Electrodeposition of Au Nanoparticles on 2D Layered Materials and Their Applications in Electrocatalysis of Nitrite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Apparatus and Methods
2.3. Preparation of the Modified Electrodes
3. Results
3.1. AuNPs Electrodeposition Process
3.2. Morphological Characterization of the Modified Electrodes
3.3. Electrochemical Characterization of AuNPs Electrodeposited on Different Substrates
3.4. NO2− Oxidation on AuNPs Electrodeposited on Different Substrates
3.5. Optimization of Co-Deposition of Gold Nanoparticles with MoS2—Influence of Scanning Cycles
3.6. Optimization of Co-Deposition of Gold Nanoparticles with MoS2—Influence of MoS2 Concentration
3.7. Optimization of Nitrite Detection—Influence of the Applied Potential
3.8. Optimization of Nitrite Detection—Influence of Acid Concentration
3.9. Calibration Curve
3.10. Interferences Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Gr | Graphene |
2DMs | Two-dimensional materials |
NPs | Nanoparticles |
AuNPs | Gold nanoparticles |
SEM | Scanning electron microscopy |
FTIR | Fourier transform infrared (FTIR) |
CV | Cyclic voltammetry |
SPE | Screen-printed electrode |
References
- Xiong, Z.; Zhong, L.; Wang, H.; Li, X. Structural defects, mechanical behaviors, and properties of two-dimensional materials. Materials 2021, 14, 1192. [Google Scholar] [CrossRef] [PubMed]
- Kanungo, S.; Ahmad, G.; Sahatiya, P.; Mukhopadhyay, A.; Chattopadhyay, S. 2D materials-based nanoscale tunneling field effect transistors: Current developments and future prospects. npj 2D Mater. Appl. 2022, 6, 83. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, H.; Hong, S.S.; Li, Y.; Cui, Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2664–2680. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Wang, C.; Pan, A.; Yu, R.; Duan, X. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 2015, 44, 8859–8876. [Google Scholar] [CrossRef]
- Özdokur, K.V.; Tatlı, A.Y.; Yılmaz, B.; Koçak, S.; Ertaş, F.N. Development of pulsed deposited manganese and molybdenum oxide surfaces decorated with platinum nanoparticles and their catalytic application for formaldehyde oxidation. Int. J. Hydrogen Energy 2016, 41, 5927–5933. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, G.; Xu, D.; Lian, X.; Li, H.; Chen, W.; Su, C. Defect chemistry in 2D materials for electrocatalysis. Mater. Today Energy 2019, 12, 215–238. [Google Scholar] [CrossRef]
- Mohammadniaei, M.; Nguyen, H.V.; Tieu, M.V.; Lee, M.-H. 2D materials in development of electrochemical point-of-care cancer screening devices. Micromachines 2019, 10, 662. [Google Scholar] [CrossRef]
- Hajian, R.; Fung, K.; Chou, P.P.; Wang, S.; Balderston, S.; Aran, K. Properties and applications of functionalized graphene oxide. Mater. Matters 2019, 14, 1–15. [Google Scholar]
- Weiss, N.O.; Zhou, H.; Liao, L.; Liu, Y.; Jiang, S.; Huang, Y.; Duan, X. Graphene: An emerging electronic material. Adv. Mater. 2012, 24, 5782–5825. [Google Scholar] [CrossRef]
- Huang, H.; Su, S.; Wu, N.; Wan, H.; Wan, S.; Bi, H.; Sun, L. Graphene-based sensors for human health monitoring. Front. Chem. 2019, 7, 399. [Google Scholar] [CrossRef]
- Zeng, M.; Xiao, Y.; Liu, J.; Yang, K.; Fu, L. Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem. Rev. 2018, 118, 6236–6296. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Ha, E.; Zhao, G.; Zhou, Y.; Huang, D.; Yue, G.; Hu, L.; Sun, N.; Wang, Y.; Lee, L.Y.S. Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev. 2017, 352, 306–327. [Google Scholar] [CrossRef]
- Zou, H.L.; Li, B.L.; Luo, H.Q.; Li, N.B. 0D-2D heterostructures of Au nanoparticles and layered MoS2 for simultaneous detections of dopamine, ascorbic acid, uric acid, and nitrite. Sens. Actuators B Chem. 2017, 253, 352–360. [Google Scholar] [CrossRef]
- Van Tuan, D.; Ngan, D.T.T.; Thuy, N.T.; Lan, H.; Nguyet, N.T.; Van Thu, V.; Hung, V.-P.; Tam, P.D. Effect of nanostructured MoS2 morphology on the glucose sensing of electrochemical biosensors. Curr. Appl. Phys. 2020, 20, 1090–1096. [Google Scholar] [CrossRef]
- Koçak, S.; Ertaş, F.N.; Dursun, Z. Electrochemical deposition and behavior of mixed-valent molybdenum oxide film at glassy carbon and ITO electrodes. Appl. Surf. Sci. 2013, 265, 205–213. [Google Scholar] [CrossRef]
- Mbayachi, V.B.; Ndayiragije, E.; Sammani, T.; Taj, S.; Mbuta, E.R. Graphene synthesis, characterization and its applications: A review. Results Chem. 2021, 3, 100163. [Google Scholar] [CrossRef]
- Zhang, T.; Gao, X.; Li, J.; Xiao, L.; Gao, H.; Zhao, F.; Ma, H. Progress on the application of graphene-based composites toward energetic materials: A review. Def. Technol. 2024, 31, 95–116. [Google Scholar] [CrossRef]
- Kamboj, S.; Thakur, A. Applications of Graphene-Based Composites-A Review. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, Y.; Tuersun, T.; Yu, Y.; Zhi, J. Simple preparation and highly selective detection of silver ions using an electrochemical sensor based on sulfur-doped graphene and a 3, 3′, 5, 5′-tetramethylbenzidine composite modified electrode. Analyst 2018, 143, 2076–2082. [Google Scholar] [CrossRef]
- Krishnan, U.; Kaur, M.; Singh, K.; Kumar, M.; Kumar, A. A synoptic review of MoS2: Synthesis to applications. Superlattices Microstruct. 2019, 128, 274–297. [Google Scholar] [CrossRef]
- Du, C.; Shang, A.; Shang, M.; Zhang, J.; Song, W. Surface-functionalized MoS2 ultrathin nanosheets for electrochemical monitoring terminal deoxynucleotidyl transferase activity based on in-situ polymerized DNA. Sens. Actuators B Chem. 2018, 277, 297–305. [Google Scholar] [CrossRef]
- Zhai, Y.; Li, J.; Chu, X.; Xu, M.; Jin, F.; Li, X.; Fang, X.; Wei, Z.; Wang, X. MoS2 microflowers based electrochemical sensing platform for non-enzymatic glucose detection. J. Alloys Compd. 2016, 672, 600–608. [Google Scholar] [CrossRef]
- Wang, T.; Du, K.; Liu, W.; Zhang, J.; Li, M. Electrochemical sensors based on molybdenum disulfide nanomaterials. Electroanalysis 2015, 27, 2091–2097. [Google Scholar] [CrossRef]
- Li, T.; Shang, D.; Gao, S.; Wang, B.; Kong, H.; Yang, G.; Shu, W.; Xu, P.; Wei, G. Two-dimensional material-based electrochemical sensors/biosensors for food safety and biomolecular detection. Biosensors 2022, 12, 314. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, H.; Liu, X.; Wang, X. Physicochemical Understanding of Biomineralization by Molecular Vibrational Spectroscopy: From Mechanism to Nature, Exploration, 2023; Wiley Online Library: Hoboken, NJ, USA, 2023; p. 20230033. [Google Scholar]
- Huang, K.-J.; Zhang, J.-Z.; Liu, Y.-J.; Wang, L.-L. Novel electrochemical sensing platform based on molybdenum disulfide nanosheets-polyaniline composites and Au nanoparticles. Sens. Actuators B Chem. 2014, 194, 303–310. [Google Scholar] [CrossRef]
- Gan, X.; Zhao, H.; Quan, X. Two-dimensional MoS2: A promising building block for biosensors. Biosens. Bioelectron. 2017, 89, 56–71. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Huang, C.; Yang, D.; Jia, N. Electrochemical non-enzyme sensor for detecting clenbuterol (CLB) based on MoS2-Au-PEI-hemin layered nanocomposites. Biosens. Bioelectron. 2017, 89, 461–467. [Google Scholar] [CrossRef]
- Zhang, S.; Tang, Y.; Chen, Y.; Zheng, J. Synthesis of gold nanoparticles coated on flower-like MoS2 microsphere and their application for electrochemical nitrite sensing. J. Electroanal. Chem. 2019, 839, 195–201. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, R. Construction of an electrochemical sensor for detection of nitrite by gold nanoparticles immobilized on biochar. Int. J. Electrochem. Sci. 2023, 18, 100219. [Google Scholar] [CrossRef]
- Siciliano, G.; Alsadig, A.; Chiriacò, M.S.; Turco, A.; Foscarini, A.; Ferrara, F.; Gigli, G.; Primiceri, E. Beyond traditional biosensors: Recent advances in gold nanoparticles modified electrodes for biosensing applications. Talanta 2024, 268, 125280. [Google Scholar] [CrossRef]
- Thanh, T.D.; Balamurugan, J.; Hwang, J.Y.; Kim, N.H.; Lee, J.H. In situ synthesis of graphene-encapsulated gold nanoparticle hybrid electrodes for non-enzymatic glucose sensing. Carbon 2016, 98, 90–98. [Google Scholar] [CrossRef]
- Ju, J.; Chen, W. In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal. Chem. 2015, 87, 1903–1910. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, K.; Luo, S.; Tang, Y.; Chen, L. Direct electrodeposition of graphene enabling the one-step synthesis of graphene–metal nanocomposite films. Small 2011, 7, 1203–1206. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Cheng, Y.; Li, C.; Zhang, C.; Zhao, K.; Xian, Y. Determination of melamine in food contact materials using an electrode modified with gold nanoparticles and reduced graphene oxide. Microchim. Acta 2015, 182, 1967–1975. [Google Scholar] [CrossRef]
- Ding, L.; Liu, Y.; Zhai, J.; Bond, A.M.; Zhang, J. Direct electrodeposition of graphene-gold nanocomposite films for ultrasensitive voltammetric determination of mercury (II). Electroanalysis 2014, 26, 121–128. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, W.; Shi, J.; Zou, X.; Li, Y.; Elrasheid, T.H.; Huang, X.; Li, Z.; Zhai, X.; Hu, X. Electrodeposition of gold nanoparticles and reduced graphene oxide on an electrode for fast and sensitive determination of methylmercury in fish. Food Chem. 2017, 237, 423–430. [Google Scholar] [CrossRef]
- Jian, J.-M.; Fu, L.; Ji, J.; Lin, L.; Guo, X.; Ren, T.-L. Electrochemically reduced graphene oxide/gold nanoparticles composite modified screen-printed carbon electrode for effective electrocatalytic analysis of nitrite in foods. Sens. Actuators B Chem. 2018, 262, 125–136. [Google Scholar] [CrossRef]
- Li, S.-J.; Zhao, G.-Y.; Zhang, R.-X.; Hou, Y.-L.; Liu, L.; Pang, H. A sensitive and selective nitrite sensor based on a glassy carbon electrode modified with gold nanoparticles and sulfonated graphene. Microchim. Acta 2013, 180, 821–827. [Google Scholar] [CrossRef]
- He, B.-S.; Yan, D.-D. One-pot preparation of wavy graphene/Au composites and their application for highly sensitive detection of nitrite. Anal. Methods 2018, 10, 3654–3659. [Google Scholar] [CrossRef]
- Ye, D.; Luo, L.; Ding, Y.; Chen, Q.; Liu, X. A novel nitrite sensor based on graphene/polypyrrole/chitosan nanocomposite modified glassy carbon electrode. Analyst 2011, 136, 4563–4569. [Google Scholar] [CrossRef]
- Aslışen, B.; Koçak, S. Preparation of mixed-valent manganese-vanadium oxide and Au nanoparticle modified graphene oxide nanosheets electrodes for the simultaneous determination of hydrazine and nitrite. J. Electroanal. Chem. 2022, 904, 115875. [Google Scholar] [CrossRef]
- Zhu, X.; He, M.; Xiao, L.; Liu, H.; Hu, M.; Li, S.; Zhai, Q.-G.; Chen, Y.; Jiang, Y. Enzymatic biosensor for nitrite detection based on direct electron transfer by CPO-ILEMB/Au@MoS2/GC. J. Appl. Electrochem. 2022, 52, 979–987. [Google Scholar] [CrossRef]
- Li, X.; Zou, N.; Wang, Z.; Sun, Y.; Li, H.; Gao, C.; Wang, T.; Wang, X. An electrochemical sensor for determination of nitrite based on Au nanoparticles decorated MoS2 nanosheets. Chem. Pap. 2020, 74, 441–449. [Google Scholar] [CrossRef]
- Afkhami, A.; Soltani-Felehgari, F.; Madrakian, T.; Ghaedi, H. Surface decoration of multi-walled carbon nanotubes modified carbon paste electrode with gold nanoparticles for electro-oxidation and sensitive determination of nitrite. Biosens. Bioelectron. 2014, 51, 379–385. [Google Scholar] [CrossRef]
- Zhuang, Z.; Lin, H.; Zhang, X.; Qiu, F.; Yang, H. A glassy carbon electrode modified with carbon dots and gold nanoparticles for enhanced electrocatalytic oxidation and detection of nitrite. Microchim. Acta 2016, 183, 2807–2814. [Google Scholar] [CrossRef]
- Rajkumar, C.; Thirumalraj, B.; Chen, S.-M.; Palanisamy, S. Novel electrochemical preparation of gold nanoparticles decorated on a reduced graphene oxide–fullerene composite for the highly sensitive electrochemical detection of nitrite. RSC Adv. 2016, 6, 68798–68805. [Google Scholar] [CrossRef]
- Zou, C.; Yang, B.; Bin, D.; Wang, J.; Li, S.; Yang, P.; Wang, C.; Shiraishi, Y.; Du, Y. Electrochemical synthesis of gold nanoparticles decorated flower-like graphene for high sensitivity detection of nitrite. J. Colloid Interface Sci. 2017, 488, 135–141. [Google Scholar] [CrossRef]
- Hatip, M.; Koçak, S.; Dursun, Z. Simultaneous electrochemical determination of hydrazine and nitrite based on Au nanoparticles decorated on the poly (Nile Blue) modified carbon nanotube. Electroanalysis 2023, 35, e202200132. [Google Scholar] [CrossRef]
- Shanmugam, M.; Kim, K. Electrodeposited gold dendrites at reduced graphene oxide as an electrocatalyst for nitrite and glucose oxidation. J. Electroanal. Chem. 2016, 776, 82–92. [Google Scholar] [CrossRef]
- Arvinte, A.; Crudu, I.-A.; Doroftei, F.; Timpu, D.; Pinteala, M. Electrochemical codeposition of silver-gold nanoparticles on CNT-based electrode and their performance in electrocatalysis of dopamine. J. Electroanal. Chem. 2018, 829, 184–193. [Google Scholar] [CrossRef]
- Chiang, H.-C.; Wang, Y.; Zhang, Q.; Levon, K. Optimization of the Electrodeposition of Gold Nanoparticles for the Application of Highly Sensitive, Label-Free Biosensor. Biosensors 2019, 9, 50. [Google Scholar] [CrossRef] [PubMed]
- Hezard, T.; Fajerwerg, K.; Evrard, D.; Collière, V.; Behra, P.; Gros, P. Gold nanoparticles electrodeposited on glassy carbon using cyclic voltammetry: Application to Hg(II) trace analysis. J. Electroanal. Chem. 2012, 664, 46–52. [Google Scholar] [CrossRef]
- O’Mullane, A.P.; Ippolito, S.J.; Sabri, Y.M.; Bansal, V.; Bhargava, S.K. Premonolayer Oxidation of Nanostructured Gold: An Important Factor Influencing Electrocatalytic Activity. Langmuir 2009, 25, 3845–3852. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Ma, H.; Zhang, X.; Yong, F.; Feng, X.; Pan, W.; Wang, X.; Wang, Y.; Chen, S. Electrochemical synthesis of gold nanocrystals and their 1D and 2D organization. J. Phys. Chem. B 2005, 109, 19823–19830. [Google Scholar] [CrossRef] [PubMed]
- Sreeprasad, T.S.; Nguyen, P.; Kim, N.; Berry, V. Controlled, Defect-Guided, Metal-Nanoparticle Incorporation onto MoS2 via Chemical and Microwave Routes: Electrical, Thermal, and Structural Properties. Nano Lett. 2013, 13, 4434–4441. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, Y.; Bao, J.; Huo, D.; Fa, H.; Shen, X.; Hou, C. One-step electrodeposition of Au-Pt bimetallic nanoparticles on MoS2 nanoflowers for hydrogen peroxide enzyme-free electrochemical sensor. Electrochim. Acta 2017, 250, 152–158. [Google Scholar] [CrossRef]
- Daniel, M.-C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef]
- Landolt, D. Electrochemical and materials science aspects of alloy deposition. Electrochim. Acta 1994, 39, 1075–1090. [Google Scholar] [CrossRef]
- Podlaha, E.J.; Landolt, D. Induced Codeposition: III. Molybdenum Alloys with Nickel, Cobalt, and Iron. J. Electrochem. Soc. 1997, 144, 1672. [Google Scholar] [CrossRef]
- Wang, Y.; Laborda, E.; Crossley, A.; Compton, R.G. Surface oxidation of gold nanoparticles supported on a glassy carbon electrode in sulphuric acid medium: Contrasts with the behaviour of ‘macro’ gold. Phys. Chem. Chem. Phys. 2013, 15, 3133–3136. [Google Scholar] [CrossRef]
- Xiang, C.; Güell, A.G.; Brown, M.A.; Kim, J.Y.; Hemminger, J.C.; Penner, R.M. Coupled electrooxidation and electrical conduction in a single gold nanowire. Nano Lett. 2008, 8, 3017–3022. [Google Scholar] [CrossRef]
- Angerstein-Kozlowska, H.; Conway, B.E.; Hamelin, A.; Stoicoviciu, L. Elementary steps of electrochemical oxidation of single-crystal planes of Au Part II. A chemical and structural basis of oxidation of the (111) plane. J. Electroanal. Chem. Interfacial Electrochem. 1987, 228, 429–453. [Google Scholar] [CrossRef]
- Angerstein-Kozlowska, H.; Conway, B.E.; Hamelin, A.; Stoicoviciu, L. Elementary steps of electrochemical oxidation of single-crystal planes of Au—I. Chemical basis of processes involving geometry of anions and the electrode surfaces. Electrochim. Acta 1986, 31, 1051–1061. [Google Scholar] [CrossRef]
- Saldan, I.; Dobrovetska, O.; Sus, L.; Makota, O.; Pereviznyk, O.; Kuntyi, O.; Reshetnyak, O. Electrochemical synthesis and properties of gold nanomaterials. J. Solid State Electrochem. 2018, 22, 637–656. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, R.; Dong, C.; Cheng, F.; Guo, Y. Sensitive electrochemical sensor for nitrite ions based on rose-like AuNPs/MoS2/graphene composite. Biosens. Bioelectron. 2019, 142, 111529. [Google Scholar] [CrossRef]
- Wang, T.; Wang, C.; Xu, X.; Li, Z.; Li, D. One-Step Electrodeposition Synthesized Aunps/Mxene/ERGO for Selectivity Nitrite Sensing. Nanomaterials 2021, 11, 1892. [Google Scholar] [CrossRef]
- Adiraju, A.; Munjal, R.; Viehweger, C.; Al-Hamry, A.; Brahem, A.; Hussain, J.; Kommisetty, S.; Jalasutram, A.; Tegenkamp, C.; Kanoun, O. Towards Embedded Electrochemical Sensors for On-Site Nitrite Detection by Gold Nanoparticles Modified Screen Printed Carbon Electrodes. Sensors 2023, 23, 2961. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, Z.; Qiao, J.; Dong, S.; Liang, Q.; Shao, S. Ultrasensitive determination of nitrite based on electrochemical platform of AuNPs deposited on PDDA-modified MXene nanosheets. Talanta 2021, 221, 121605. [Google Scholar] [CrossRef]
- Yang, Y.; Lei, Q.; Li, J.; Hong, C.; Zhao, Z.; Xu, H.; Hu, J. Synthesis and enhanced electrochemical properties of AuNPs@ MoS2/rGO hybrid structures for highly sensitive nitrite detection. Microchem. J. 2022, 172, 106904. [Google Scholar] [CrossRef]
- Jiao, S.; Jin, J.; Wang, L. One-pot preparation of Au-RGO/PDDA nanocomposites and their application for nitrite sensing. Sens. Actuators B Chem. 2015, 208, 36–42. [Google Scholar] [CrossRef]
Modified Electrode | Eox (V) | Hox (mA) |
---|---|---|
AuNPs/SPE | 1.03 | 0.41 |
AuNPs/Gr/SPE | 1.06 | 0.56 |
AuNPs/MoS2/SPE | 0.84 | 0.62 |
MoS2-AuNPs/SPE | 0.83 | 1.9 |
Modified Electrode | Detection Technique | Linear Range (μM) | Sensitivity (μA μM−1) | Specific Sensitivity (μA µM−1 cm−2) | Limit of Detection (μM) | Ref |
---|---|---|---|---|---|---|
AuNPs/SPE | Amperometry (0.7 V vs. Ag/AgCl) | 20–1300 | 0.071 | 0.565 | 0.34 | This work |
MoS2-AuNPs/SPE | Amperometry (0.7 V vs. Ag/AgCl) | 0.5–600 | 0.131 | 1.043 | 0.16 | This work |
AuNPs/MoS2/GN | Amperometry (0.75 V vs. SCE) | 5–5000 | 0.0029 | - | 1 | [66] |
AuNPs/MXene/ERGO | Amperometry (0.83 V vs. Ag/AgCl) | 0.5–80 80–780 | 0.024 0.069 | 0.34 0.977 | 0.15 0.015 | [67] |
Electrodeposited AuNp/SPCE | Square wave voltammetry (Eox = 0.6 V vs. Ag) | 1–300 | 0.453 | - | 0.38 | [68] |
AuNPs@MoS2/rGO | Amperometry (0.804 V) | 0.2–2600 | 0.158 | 0.805 | 0.038 | [70] |
AuNPs/MoS2 | Amperometry (0.8 V vs. Ag/AgCl) | 5–27,800 | 117 | 1.67 | [29] | |
Au-RGO/PDDA/GCE | DPV (Eox = 0.85 V vs. SCE) | 0.05–8.5 | 0.473 | - | 0.04 | [71] |
AuNP/MnOx-VOx/ERGO | Amperometry (0.8 V vs. Ag/AgCl) | 1–100 | 0.05 | - | 0.1 | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carp, O.E.; Zaltariov, M.-F.; Pinteala, M.; Arvinte, A. Electrodeposition of Au Nanoparticles on 2D Layered Materials and Their Applications in Electrocatalysis of Nitrite. Chemosensors 2025, 13, 180. https://doi.org/10.3390/chemosensors13050180
Carp OE, Zaltariov M-F, Pinteala M, Arvinte A. Electrodeposition of Au Nanoparticles on 2D Layered Materials and Their Applications in Electrocatalysis of Nitrite. Chemosensors. 2025; 13(5):180. https://doi.org/10.3390/chemosensors13050180
Chicago/Turabian StyleCarp, Oana Elena, Mirela-Fernanda Zaltariov, Mariana Pinteala, and Adina Arvinte. 2025. "Electrodeposition of Au Nanoparticles on 2D Layered Materials and Their Applications in Electrocatalysis of Nitrite" Chemosensors 13, no. 5: 180. https://doi.org/10.3390/chemosensors13050180
APA StyleCarp, O. E., Zaltariov, M.-F., Pinteala, M., & Arvinte, A. (2025). Electrodeposition of Au Nanoparticles on 2D Layered Materials and Their Applications in Electrocatalysis of Nitrite. Chemosensors, 13(5), 180. https://doi.org/10.3390/chemosensors13050180