demand), BOD | Fluorescence quenching or emission signals vary with the concentration of organic compounds | [98] |
Intrinsic fiber-optic sensors | Multiple indicators: turbidity, dissolved organics | Light scattering intensity or evanescent-field interactions indicate particulate/content changes | [98] |
Graphene-metasurface optical sensor (glass substrate) | Cu2+ | Change in refractive index of the surrounding medium due to Cu2+ binding, causing shifts in transmittance resonance frequency; measured via THz/infrared transmittance drop. | [99] |
Graphene-metasurface optical sensor (glass substrate) | Mg2+ | Similar principle: Mg2+ alters refractive index, shifting transmission characteristics of the metasurface; resonance shift detected via transmittance analysis. | [99] |
UV absorbance sensors | BOD, COD, Total Organic Carbon (TOC) | Measured reduction in UV light transmission due to organic load | [100] |
Fluorescence-based sensors | Organic compounds (e.g., tryptophan-like fluorophores), DOM | Fluorescent emission intensity correlated with organic concentration | [100] |
Sensor arrays/“electronic noses” | Headspace emissions reflecting organic pollutants | Pattern recognition of sensor array signals detecting VOCs or odors | [100] |
Fiber-optic UV/Vis absorbance | Nitrate, dissolved organic carbon (DOC), turbidity | Reduction in transmitted UV/Vis light; changes reflect organic load or suspended solids | [101] |
Fiber-optic fluorescence | Biochemical oxygen demand (BOD), DOM, proteins, microbial markers | Fluorescent emission intensity varies proportionally with specific organic compounds | [101] |
Transducer Type | Target Analytes | Biological Element | References |
---|---|---|---|
Electrochemical | BOD | Pseudomonas aeruginosa, Bacillus cereus, and Streptomyces | [105] |
Microbial fuel cells | Heavy metals (Cd, Cu, and Zn) | Electrogenic bacteria on the anode surfaces | [105] |
Optical | Ag+, Hg+, Co2+, and Ni2+ | Luminous Vibrio sp. 6HFE | [105] |
Electrochemical | SARS-CoV-2 RNA, heavy metals (Pb2+, Hg2+), drugs | Aptamers, DNA probes, enzymes (oxidoreductase) | [106] |
Optical (SPR, fluorescence) | SARS-CoV-2 RNA, antibiotics, toxins | Antibodies, nucleic acids, aptamers | [106] |
Open-type bioelectrochemical sensor (Microbial Fuel Cell—MFC) | Biochemical Oxygen Demand (BOD5—biodegradable organic matter) | Exoelectrogenic bacteria (e.g., Geobacter spp.) forming a biofilm on the anode | [107] |
Whole-cell transcription-factor-based biosensor | Gold ions (Au3+) | Genetically engineered Cupriavidus metallidurans CH34 with a CupR-regulated promoter controlling reporter gene expression | [108] |
Enzymatic biosensors | Organophosphates, organochlorines, fungicides | Enzymes (e.g., acetylcholinesterase, peroxidase) | [109] |
Immunosensors (optical/electrochemical) | Specific pesticide molecules (e.g., chlorpyrifos, atrazine) | Antibodies immobilized on electrode or sensor surface | [109] |
Aptasensors/DNA-based | Neonicotinoids, herbicides, insecticides | Synthetic nucleic acid aptamers selected via SELEX | [109] |
Types of Sensors | Target Analytes | Processes that Generate the Analytical Signal | References |
---|---|---|---|
Electrochemical impedance sensors (EIS) with MIP-functionalized electrodes | Benzophenone-3 (BP-3), Octocrylene (OC) | Binding of UV filter molecules to molecularly imprinted cavities increases interfacial charge-transfer resistance, measurable by impedance spectroscopy | [116] |
Electrochemical voltammetric + impedance sensor using MIP/Fe3O4 nanoparticles on a glassy carbon electrode | Emtricitabine (FTC) | DPV: Analyte binding hinders redox activity, causing decreased voltammetric peak current; EIS: Analyte binding increases charge-transfer resistance (Rct) | [115] |
MIP-based electrochemical sensors (e.g., DPV, SWV, EIS) | Heavy metals (e.g., Cr(VI), Cd(II), Pb(II)), pesticides (e.g., chlorpyrifos, parathion), pharmaceuticals | Binding of analyte to MIP cavities alters electron transfer kinetics—evident in peak current changes (DPV/SWV) or increased resistance (EIS) | [117] |
Ion-imprinted polymers (IIPs) on modified electrodes | Specific metal ions (e.g., Cd2+, Cr3+) | Selective rebinding blocks redox probe access, increasing impedance or decreasing current response | [117] |
MIP-integrated carbon nanomaterials (carbon paste, CNTs) | Organophosphorus pesticides (e.g., chlorpyrifos, diazinon, methyl-parathion) | Analyte binding reduces voltammetric peak height (SWV/DPV); EIS: increased R_ct from target binding | [117] |
MIP-based voltammetric/potentiometric sensors on modified electrodes (e.g., GCE/ZnO/GNPs/MIP membranes) | Chlorophenols (e.g., 2,4-dichlorophenol (2,4-DCP) and other phenolic pollutants) | Binding to imprinted cavities alters electrode surface potential (potentiometric slope) or blocks redox interactions, leading to changes in peak current (voltammetry) or changes in potential response | [118] |
Electrochemical MIP sensors enhanced with carbon nanomaterials or magnetic nanoparticles | Antibiotics (e.g., tetracycline, ciprofloxacin, amoxicillin) | Binding of the target molecule to the MIP cavity blocks the redox probe or alters charge transfer—detected as a decrease in voltammetric peak current or increased impedance | [118] |
Magnetic MIP-based sensors (IIPs or MIPs) | Specific antibiotic molecules | Rebinding of target to imprinted sites on magnetic core@MIP blocks electron flow, raising resistance in EIS or reducing current in voltammetric readout | [118] |
Surface plasmon resonance (SPR) with nano-MIPs | Antibiotics and protein biomarkers | Binding provokes refractive index shift at sensor surface, modulating SPR angle or intensity | [118] |
Conducting MIP (MICP)-based electrochemical sensors | Diverse small molecules: PFOS, biomarkers (e.g., cortisol, myoglobin), pesticides, pharmaceuticals | Conductive polymer transducer + imprint recognition: target binds to imprinted cavities within conducting polymer film; direct electron transfer yields measurable electrochemical signals (e.g., current, resistance) | [111] |
Non-conducting MIP (MINP)-based electrochemical sensors | Wide-ranging analytes: phenols, hormones, antibiotics, food compounds, environmental pollutants | Non-conductive polymer layer immobilized on electrode: analyte binding alters access of redox probe, producing signal via decreased current or increased impedance | [111] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anchidin-Norocel, L.; Bosancu, A.; Iatcu, O.C.; Lobiuc, A.; Covasa, M. Real-Time Detection of Heavy Metals and Some Other Pollutants in Wastewater Using Chemical Sensors: A Strategy to Limit the Spread of Antibiotic-Resistant Bacteria. Chemosensors 2025, 13, 352. https://doi.org/10.3390/chemosensors13090352
Anchidin-Norocel L, Bosancu A, Iatcu OC, Lobiuc A, Covasa M. Real-Time Detection of Heavy Metals and Some Other Pollutants in Wastewater Using Chemical Sensors: A Strategy to Limit the Spread of Antibiotic-Resistant Bacteria. Chemosensors. 2025; 13(9):352. https://doi.org/10.3390/chemosensors13090352
Chicago/Turabian StyleAnchidin-Norocel, Liliana, Anca Bosancu, Oana C. Iatcu, Andrei Lobiuc, and Mihai Covasa. 2025. "Real-Time Detection of Heavy Metals and Some Other Pollutants in Wastewater Using Chemical Sensors: A Strategy to Limit the Spread of Antibiotic-Resistant Bacteria" Chemosensors 13, no. 9: 352. https://doi.org/10.3390/chemosensors13090352
APA StyleAnchidin-Norocel, L., Bosancu, A., Iatcu, O. C., Lobiuc, A., & Covasa, M. (2025). Real-Time Detection of Heavy Metals and Some Other Pollutants in Wastewater Using Chemical Sensors: A Strategy to Limit the Spread of Antibiotic-Resistant Bacteria. Chemosensors, 13(9), 352. https://doi.org/10.3390/chemosensors13090352