Low-Cost Electronic Nose for Identification of Wood Species in Which Brazilian Sugar Cane Spirit Was Aged
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Methods
2.2. Conductive Polymers Size Exclusion Chromatography
2.3. Preparation of the Sensors
2.4. Cachaça and Wood Samples
2.5. E-Nose Measurements
3. Results and Discussion
3.1. Syntheses
3.2. E-Nose
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Alternating current |
CV | Cyclic voltammetry |
DBSA | Dodecylbenzenesulfonic acid |
DMF | N,N-dimethylformamide |
FT | Fourier-transform |
FTIR | Fourier-transform infrared |
HPLC/DAD | High-performance liquid chromatography with diode-array detection |
IAWA | International Association of Wood Anatomists |
NBS | N-bromosuccinimide |
NMR | Nuclear magnetic resonance |
PC | Principal component |
PCA | Principal component analysis |
PPX | Poly-p-xylylene |
SCE | Saturated calomel electrode |
SEC | Size exclusion chromatography |
THF | Tetrahydrofuran |
TMS | Tetramethylsilane |
UV-Vis | Ultraviolet–visible |
References
- Tarko, T.; Krankowski, F.; Duda-Chodak, A. The Impact of Compounds Extracted from Wood on the Quality of Alcoholic Beverages. Molecules 2023, 28, 620. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gil, A.; del Alamo-Sanza, M.; Sánchez-Gómez, R.; Nevares, I. Different Woods in Cooperage for Oenology: A Review. Beverages 2018, 4, 94. [Google Scholar] [CrossRef]
- Reazin, G.H. Chemical analysis of whisky maturation. In Flavour of Distilled Beverages: Origin and Development; Piggott, J.R., Ed.; Ellis Horwood: Chichester, UK, 1983; pp. 225–240. [Google Scholar]
- García-Moreno, M.V.; Sánchez-Guillén, M.M.; de Mier, M.R.; Delgado-González, M.J.; Rodríguez-Dodero, M.C.; García-Barroso, C.; Guillén-Sánchez, D.A. Use of Alternative Wood for the Ageing of Brandy de Jerez. Foods 2020, 9, 250. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.M.G.; Benoso, P.; Pierezan, M.D.; Santana, R.F.; Hassemer, G.S.; Rocha, R.A.; Nora, F.M.D.; Verruck, S.; Caetano, D.; Simal-Gandara, J. A state-of-the-art review of the chemical composition of sugarcane spirits and current advances in quality control. J. Food Compos. Anal. 2022, 106, 104338. [Google Scholar] [CrossRef]
- Machado, J.S.; Pereira, F.; Quilhó, T. Assessment of old timber members: Importance of wood species identification and direct tensile test information. Constr. Build. Mater. 2019, 207, 651–660. [Google Scholar] [CrossRef]
- Ruffinatto, F.; Crivellaro, A.; Wiedenhoeft, A.C. Review of Macroscopic Features for Hardwood and Softwood Identification and a Proposal for a New Character List. IAWA J. 2015, 36, 208–241. [Google Scholar] [CrossRef]
- Wheeler, E.A.; Baas, P.; Gasson, P.E. (Eds.) IAWA List of Microscopic Features for Hardwood Identification; International Association of Wood Anatomists: Leiden, the Netherlands, 1989; Volume 10, pp. 219–332. [Google Scholar]
- Zielinski, K.M.; Scabini, L.; Ribas, L.C.; da Silva, N.R.; Beeckman, H.; Verwaeren, J.; Bruno, O.M.; De Baets, B. Advanced wood species identification based on multiple anatomical sections and using deep feature transfer and fusion. Comput. Electron. Agr. 2025, 231, 109867. [Google Scholar] [CrossRef]
- Dierickx, S.; Genbrugge, S.; Beeckman, H.; Hubau, W.; Kibleur, P.; Van den Bulcke, J. Non-destructive wood identification using X-ray μCT scanning: Which resolution do we need? Plant Methods 2024, 20, 1–14. [Google Scholar] [CrossRef]
- Da Silva, A.A.; De Keukeleire, D.; Cardoso, D.R.; Franco, D.W. Multivariate analyses of UV-Vis absorption spectral data from cachaça wood extracts: A model to classify aged Brazilian cachaças according to the wood species used. Anal. Methods 2012, 4, 642–646. [Google Scholar] [CrossRef]
- de Sousa Fernandes, D.D.; de Almeida, V.E.; Fontes, M.M.; de Araújo, M.C.U.; Véras, G.; Diniz, P.H.G.D. Simultaneous identification of the wood types in aged cachaças and their adulterations with wood extracts using digital images and SPA-LDA. Food Chem. 2019, 273, 77–84. [Google Scholar] [CrossRef]
- Rodrigues, B.; Costa, R.M.; Salvini, R.; Soares, A.S.; Silva, F.; Caliari, M.; Cardoso, K.R.; Ribeiro, T. Cachaça classification using chemical features and computer vision. Procedia Comput. Sci. 2014, 29, 2024–2033. [Google Scholar] [CrossRef]
- Silveira, A.L.; Barbeira, P.J.S. A fast and low-cost approach for the discrimination of commercial aged cachaças using synchronous fluorescence spectroscopy and multivariate classification. J. Sci. Food Agric. 2022, 102, 4918–4926. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.C.; Oldoni, T.L.C.; Veras, G.; Sousa, E.S.; Fernandes, D.D.S. Non-destructive authentication of Cachaças from Breno Paraibano based on MIR spectroscopy. Food Chem. 2025, 477, 143554. [Google Scholar] [CrossRef] [PubMed]
- Sivello, G.C.; Alcarde, A.R. Experimental design and chemometric techniques applied in electronic nose analysis of wood-aged sugar cane spirit (cachaça). J. Agr. Food Res. 2020, 2, 100037. [Google Scholar]
- Matrí, M.P.; Pino, J.; Boqué, R.; Busto, O.; Giasch, J. Determination of ageing time of spirits in oak barrels using a headspace–mass spectrometry (HS-MS) electronic nose system and multivariate calibration. Anal. Bioanal. Chem. 2005, 382, 440–443. [Google Scholar]
- Chiu, S.-W.; Tang, K.-T. Towards a Chemiresistive Sensor-Integrated Electronic Nose: A Review. Sensors 2013, 13, 14214–14247. [Google Scholar] [CrossRef]
- Niinomi, T.; Nakao, A.; Hanai, Y.; Ushio, H.; Hayashi, T.; Nakatani, M. A Compact 16-Channel Input Thermally Adsorption-/Desorption-Controlled Intelligent Odor Sensing System. IEEE Sens. J. 2024, 24, 9334–9340. [Google Scholar] [CrossRef]
- Esteves, H.A.; Gonçalves, W.B.; Teixeira, W.S.R.; Pádua, A.C.C.S.; Gruber, J. Conductive polymer-based sensors. In Organic and Inorganic Materials Based Sensors, 1st ed.; Das, S., Thomas, S., Das, P., Eds.; Wiley: Weinheim, Germany, 2024; Volume 2, pp. 559–591. [Google Scholar]
- Li, R.W.C.; Carvalho, L.R.F.; Ventura, L.; Gruber, J. low cost selective sensor for carbonyl compounds in air based on a novel conductive poly(p-xylylene) derivative. Mater. Sci. Eng. C 2009, 29, 426–429. [Google Scholar] [CrossRef]
- Li, R.W.C.; Ventura, L.; Gruber, J.; Kawano, Y.; Carvalho, L.R.F. A selective conductive polymer-based sensor for volatile halogenated organic compounds (VHOC). Sens. Actuators B Chem. 2008, 131, 646–651. [Google Scholar] [CrossRef]
- Rocha, R.T.; Gutz, I.G.R.; Lago, C.L. A Low-Cost and High-Performance Conductivity Meter. J. Chem. Educ. 1997, 74, 572–574. [Google Scholar] [CrossRef]
- Lopes, F.M.; Martins, D.C.; Cesar, R.M. Feature selection environment for genomic applications. BMC Bioinform. 2008, 9, 451. [Google Scholar] [CrossRef] [PubMed]
- Pomerantsev, A.L.; Rodionova, O.Y. Procrustes Cross-Validation of short datasets in PCA context. Talanta 2021, 226, 122104. [Google Scholar] [CrossRef] [PubMed]
- Flamini, R.; Vedova, A.D.; Cancian, D.; Panighel, A.; De Rosso, M. GC/MS-positive ion chemical ionization and MS/MS study of volatile benzene compounds in five different woods used in barrel making. J. Mass Spectrom. 2007, 42, 641–646. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, A.A.; Vieira, B.R.; Yamauchi, E.Y.; Li, R.W.C.; Gruber, J. Low-Cost Electronic Nose for Identification of Wood Species in Which Brazilian Sugar Cane Spirit Was Aged. Chemosensors 2025, 13, 172. https://doi.org/10.3390/chemosensors13050172
da Silva AA, Vieira BR, Yamauchi EY, Li RWC, Gruber J. Low-Cost Electronic Nose for Identification of Wood Species in Which Brazilian Sugar Cane Spirit Was Aged. Chemosensors. 2025; 13(5):172. https://doi.org/10.3390/chemosensors13050172
Chicago/Turabian Styleda Silva, Alexandre A., Bruna R. Vieira, Elaine Y. Yamauchi, Rosamaria W. C. Li, and Jonas Gruber. 2025. "Low-Cost Electronic Nose for Identification of Wood Species in Which Brazilian Sugar Cane Spirit Was Aged" Chemosensors 13, no. 5: 172. https://doi.org/10.3390/chemosensors13050172
APA Styleda Silva, A. A., Vieira, B. R., Yamauchi, E. Y., Li, R. W. C., & Gruber, J. (2025). Low-Cost Electronic Nose for Identification of Wood Species in Which Brazilian Sugar Cane Spirit Was Aged. Chemosensors, 13(5), 172. https://doi.org/10.3390/chemosensors13050172