Triply Periodic Minimal Surfaces Mullite Structures for Humidity Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Ceramic Substrates
2.1.1. Mullite Powders Characterization
2.1.2. Mullite Slurry Elaboration
2.1.3. Digital Light Processing (DLP) of TPMS Mullite Architectures
2.1.4. Post-Processing, Sintering and Characterization
2.2. Fabrication and Measurement of Humidity Sensors
3. Results and Discussion
3.1. Sensors Characterization
3.2. Humidity-Sensing Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tulliani, J.-M.; Inserra, B.; Ziegler, D. Carbon-Based Materials for Humidity Sensing: A Short Review. Micromachines 2019, 10, 232. [Google Scholar] [CrossRef] [PubMed]
- Korotcenkov, G. Handbook of Gas Sensor Materials, Properties, Advantages and Shortcomings for Applications, Volume 2: New Trends and Technologies; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Traversa, E. Ceramic sensors for humidity detection: The state-of-the-art and future developments. Sens. Actuators B 1995, 23, 135–156. [Google Scholar] [CrossRef]
- Sajid, M.; Khattak, Z.J.; Rahman, K.; Hassan, G.; Choi, K.H. Progress and future of relative humidity sensors: A review from materials perspective. Bull. Mater. Sci. 2022, 45, 238. [Google Scholar] [CrossRef]
- Tulliani, J.-M.; Baroni, C.; Zavattaro, L.; Grignani, C. Strontium-Doped Hematite as a Possible Humidity Sensing Material for Soil Water Content Determination. Sensors 2013, 13, 12070–12092. [Google Scholar] [CrossRef] [PubMed]
- Korotcenkov, G. Handbook of Gas Sensor Materials, Properties, Advantages and Shortcomings for Applications, Volume 1: Conventional Approaches; Springer: Berlin/Heidelberg, Germany, 2013; pp. 389–408. [Google Scholar]
- Fraden, J. Handbook of Modern Sensors. Physics, Designs and Applications, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 507–524. [Google Scholar]
- Kuzubasoglu, B.A. Recent Studies on the Humidity Sensor: A Mini Review. ACS Appl. Electron. Mater. 2022, 4, 4797–4807. [Google Scholar] [CrossRef]
- Qi, P.; Xu, Z.; Zhang, T. In Situ Growth of Dopamine on QCM for Humidity Detection. Chemosensors 2022, 10, 522. [Google Scholar] [CrossRef]
- Zhang, M.; Duan, Z.; Yuan, Z.; Jiang, Y.; Tai, H. Observing Mixed Chemical Reactions at the Positive Electrode in the High-Performance Self-Powered Electrochemical Humidity Sensor. ACS Nano 2024, 18, 34158–34170. [Google Scholar] [CrossRef]
- Ateia, E.E.; Arman, M.M.; Morsy, M. Synthesis, characterization of NdCoO3 perovskite and its uses as humidity sensor. Appl. Phys. A 2019, 125, 883. [Google Scholar] [CrossRef]
- Dhariwal, N.; Yadav, P.; Kumari, M.; Jain, P.; Sanger, A.; Kumar, V.; Thakur, O.P. Iron oxide-based nanoparticles for fast-response humidity sensing, real-time respiration monitoring, and noncontact sensing. IEEE Sens. J. 2023, 23, 22217–22224. [Google Scholar] [CrossRef]
- Li, J.; Ling, W.; Wen, S.; Nie, H.; Li, J. Performance analysis of Fe2O3/CNT humidity sensor based on adsorption kinetics and DFT computations. Ceram. Int. 2024, 50, 7239. [Google Scholar] [CrossRef]
- Pathan, A.S.; Gapale, D.L.; Bhosale, S.V.; Landge, A.S.; Jadkar, S.R.; Arote, S.A. Studies on resistive-type humidity sensing properties of copper-zinc mixed metal oxide nanostructures. Inorg. Chem. Commun. 2023, 153, 110824. [Google Scholar] [CrossRef]
- Kumar, A.; Kumari, P.; Kumar, M.S.; Gupta, G.; Shivagan, D.D.; Bapna, K. SnO2 nanostructured thin film as humidity sensor and its application in breath monitoring. Ceram. Int. 2023, 49, 24911–24921. [Google Scholar] [CrossRef]
- Pascariu, P.; Tudorache, F.; Romanitan, C.; Serban, A.B.; Koudoumas, E. 1% lanthanide-doped ZnO nanostructures as a versatile approach for state-of-the-art capacitive and resistive humidity sensors. Ceram. Int. 2025, in press. [Google Scholar] [CrossRef]
- Burman, D.; Choudhary, D.S.; Guha, P.K. ZnO/MoS2-based enhanced humidity sensor prototype with android app interface for mobile platform. IEEE Sens. J. 2019, 19, 3993–3999. [Google Scholar] [CrossRef]
- Angadi, V.J.; Tudorache, F.; Ubaidullah, M.; Pandit, B.; Manjunatha, S.O.; Wang, S. Role of holmium on the humidity sensing properties of the CoCr2O4 ceramics for possible applications in humidity sensors. J. Mater. Sci. Mater. Electron. 2023, 34, 1583. [Google Scholar] [CrossRef]
- Manjunatha, K.; Ho, M.K.; Hsu, T.E.; Kumar, A.; Wu, S.Y.; Hardi, S.S.; Chethan, B.; Prasad, V.; Pandit, B.; Ubaidullah, M.; et al. Structure, microstructure, and enhanced sensing behavior of nickle ferrite-cobalt chromate for humidity sensor applications. J. Mater. Sci. Mater. Electron. 2024, 35, 471. [Google Scholar] [CrossRef]
- Hiremath, V.G.; Yahia, I.S.; Zahran, H.Y.; Chethan, B.; Malimath, G.H.; Ravikiran, Y.T.; Angadi, V.J. Humidity sensing behaviour of Rubidium-doped Magnesium ferrite for sensor applications. J. Mater. Sci. Mater. Electron. 2022, 33, 11591–11600. [Google Scholar] [CrossRef]
- Duan, Z.; Zhao, Q.; Wang, S.; Huang, Q.; Yuan, Z.; Zhang, Y.; Jiang, Y.; Tai, H. Halloysite nanotubes: Natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor. Sens. Actuators B Chem. 2020, 317, 128204. [Google Scholar] [CrossRef]
- Duan, Z.; Zhao, Q.; Wang, S.; Yuan, Z.; Zhang, Y.; Li, X.; Wu, Y.; Jiang, Y.; Tai, H. Novel application of attapulgite on high performance and low-cost humidity sensors. Sens. Actuators B Chem. 2020, 305, 127534. [Google Scholar] [CrossRef]
- Duan, Z.; Jiang, Y.; Zhao, Q.; Wang, S.; Yuan, Z.; Zhang, Y.; Liu, B.; Tai, H. Facile and low-cost fabrication of a humidity sensor using naturally available sepiolite nanofibers. Nanotechnology 2020, 31, 355501. [Google Scholar] [CrossRef]
- Al-Ketan, O.; Lee, D.; Rowshan, R.; Al-Rub, R.K.A. Functionally graded and multi-morphology sheet TPMS lattices: Design, manufacturing, and mechanical properties. J. Mech. Behav. Biomed. Mater. 2020, 102, 103520. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Fu, J.; Yao, X.; He, Y. Triply periodic minimal surface (TPMS) porous structures: From multi-scale design, precise additive manufacturing to multidisciplinary applications. Int. J. Extrem. Manuf. 2022, 4, 022001. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Li, J.; Liu, C.; Lao, C.; Fu, Y.; Liu, C.; Yang, L.; Wang, P.; Yi, H. 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 2019, 39, 661–687. [Google Scholar] [CrossRef]
- Zhou, S.X.; Yao, L.; Zhao, T.; Mei, H.; Cheng, L.F.; Zhang, L.T. Ti doped SiOC precursor to activate gyroid sensing structures. Carbon 2022, 196, 253–263. [Google Scholar] [CrossRef]
- Peng, K.; Yu, T.; Wu, P.; Chen, M. Piezoresistive Porous Composites with Triply Periodic Minimal Surface Structures Prepared by Self-Resistance Electric Heating and 3D Printing. Sensors 2024, 24, 2184. [Google Scholar] [CrossRef]
- Fortunato, M.; Pacitto, L.; Pesce, N.; Tamburrano, A. 3D-Printed Graphene Nanoplatelets/Polymer Foams for Low/Medium-Pressure Sensors. Sensors 2023, 23, 7054. [Google Scholar] [CrossRef]
- Imanian, M.E.; Kardan-Halvaei, M.; Nasrollahi, F.; Imanian, A.; Montazerian, H.; Nasrollahi, V. 3D printed flexible wearable sensors based on triply periodic minimal surface structures for biomonitoring applications. Smart Mater. Struct. 2022, 32, 015015. [Google Scholar] [CrossRef]
- Davoodi, E.; Montazerian, H.; Haghniaz, R.; Rashidi, A.; Ahadian, S.; Sheikhi, A.; Chen, J.; Khademhosseini, A.; Milani, A.S.; Hoorfar, M.; et al. 3D-Printed Ultra-Robust Surface-Doped Porous Silicone Sensors for Wearable Biomonitoring. ACS Nano 2020, 14, 1520–1532. [Google Scholar] [CrossRef]
- Han, J.; Li, Z.; Kong, S.; Tang, S.; Feng, D.; Li, B. Wide-response-range and high-sensitivity piezoresistive sensors with triple periodic minimal surface (TPMS) structures for wearable human-computer interaction systems. Compos. Part B Eng. 2024, 287, 111840. [Google Scholar] [CrossRef]
- Sintered Mullite—Jiangsu Jingxin New Materials Co., Ltd. Available online: https://www.jxrefractory.com/product/sintered-mullite.html?gad_source=1&gad_campaignid=21462533965&gclid=EAIaIQobChMI3aax6oWMjQMVul8PAh0xLCiyEAAYASAAEgIt0PD_BwE (accessed on 19 April 2025).
- ITOCHU—Synthetic Mullite. 2024. Available online: https://www.itc-cera.co.jp/english/prod/prod04.html (accessed on 15 January 2025).
- Bertero, A.; Coppola, B.; Milovanov, Y.; Palmero, P.; Schmitt, J.; Tulliani, J.-M. DLP 3D-printed mullite ceramics for the preparation of MOFs functionalized monoliths for CO2 capture. Ceramics 2024, 7, 1810–1835. [Google Scholar] [CrossRef]
- Montanaro, L.; Tulliani, J.M.; Perrot, C.; Negro, A. Sintering of Industrial Mullites. J. Eur. Ceram. Soc. 1997, 11, 1715–1723. [Google Scholar] [CrossRef]
- Bertero, A.; Schmitt, J.; Kaper, H.; Coppola, B.; Palmero, P.; Tulliani, J.-M. MOFs functionalization of 3D printed mullite complex architectures for CO2 capture. Appl. Mater. Today 2024, 40, 102407. [Google Scholar] [CrossRef]
- Bertero, A.; Coppola, B.; Schmitt, J.; Gimello, O.; Trens, P.; Palmero, P.; Tulliani, J.-M. 3D printed mullite monoliths with triply periodic minimal surface (TPMS) architectures functionalized with HKUST-1 for CO2 capture. Microporous Mesoporous Mater. 2025, 390, 113601. [Google Scholar] [CrossRef]
- Di Francia, E.; Guzmán, H.; Pugliese, D.; Hernández, S.; Tulliani, J.M. Nanostructured Cu/Zn/Al-based oxide as a new sensing material for NO2 detection. Sens. Actuators B Chem. 2024, 420, 136456. [Google Scholar] [CrossRef]
- Milovanov, Y.; Bertero, A.; Coppola, B.; Palmero, P.; Tulliani, J.-M. Mullite 3D Printed Humidity Sensors. Ceramics 2024, 7, 807–820. [Google Scholar] [CrossRef]
- Shooshtari, M.; Salehi, A.; Vollebregt, S. Effect of Humidity on Gas Sensing Performance of Carbon Nanotube Gas Sensors Operated at Room Temperature. IEEE Sens. J. 2020, 21, 5763–5770. [Google Scholar] [CrossRef]
- Reddy, L.B.; Megha, R.; Prakash, H.R.; Ravikiran, Y.T.; Ramana, C.H.V.V.; Kumari, S.V.; Kim, D. Copper ferrite yttrium oxide (CFYO) nanocomposite as remarkable humidity sensor. Inorg. Chem. Commun. 2019, 99, 180–188. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, C. Humidity Sensors: A Review of Materials and Mechanisms. Sens. Lett. 2005, 3, 274–295. [Google Scholar] [CrossRef]
- Milovanov, Y.; Dadkhah, M.; Afify, A.S.; Tulliani, J. Copper-Substituted Calcium Orthophosphate (CaxCu1−x)HPO4·nH2O for Humidity Detection. Crystals 2025, 15, 153. [Google Scholar] [CrossRef]
- Doroftei, C.; Leontie, L. Porous nanostructured gadolinium aluminate for high-sensitivity humidity sensors. Materials 2021, 14, 7102. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Su, M.; Zheng, Y.; Fei, T. Efficient electron transfer through interfacial water molecules across two-dimensional MoO3 for humidity sensing. ACS Appl. Mater. Interfaces 2024, 16, 7406–7414. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Shan, H.; Zhao, Y.; Ren, Y.; Gu, X. Preparation of humidity sensors based on CsPbBr3 quantum dots for applications in microcrack detection. Chin. J. Inorg. Chem. 2024, 40, 383–393. [Google Scholar]
- Sekulić, D.L.; Ivetić, T.B. Characterization of an Impedance-Type Humidity Sensor Based on Porous SnO2/TiO2 Composite Ceramics Modified with Molybdenum and Zinc. Sensors 2023, 23, 8261. [Google Scholar] [CrossRef]
- Malik, P.; Duhan, S.; Malik, R. A high-performance humidity sensor based on 3D porous SnO2-encapsulated MCM-48 for real-time breath monitoring and contactless gesture detection. Mater. Adv. 2024, 5, 2510–2525. [Google Scholar] [CrossRef]
- Khan, A.; Hussain, S.T.; Naeem, A.; Sadiqa, A.; Ahmad, A.; Shehzada, M.A.A.; Albaqami, M.D. Next-generation calcium oxide nanoparticles: A breakthrough in energy storage and humidity sensing. Results Chem. 2025, 14, 102073. [Google Scholar] [CrossRef]
- Burman, D.; Santra, S.; Pramank, P.; Guha, P. Pt decorated MoS2 nanoflakes for ultrasensitive resistive humidity sensor. Nanotechnology 2018, 29, 115504. [Google Scholar] [CrossRef]
- Kassas, A.; Zahwa, I.; Hussein, B.; Bernard, J.; Lelièvre, C.; Mouyane, M.; Noudem, J.; Houivet, D. Enhanced humidity sensing performance of LiF-doped MgTiO3 ceramics via spark plasma sintering. Heliyon 2024, 10, e33999. [Google Scholar] [CrossRef]
- Angadi, V.J.; Batoo, K.M.; Hussain, S.V.; Lakshmiprasanna, H.R.; Manjunatha, K.S.; Manjunatha, O. Role of Superparamagnetic Nanoparticles in Humidity Sensing Behavior of Holmium doped Manganese-Bismuth ferrites for Relative Humidity Sensor applications. J. Mater. Sci. Mater. Electron. 2022, 33, 24308–24320. [Google Scholar] [CrossRef]
- Swathi, K.M.; Chethan, B.; Kiran, B.; Kumar, A.; Nadaf, S.; Laxmeshwar, S.S.; Savanur, H.M.; Al-Enizi, A.M.; Ubaidullah, M.; Pandit, B.; et al. Enhanced sensing response of Cd2+ substitution cobalt chromate ceramics for humidity sensors. J. Mater. Sci. Mater. Electron. 2024, 35, 179. [Google Scholar] [CrossRef]
- Hiremath, V.G.; Malimath, G.H.; Chethan, B.; Abd EL-Gawaad, N.S.; Abdallah, S.A.O.; Angadi, V.J. Enhanced humidity sensing stability of Dy3+-doped Mg-Rb ferrites for room temperature operatable humidity sensor applications. J. Mater. Sci. Mater. Electron. 2023, 34, 1537. [Google Scholar] [CrossRef]
- Laxmeshwar, S.S.; Kulkarni, S.S.; Nadaf, S.; Swathi, K.M.; Savanur, H.M.; Chethan, B.; Prasad, V.; Angadi, V.J.; Ubaidullah, M.; Pandit, B.; et al. Observation of enhanced sensing response and recovery time of lutetium-doped zinc ferrite ceramics for humidity sensor application. J. Mater. Sci. Mater. Electron. 2023, 34, 2038. [Google Scholar] [CrossRef]
- Reddy, L.P.B.; Prakash, H.G.R.; Ravikiran, Y.T.; Ganiger, S.K.; Angadi, V.J. Structural and humidity sensing properties of niobium pentoxide-mixed nickel ferrite prepared by mechano-chemical mixing method. J. Mater. Sci. Mater. Electron. 2020, 31, 21981–21999. [Google Scholar] [CrossRef]
- Veena, V.S.; Amith Yadav, H.J.; Pasha, A.; Angadi, V.J.; Ubaidullah, M.; Shaikh, S.F.; Pandit, B. Role of post-transition metal (Bi2O3) on the structural, microstructural and humidity sensing behavior of Bi@Zinc ferrites composite for room temperature operatable humidity sensors. J. Mater. Sci. Mater. Electron. 2023, 34, 992. [Google Scholar] [CrossRef]
- Hasan, S.; Azhdar, B. NiFe2O4 and ZnFe2O4 nanoparticles synthesis by sol-gel auto-combustion for humidity sensor applications. J. Sol-Gel Sci. Technol. 2023, 105, 416–429. [Google Scholar] [CrossRef]
Component | Ratio Respect to Mullite |
---|---|
MgO | 1:99 |
Zirconia spheres | 6:1 |
Water | 2:1 |
Powder | D50, μm | Open Porosity, % | Total Pore Area, m2/g | Average Pore Diameter, μm |
---|---|---|---|---|
Mf | 4.4 | 32.0 | 1.0 | 0.54 |
Mc | 9.2 | 29.1 | 0.5 | 0.87 |
Humidity | Sensor Response (R = Zo/Zg) | Response Time, s | Recovery Time, s | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | G1 | G2 | S1 | S2 | G1 | G2 | S1 | S2 | G1 | G2 | |
40% | 1.04 | 1.03 | ||||||||||
57% | 1.18 | 1.02 | 1.22 | 399 | 550 | 454 | 31 | 112 | 44 | |||
67% | 1.33 | 1.03 | 1.05 | 1.59 | 518 | 615 | 625 | 596 | 52 | 98 | 176 | 60 |
77% | 1.57 | 1.10 | 1.10 | 2.33 | 522 | 712 | 526 | 600 | 56 | 109 | 127 | 77 |
89% | 2.84 | 1.36 | 1.21 | 7.00 | 492 | 738 | 755 | 501 | 98 | 138 | 136 | 120 |
Material | Sensor Response, R = Zo/Zg | Response Time, s | Recovery Time, s | Reference |
---|---|---|---|---|
CuFe2O4-Y2O3 nanocomposite | 4895 at 97% RH | 9 | 23 | [43] |
(Ca1-xCux)HPO4.nH2O x = 0 to 1 | 51,250 at 90% RH | 29 | 283 | [45] |
Nanosize α-Fe2O3 nanoparticles | 48,569 at 95% RH | 9 | 4 | [12] |
GdAlO3 | 8000 at 97% RH | 45 | 60 | [46] |
CuO-ZnO nanostructure | under (25–90)% RH | 29 | 16 | [14] |
SnO2 thin film | 3.1 at 95% RH | 84 | 576 | [15] |
2D MoO3 | 4024 at 75% RH | 8 | 40 | [47] |
1% (La, Ce, Pr, Nd and Sm):ZnO nanocomposites | under (22–97)% RH | 62–89 | ∼300 | [16] |
Perovskite CsPbBr3-Fe quantum dots | 1.1 at 70% RH | 38 | 38 | [48] |
SnO2/TiO2 modified with Mo and Zn | ∼ 100 at 85% RH | 18 | 27 | [49] |
Porous SnO2/MCM-48 | 105 at 98% RH | 9 | 12 | [50] |
CaO nanoparticles | under (11–97)% RH | 79 | 147 | [51] |
Pt nanoparticles decorated MoS2 nanoflakes | ∼4000 at 85% RH | 92 | 154 | [52] |
Fe2O3/CNT | under (11–97)% RH | 17 | 25 | [13] |
ZnO/MoS2 | ∼301 at 85% RH | 138 | 166 | [17] |
CoHoxCr2-xO x = 0.005 to 0.02 | ∼102 at 85% RH | NA | NA | [18] |
MgTiO3 doped with 2 wt% of LiF | 105 at 90% RH | NA | NA | [53] |
Mn0.95Bi0.05Fe2-xHoxO4 x = 0 to 0.03 | ∼15 at 97% RH | 79 | 91 | [54] |
NiFe2O4/CoCr2O4 | ∼10 under (11–97)% RH | 10 | 15 | [19] |
Co1-xCdxCr2O4 x = 0 to 0.15 | ∼24 under (11–99)% RH | 14.6 | 8.6 | [55] |
NdCoO3 | ∼50% under (11–97)% RH | 3 | NA | [11] |
Mg0.9Rb0.1DyxFe2-xO4 x = 0 to 0.03 | under (11–98)% RH | 18 | 90 | [56] |
MgxRb1−xFe2O4 x = 0.025 to 0.1 | ∼18 at 97% RH | 20 | 30 | [20] |
ZnFe2 − xLuxo4 x = 0 to 0.7 | ∼10 at 97% RH | 6.5 | 35.6 | [57] |
(1−x) NiFe2O4 /(x) Nb2O5 x = 0.10 to 0.5 | 1190 at 97% RH | 20 | 30 | [58] |
Bi@ZnFe2O4 x = 0 to 0.05 | ∼6 at 97% RH | 79 | 91 | [59] |
NiFe2O4 | 4 at 90% RH | NA | NA | [60] |
ZnFe2O4 | 22 at 90% RH | NA | NA | [60] |
Planar mullite structure | 322.9 at 85% RH | 91 | 167 | [25] |
3D mullite structure | 7 at 89% RH | 501 | 120 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milovanov, Y.; Bertero, A.; Coppola, B.; Palmero, P.; Tulliani, J.-M. Triply Periodic Minimal Surfaces Mullite Structures for Humidity Detection. Chemosensors 2025, 13, 168. https://doi.org/10.3390/chemosensors13050168
Milovanov Y, Bertero A, Coppola B, Palmero P, Tulliani J-M. Triply Periodic Minimal Surfaces Mullite Structures for Humidity Detection. Chemosensors. 2025; 13(5):168. https://doi.org/10.3390/chemosensors13050168
Chicago/Turabian StyleMilovanov, Yurii, Arianna Bertero, Bartolomeo Coppola, Paola Palmero, and Jean-Marc Tulliani. 2025. "Triply Periodic Minimal Surfaces Mullite Structures for Humidity Detection" Chemosensors 13, no. 5: 168. https://doi.org/10.3390/chemosensors13050168
APA StyleMilovanov, Y., Bertero, A., Coppola, B., Palmero, P., & Tulliani, J.-M. (2025). Triply Periodic Minimal Surfaces Mullite Structures for Humidity Detection. Chemosensors, 13(5), 168. https://doi.org/10.3390/chemosensors13050168