The Sensing Selectivity of Gas Sensors Based on Different Sn-Doped Indium Oxide Films
Abstract
:1. Introduction
2. Experimental Sections
2.1. Preparation of Gas Sensors
2.2. Sensing Selectivity Test Method
2.3. Computational Methods
3. Results and Discussion
3.1. Morphologies and Elemental Composition for Different Films
3.2. Gas Sensing Properties of Sensors
3.3. Gas Adsorption on Sn-Doped In2O3 (110) Surface
3.4. Gas Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, X.Y.; Xuan, X.W.; Jiang, D.L.; Li, H.J.; Li, C.P.; Li, M.J. Wireless antenna sensor with CuO@Cu-vertical graphene and cysteine-PDMS composite for ethanol gas detection. Anal. Chem. Acta 2024, 1319, 342969. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Z.; Pan, Y.; Jiang, Y.; Xu, M.X.; Jiang, J.C. Wearable electrochemical gas sensor for methanol leakage detection. Microchem. J. 2023, 190, 108715. [Google Scholar] [CrossRef]
- Enferadi, S.M.H.B.; Mirzaei, A. Fe2O3-Co3O4 nanocomposite gas sensor for ethanol sensing studies. Ceram. Int. 2024, 50, 52861–52870. [Google Scholar] [CrossRef]
- Pi, M.Y.; Zheng, L.Y.; Luo, H.Y.; Duan, S.M.; Li, C.L.; Yang, J.; Zhang, D.K.; Chen, S.J. Improved acetone gas sensing performance based on optimization of a transition metal doped WO3 system at room temperature. J. Phys. D Appl. Phys. 2021, 54, 155107. [Google Scholar] [CrossRef]
- Seleka, W.M.; Ramohlola, K.E.; Modibane, K.D.; Makhado, E. Conductive chitosan/polyaniline hydrogel: A gas sensor for room-temperature electrochemical hydrogen sensing. Int. J. Hydrogen Energy 2024, 68, 940–954. [Google Scholar] [CrossRef]
- Takeo, H.; Takeru, H.; Kazunori, N.; Taro, U.; Yasuhiro, S. Effects of catalytic combustion behavior and adsorption/desorption properties on ethanol-sensing characteristics of adsorption/combustion-type gas sensors. J. Asian Ceram. Soc. 2021, 9, 1015–1030. [Google Scholar] [CrossRef]
- Feng, L.Y.; Liu, Y.X.; Wang, Y.; Zhou, H.; Wu, M.; Li, T. An ultra-small integrated CO2 infrared gas sensor for wearable end-tidal CO2 monitoring. iScience 2023, 26, 108293. [Google Scholar] [CrossRef]
- Meng, F.L.; Li, G.C.; Ji, H.Y.; Yuan, Z.Y. Investigation on oxygen vacancy regulation mechanism of ZnO gas sensors under temperature modulation mode to distinguish alcohol homologue gases. Sens. Actuators B Chem. 2025, 423, 136747. [Google Scholar] [CrossRef]
- Wang, Q.; Cheng, X.; Wang, Y.R.; Yang, Y.F.; Su, Q.; Li, J.P.; An, B.X.; Luo, Y.B.; Wu, Z.K.; Xie, E.Q. Sea urchins-like WO3 as a material for resistive acetone gas sensors. Sens. Actuators B Chem. 2022, 355, 131262. [Google Scholar] [CrossRef]
- Patil, V.L.; Dalavi, D.S.; Dhavale, S.B.; Vanalakar, S.A.; Tarwal, N.L.; Kalekar, A.S.; Kim, J.H.; Patil, P.S. Indium doped ZnO nanorods for chemiresistive NO2 gas sensors. New J. Chem. 2022, 46, 7588–7597. [Google Scholar] [CrossRef]
- Wu, K.D.; Debliquy, M.; Zhang, C. Room temperature gas sensors based on Ce doped TiO2 nanocrystals for highly sensitive NH3 detection. Chem. Eng. J. 2022, 444, 136449. [Google Scholar] [CrossRef]
- Nakarungsee, P.; Srirattanapibul, S.; Issro, C.; Tang, I.-M.; Thongmee, S. High performance Cr doped ZnO by UV for NH3 gas sensor. Sens. Actuators A Phys. 2020, 314, 112230. [Google Scholar] [CrossRef]
- Yuan, K.P.; Wang, C.Y.; Zhu, L.Y.; Cao, Q.; Yang, J.H.; Li, X.X.; Huang, W.; Wang, Y.Y.; Lu, H.L.; Zhang, D.W. Fabrication of a Micro-Electromechanical System-Based Acetone Gas Sensor Using CeO2 Nanodot-Decorated WO3 Nanowires. ACS Appl. Mater. Interfaces 2020, 12, 14095–14104. [Google Scholar] [CrossRef]
- Chang, C.H.; Chou, T.C.; Chen, W.C.; Niu, J.S.; Lin, K.W.; Cheng, S.Y.; Tsai, J.H.; Liu, W.C. Study of a WO3 thin film based hydrogen gas sensor decorated with platinum nanoparticles. Sens. Actuators B Chem. 2020, 317, 128145. [Google Scholar] [CrossRef]
- Bruce, J.; Bosnick, K.; Kamali Heidari, E. Pd-decorated ZnO nanoflowers as a promising gas sensor for the detection of meat spoilage. Sens. Actuators B Chem. 2022, 355, 131316. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Yang, F.; Zhu, H.M.; Meng, F.L.; Ibrahim, M. High-response n-butanol gas sensor based on ZnO/In2O3 heterostructure. Rare Met. 2023, 42, 198–209. [Google Scholar] [CrossRef]
- Duoc, V.T.; Hung, C.M.; Nguyen, H.; Duy, N.V.; Hieu, N.V.; Hoa, N.D. Room temperature highly toxic NO2 gas sensors based on rootstock/scion nanowires of SnO2/ZnO, ZnO/SnO2, SnO2/SnO2 and, ZnO/ZnO. Sens. Actuators B Chem. 2021, 348, 130652. [Google Scholar] [CrossRef]
- Yan, W.J.; Chen, Y.L.; Zeng, X.M.; Wu, G.; Jiang, W.; Wei, D.; Ling, M.; Wei Ng, K.; Qin, Y.X. Ultrasensitive ethanol sensor based on segregated ZnO-In2O3 porous nanosheets. Appl. Surf. Sci. 2021, 535, 147697. [Google Scholar] [CrossRef]
- Wang, D.; Han, C.S.; Zheng, C.X.; Fang, H.R.; Xu, D.F.; Zhao, H.B. Fabrication of a ppb-level NO2 gas sensor by sensitizing nanobundles assembled by In2O3 nanotubes with TiO2 quantum dots. Sens. Actuators B Chem. 2023, 387, 133833. [Google Scholar] [CrossRef]
- Xu, H.; Zhong, H.R.; Hu, J.W.; Rong, X.J.; Zhang, W.H.; Wang, Y.S.; Li, S.J.; Li, G.S.; Wang, D. Facile engineering of metal-organic framework derived SnO2@NiO core-shell nanocomposites based gas sensor toward superior VOCs sensing performance. Chem. Eng. J. 2024, 501, 157692. [Google Scholar] [CrossRef]
- Feng, Z.L.; Wang, H.T.; Zhang, Y.D.; Han, D.; Cheng, Y.Q.; Jian, A.Q.; Sang, S.B. ZnO/GaN n-n heterojunction porous nanosheets for ppb-level NO2 gas sensors. Sens. Actuators B Chem. 2023, 396, 134629. [Google Scholar] [CrossRef]
- Das, B.P.; Nath, T.K.; Mandal, S.; Shit, A.; Nandi, P.; Shit, S.; Chakraborty, B.; Pramanik, P. Structural, magnetic and optical characterization of 5 atomic % Fe doped In2O3 dilute magnetic semiconducting nanoparticles. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2025, 311, 117823. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Zhang, Z.; Lv, G.L.; Zhang, Y.; Chen, J.T.; Luo, Y.Y.; Duan, G.T. Ultrafast-response H2S MEMS gas sensor based on double phase In2O3 monolayer particle film. Sens. Actuators B Chem. 2024, 412, 135787. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.T.; Feng, L.G.; Wang, Z.M.; Wang, T.; Yun, F. Investigation of the influence of growth parameters on self-catalyzed ITO nanowires by high RF-power sputtering. Nanotechnology 2018, 29, 165708. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.T.; Wang, Z.M.; Li, Y.F.; Ding, W.; Wang, T.; Yun, F. Heavily tin-doped indium oxide nano-pyramids as high-performance gas sensor. AIP Adv. 2018, 8, 115316. [Google Scholar] [CrossRef]
- Kong, D.L.; Wu, W.J.; Hong, B.; Xu, J.C.; Peng, X.L.; Ge, H.L.; Li, J.; Zeng, Y.X.; Wang, X.Q. MIL-68 derived In2O3 microtubes and Co3O4/In2O3 heterostructures for high sensitive formaldehyde gas sensors. Ceram. Int. 2024, 50, 6995–7005. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Q.; Feng, Y.J.; Xu, D.M.; Tang, P.G.; Li, D.Q. Facile assembly of Au nano-particles modified hierarchical mesoporous In2O3 for highly sensitive ethanol gas detection. Sens. Actuators B Chem. 2024, 402, 135103. [Google Scholar] [CrossRef]
- Kurmangaleev, K.S.; Mikhailova, T.Y.; Polunin, K.S.; Ilegbusi, O.J.; Trakhtenberg, L.I. DFT modeling of reaction of H2 with O2 pre-adsorbed on In2O3 (011) surface. Chem. Phys. Lett. 2024, 856, 141649. [Google Scholar] [CrossRef]
- Liu, Y.P.; Li, J.; Hou, W.J.; Zhou, Q.; Zeng, W. Pristine and Ag decorated In2O3 (110): A gas-sensitive material to selective detect NO2 based on DFT study. J. Mater. Res. Technol. 2022, 18, 4236–4247. [Google Scholar] [CrossRef]
- Bordini, L.F.; Ferraz, C.P.; Tofanello, A.; Garcia, M.A.S.; de Almeida, J.M.A.R.; Sousa-Aguiar, E.F.; Romano, P.N. Optimizing methanol synthesis from CO2: Are bulk hexagonal indium oxide structures superior to cubic ones? Catal. Today 2025, 445, 115038. [Google Scholar] [CrossRef]
- Li, Y.; Wei, X.Y.; Liu, Q.Y.; Zang, D.M.; You, R. Visible Light-Activated Room Temperature NO2 Gas Sensing Based on the In2O3@ZnO Heterostructure with a Hollow Microtube Structure. ACS Sens. 2024, 9, 3741–3753. [Google Scholar] [CrossRef] [PubMed]
- Århammar, C.; Silvearv, F.; Ahuja, R.; Araujo, C.M.; Huang, L.M. Tuning magnetic properties of In2O3 by control of intrinsic defects. Europhys. Lett. 2010, 89, 47005. [Google Scholar] [CrossRef]
- Lin, X.L.; Pan, F.C. A first-principles study on the electronic structure and optical properties of indium tin oxide. J. Shandong Norm. Univ. 2016, 31, 64–70. [Google Scholar]
- Yan, H.Y.; Fang, F.; Chen, Z.Q.; Zhang, C.M.; Niu, Q.; Xue, W.; Zhan, Z.L. Response improvement of In2O3 hot-wire gas sensor doped by Sn. J. Mater. Sci. Mater. Electron. 2018, 29, 5173–5179. [Google Scholar] [CrossRef]
- Liu, J.H.; Kong, L.T.; Liu, S.B.; Meng, F.L.; Liu, J.Y.; Jin, Z.; Sun, Y.F. Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review. Sensors 2012, 12, 2610–2631. [Google Scholar] [CrossRef]
- Zhao, L.P.; Jin, R.R.; Wang, C.; Wang, T.S.; Sun, Y.F.; Sun, P.; Lu, G.Y. Flower-like ZnO-Co3O4 heterojunction composites for enhanced acetone sensing. Sens. Actuators B Chem. 2023, 390, 133964. [Google Scholar] [CrossRef]
- Kokalj, A. Corrosion inhibitors: Physisorbed or chemisorbed? Corros. Sci. 2022, 196, 109939. [Google Scholar] [CrossRef]
- Kgomo, M.B.; Shingange, K.; Swart, H.C.; Mhlongo, G.H. Evolution of In2O3 morphology from belt to fibrous-like structure for ethanol detection at low working temperature induced by Cr-addition. Appl. Surf. Sci. 2023, 639, 158210. [Google Scholar] [CrossRef]
- Han, D.M.; Li, X.H.; Zhang, F.M.; Gu, F.B.; Wang, Z.H. Ultrahigh sensitivity and surface mechanism of gas sensing process in composite material of combining In2O3 with metal-organic frameworks derived Co3O4. Sens. Actuators B Chem. 2021, 340, 129990. [Google Scholar] [CrossRef]
- Cheng, P.F.; Wang, Y.L.; Wang, C.; Ma, J.; Xu, L.; Lv, C.; Sun, Y.F. Investigation of doping effects of different noble metals for ethanol gas sensors based on mesoporous In2O3. Nanotechnology 2021, 32, 305503. [Google Scholar] [CrossRef]
- Sun, G.P.; Sun, S.F.; Wang, Y.L.; Hao, X.D.; Hao, Y.; Liu, C.; Gong, C.L.; Yang, Q.Y.; Du, W.A.; Cheng, P.F. A novel gas sensor based on ZnO nanoparticles self-assembly porous networks for morphine drug detection in methanol. Sens. Actuators B Chem. 2024, 420, 136495. [Google Scholar] [CrossRef]
- Cao, S.; Sui, N.; Zhang, P.; Zhou, T.T.; Tu, J.C.; Zhang, T. TiO2 nanostructures with different crystal phases for sensitive acetone gas sensors. J. Colloid Interface Sci. 2022, 607, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, T.; Gao, X.; Wang, R.; Li, B.H. Coaxial electrospinning heterojunction SnO2/Au-doped In2O3 core-shell nanofibers for acetone gas sensor. Sens. Actuators B Chem. 2017, 252, 822–830. [Google Scholar] [CrossRef]
- Chen, K.; Jiang, Y.R.; Tao, W.; Wang, T.S.; Liu, F.M.; Wang, C.G.; Yan, X.; Lu, G.Y.; Sun, P. MOF Structure engineering to synthesize core-shell heterostructures with controllable shell layer thickness: Regulating gas selectivity and sensitivity. Sens. Actuators B Chem. 2023, 378, 133117. [Google Scholar] [CrossRef]
- Li, Y.Z.; Lang, X.O.; Li, W.M.; Xue, Y.W.; Liu, Y.P.; Lu, H.L. Advances in Noble Metal-Decorated Metal Oxide Nanomaterials for Chemiresistive Gas Sensors: Overview. Nano-Micro Lett. 2023, 15, 1–75. [Google Scholar] [CrossRef]
- Ri, J.S.; Li, X.W.; Shao, C.L.; Liu, Y.; Han, C.H.; Li, X.H.; Liu, Y.C. Sn-doping induced oxygen vacancies on the surface of the In2O3 nanofibers and their promoting effect on sensitive NO2 detection at low temperature. Sens. Actuators B Chem. 2020, 317, 128194. [Google Scholar] [CrossRef]
O (At%) | In (At%) | Sn (At%) | |
---|---|---|---|
S1 | 28.41 | 67.35 | 4.48 |
S2 | 27.18 | 61.91 | 10.92 |
S3 | 27.33 | 61.96 | 10.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, H.; Li, H.; Huang, Y.; Zhang, B.; Liang, J.; Zhou, X.; Tian, Y.; Li, Q. The Sensing Selectivity of Gas Sensors Based on Different Sn-Doped Indium Oxide Films. Chemosensors 2025, 13, 169. https://doi.org/10.3390/chemosensors13050169
Sheng H, Li H, Huang Y, Zhang B, Liang J, Zhou X, Tian Y, Li Q. The Sensing Selectivity of Gas Sensors Based on Different Sn-Doped Indium Oxide Films. Chemosensors. 2025; 13(5):169. https://doi.org/10.3390/chemosensors13050169
Chicago/Turabian StyleSheng, Haoran, Haoyu Li, Yujie Huang, Bochao Zhang, Jiarui Liang, Xinze Zhou, Yuan Tian, and Qiang Li. 2025. "The Sensing Selectivity of Gas Sensors Based on Different Sn-Doped Indium Oxide Films" Chemosensors 13, no. 5: 169. https://doi.org/10.3390/chemosensors13050169
APA StyleSheng, H., Li, H., Huang, Y., Zhang, B., Liang, J., Zhou, X., Tian, Y., & Li, Q. (2025). The Sensing Selectivity of Gas Sensors Based on Different Sn-Doped Indium Oxide Films. Chemosensors, 13(5), 169. https://doi.org/10.3390/chemosensors13050169