Effects of Base Materials (α-Alumina and/or γ-Alumina) on Volatile Organic Compounds (VOCs)-Sensing Properties of Adsorption/Combustion-Type Microsensors
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of Sensing Materials and Characterization
2.2. Fabrication of Sensors and Measurement of Sensing Properties to Ethanol and Toluene
2.3. Measurement of Sensing Properties to Ethanol and Toluene
3. Results and Discussion
3.1. Characterization of Sensor Materials
3.2. Catalytic Activities
3.3. VOC-Sensing Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rumchev, K.; Brouwn, H.; Spickett, J. Volatile Organic Compounds: Do they present a risk to our health? Rev. Environ. Health 2007, 22, 67–82. [Google Scholar] [CrossRef] [PubMed]
- Bhoonah, R.; Maury-Micolier, A.; Jolliet, O. Integrated empirical and modelled determination of the human health impacts of building material VOCs. Build. Environ. 2023, 242, 110523. [Google Scholar] [CrossRef]
- Haug, H.; Klein, L.; Sauerwald, T.; Poelke, B.; Beauchamp, J.; Alexander, R. Sampling Volatile organic compound emissions from consumer products: A review. Crit. Rev. Anal. Chem. 2024, 54, 1895–1916. [Google Scholar] [CrossRef] [PubMed]
- Sekine, Y.; Kimura, K.; Umezawa, K. What does human skin gas analysis work for? J. Jpn. Assoc. Odor Environ. 2017, 48, 410–417. [Google Scholar] [CrossRef]
- Moura, P.C.; Raposo, M.; Vassilenko, V. Breath volatile organic compounds (VOCs) as biomarkers for the diagnosis of pathological conditions: A review. Biomed. J. 2023, 46, 10623. [Google Scholar] [CrossRef]
- Kim, C.; Kang, M.S.; Raja, I.S.; Oh, J.-W.; Joung, Y.K.; Han, D.-W. Current issues and perspectives in nanosensors-based artificial olfactory systems for breath diagnostics and environmental exposure monitoring. Trends Anal. Chem. 2024, 174, 117656. [Google Scholar] [CrossRef]
- Tassopoulos, C.N.; Barnett, D.; Russell Fraseer, T. Breath-acetone and blood-sugar measurements in diabetes. Lancet 1969, 28, 1282–1286. [Google Scholar] [CrossRef]
- Hunt, J.; Gaston, B. Airway nitrogen oxide measurements in asthma and other pediatric respiratory diseases. J. Pediatr. 2000, 137, 14–20. [Google Scholar] [CrossRef]
- Cikach, F.S., Jr.; Dweik, R.A. Cardiovascular biomarkers in exhaled breath. Prog. Cardiovasc. Dis. 2012, 55, 34–43. [Google Scholar] [CrossRef]
- Choueiry, F.; Barham, A.; Zhu, J. Analyses of lung cancer-derived volatiles in exhaled breath and in vitro models. Exp. Biol. Med. 2022, 247, 1179–1190. [Google Scholar] [CrossRef]
- Schmidt, F.; Kohlbrenner, D.; Malesevic, S.; Huang, A.; Klein, S.D.; Puhan, M.A.; Kohler, M. Mapping the landscape of lung cancer breath analysis: A scoping review. Lung Cancer 2023, 175, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Güntner, A.T.; Weber, I.C.; Schon, S.; Pratsinis, S.E.; Gerber, P.A. Monitoring rapid metabolic changes in health and type-1 diabetes with breath acetone sensors. Sens. Actuators B 2022, 367, 132182. [Google Scholar] [CrossRef]
- Mori, M.; Itagaki, Y.; Sadaoka, Y. VOC detection by potentiometric oxygen sensor based on YSZ and modified Pt electrodes. Sens. Actuators B 2012, 161, 471–479. [Google Scholar] [CrossRef]
- Itoh, T.; Nakashima, T.; Akamatsu, T.; Izu, N.; Shin, W. Nonanal gas sensing properties of platinum, palladium, and gold-loaded tin oxide VOCs sensors. Sens. Actuators B 2013, 187, 135–141. [Google Scholar] [CrossRef]
- Kim, N.-H.; Choi, S.-J.; Yang, D.-J.; Bae, J.; Park, J.; Kim, I.-D. Highly sensitive and selective hydrogen sulfide and toluene sensors using Pd functionalized WO3 nanofibers for potential diagnosis of halitosis and lung cancer. Sens. Actuators B 2014, 193, 574–581. [Google Scholar] [CrossRef]
- Ye, M.; Chien, P.-J.; Toma, K.; Arakawa, T.; Mitsubayashi, K. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath. Biosens. Bioelectron. 2015, 73, 208–213. [Google Scholar] [CrossRef]
- Hyodo, T.; Kaino, T.; Ueda, T.; Izawa, K.; Shimizu, Y. Acetone-sensing properties of WO3-based gas sensors operated in dynamic temperature modulation mode —Effects of loading of noble metal and/or NiO onto WO3. Sens. Mater. 2016, 28, 1179–1189. [Google Scholar]
- Suematsu, K.; Harano, W.; Oyama, T.; Shin, Y.; Watanabe, K.; Shimanoe, K. Pulse-driven semiconductor gas sensors toward ppt level toluene detection. Anal. Chem. 2018, 90, 11219–11223. [Google Scholar] [CrossRef]
- Choi, H.-J.; Chung, J.-H.; Yoon, J.-W.; Lee, J.-H. Highly selective, sensitive, and rapidly responding acetone sensor using ferroelectric ε-WO3 spheres doped with Nb for monitoring ketogenic diet efficiency. Sens. Actuators B 2021, 338, 129823. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, Z.; Suematsu, K.; Zhang, W.; Zhang, W.; Zhuiykov, S.; Shimanoe, K.; Hu, J. MOF-derived Au-NiO/In2O3 for selective and fast detection of toluene at ppb-level in high humid environments. Sens. Actuators B 2022, 360, 131631. [Google Scholar] [CrossRef]
- Shinkai, T.; Masumoto, K.; Iwai, M.; Inomata, Y.; Kida, T. Study on sensing mechanism of volatile organic compounds using Pt-loaded ZnO nanocrystals. Sensors 2022, 22, 6277. [Google Scholar] [CrossRef] [PubMed]
- Ueda, T.; Oide, N.; Kamada, K.; Hyodo, T.; Shimizu, Y. Improved toluene response of mixed-potential type YSZ-based gas sensors using CeO2-added Au electrodes. ECS Sens. Plus 2022, 1, 013604. [Google Scholar] [CrossRef]
- Minami, K.; Zhou, Y.; Imamura, G.; Shiba, K.; Yoshikawa, G. Sorption kinetic parameters from nanomechanical sensing for discrimination of 2-nonenal from saturated aldehydes. ACS Sens. 2024, 9, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, E.A.; Krott, M.; Epifani, M.; Suematsu, K.; Weimar, U.; Barsan, N. Volatile organic compound sensing with WO3-based gas sensors: Surface chemistry basics. J. Phys. Chem. C 2024, 128, 1633–1643. [Google Scholar] [CrossRef]
- Sasahara, T.; Kido, A.; Sunayama, T.; Uematsu, S.; Egashira, M. Identification and quantification of alcohol by a micro gas sensor based on adsorption and combustion. Sens. Actuators B 2004, 99, 532–538. [Google Scholar] [CrossRef]
- Hyodo, T.; Shimizu, Y. Adsorption/combustion-type micro gas sensors: Typical VOC-sensing properties and material-design approach for highly sensitive and selective VOC detection. Anal. Sci. 2020, 36, 401–411. [Google Scholar] [CrossRef]
- Yuzuriha, Y.; Hyodo, T.; Sasahara, T.; Shimizu, Y.; Egashira, M. Mesoporous Al2O3 co-loaded with Pd and Au as a combustion catalyst for adsorption/combustion-type gas sensors. Sens. Lett. 2011, 9, 409–413. [Google Scholar] [CrossRef]
- Hyodo, T.; Yuzuriha, Y.; Nakgoe, O.; Sasahara, T.; Tanabe, S.; Shimizu, Y. Adsorption/combustion-type gas sensors employing mesoporous γ-alumina loaded with core(Au)/shell(Pd) nanoparticles synthesized reduction by sonochemical reduction. Sens. Actuators B 2014, 202, 748–757. [Google Scholar] [CrossRef]
- Hyodo, T.; Hashimoto, T.; Ueda, T.; Nakgoe, O.; Sasahara, T.; Tanabe, S.; Shimizu, Y. Adsorption/combustion-type VOC sensors employing mesoporous γ-alumina co-loaded with noble-metal and oxide. Sens. Actuators B 2015, 220, 1091–1104. [Google Scholar] [CrossRef]
- Hyodo, T.; Nagae, K.; Ueda, T.; Sasahara, T.; Shimizu, Y. Sensing behavior of adsorption/combustion-type gas microsensors to various alcoholic vapors. Sens. Mater. 2023, 35, 3851–3861. [Google Scholar] [CrossRef]
- Hyodo, T.; Hiura, T.; Nagae, K.; Ueda, T.; Shimizu, Y. Effects of catalytic combustion behavior and adsorption/desorption properties on ethanol-sensing characteristics of adsorption/combustion-type gas sensors. J. Asian Ceram. Soc. 2021, 9, 1015–1030. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems. Pure Appl. Chem. 1982, 54, 2201–2218. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.H. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
Sample | 5Pt/γ-Al2O3 | 5Pt/γ(50)α(50)-Al2O3 | 5Pt/α-Al2O3 |
---|---|---|---|
Dispersibility/% | 47.8 | 32.0 | 14.0 |
Surface area/m2 g−1-Pt | 118 | 80.0 | 34.5 |
Average particle size/nm | 2.37 | 3.55 | 8.12 |
Sample | Thermal Conductivity/10−2 W m−1 K−1 |
---|---|
γ-Al2O3 | 9.32 |
5Pt/γ-Al2O3 | 9.63 |
10Pt/γ-Al2O3 | 9.97 |
γ(50)α(50)-Al2O3 | 14.9 |
α-Al2O3 | 37.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyodo, T.; Matsuura, Y.; Inao, G.; Sasahara, T.; Shimizu, Y.; Ueda, T. Effects of Base Materials (α-Alumina and/or γ-Alumina) on Volatile Organic Compounds (VOCs)-Sensing Properties of Adsorption/Combustion-Type Microsensors. Chemosensors 2025, 13, 9. https://doi.org/10.3390/chemosensors13010009
Hyodo T, Matsuura Y, Inao G, Sasahara T, Shimizu Y, Ueda T. Effects of Base Materials (α-Alumina and/or γ-Alumina) on Volatile Organic Compounds (VOCs)-Sensing Properties of Adsorption/Combustion-Type Microsensors. Chemosensors. 2025; 13(1):9. https://doi.org/10.3390/chemosensors13010009
Chicago/Turabian StyleHyodo, Takeo, Yuma Matsuura, Genki Inao, Takahiko Sasahara, Yasuhiro Shimizu, and Taro Ueda. 2025. "Effects of Base Materials (α-Alumina and/or γ-Alumina) on Volatile Organic Compounds (VOCs)-Sensing Properties of Adsorption/Combustion-Type Microsensors" Chemosensors 13, no. 1: 9. https://doi.org/10.3390/chemosensors13010009
APA StyleHyodo, T., Matsuura, Y., Inao, G., Sasahara, T., Shimizu, Y., & Ueda, T. (2025). Effects of Base Materials (α-Alumina and/or γ-Alumina) on Volatile Organic Compounds (VOCs)-Sensing Properties of Adsorption/Combustion-Type Microsensors. Chemosensors, 13(1), 9. https://doi.org/10.3390/chemosensors13010009