Evaluation of an Enzyme-Linked Magnetic Electrochemical Assay for Hepatitis a Virus Detection in Drinking and Vegetable Processing Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Materials
2.2.1. Screen-Printed Electrodes (SPEs)
2.2.2. Filters
2.2.3. Instrumentations
2.3. Methods
2.3.1. ELIME Assay
2.3.2. Spiking of Drinking Water and Water for Vegetable Processing
2.3.3. Sample Concentration for HAV Detection
2.3.4. RNA Extraction and Real-Time RT-qPCR Protocol
2.3.5. Calibration Curve for Immunosensor
3. Results and Discussion
3.1. ELIME Optimization
3.2. Analytical Performances in Buffer and Real Sample Solution
3.3. Comparison of the Performance and Cost–Benefit Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Damme, P.; Pintó, R.M.; Feng, Z.; Cui, F.; Gentile, A.; Shouval, D. Hepatitis A virus infection. Nat. Rev. Dis. Primer 2023, 9, 51. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ren, J.; Gao, Q.; Hu, Z.; Sun, Y.; Li, X.; Rowlands, D.J.; Yin, W.; Wang, J.; Stuart, D.I.; et al. Hepatitis A virus and the origins of picornaviruses. Nature 2015, 517, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Fallucca, A.; Restivo, V.; Sgariglia, M.C.; Roveta, M.; Trucchi, C. Hepatitis a Vaccine as Opportunity of Primary Prevention for Food Handlers: A Narrative Review. Vaccines 2023, 11, 1271. [Google Scholar] [CrossRef] [PubMed]
- Shata, M.T.M.; Hetta, H.F.; Sharma, Y.; Sherman, K.E. Viral hepatitis in pregnancy. J. Viral Hepat. 2022, 29, 844–861. [Google Scholar] [CrossRef] [PubMed]
- Chatziprodromidou, I.P.; Dimitrakopoulou, M.-E.; Apostolou, T.; Katopodi, T.; Charalambous, E.; Vantarakis, A. Hepatitis A and E in the Mediterranean: A systematic review. Travel Med. Infect. Dis. 2022, 47, 102283. [Google Scholar] [CrossRef]
- Tiwari, A.; Ahmed, W.; Oikarinen, S.; Sherchan, S.P.; Heikinheimo, A.; Jiang, G.; Simpson, S.L.; Greaves, J.; Bivins, A. Application of digital PCR for public health-related water quality monitoring. Sci. Total Environ. 2022, 837, 155663. [Google Scholar] [CrossRef]
- Pérez-Lavalle, L.; Carrasco, E.; Valero Diaz, A. Microbiological criteria: Principles for their establishment and application in food quality and safety. Ital. J. Food Saf. 2020, 9, 8543. [Google Scholar] [CrossRef]
- Goh, S.G.; Saeidi, N.; Gu, X.; Vergara, G.G.R.; Liang, L.; Fang, H.; Kitajima, M.; Kushmaro, A.; Gin, K.Y.-H. Occurrence of microbial indicators, pathogenic bacteria and viruses in tropical surface waters subject to contrasting land use. Water Res. 2019, 150, 200–215. [Google Scholar] [CrossRef]
- Hounkpe, E.C.; Sessou, P.; Farougou, S.; Dotche, I.; Daube, G.; Delcenserie, V.; Azokpota, P.; Korsak, N. Hygiene practices of food of animal origin operators in primary schools in the Mono Department of Benin. A cross-sectional study. Heliyon 2023, 9, e17135. [Google Scholar] [CrossRef]
- Gerba, C.P. Environmentally Transmitted Pathogens. In Environmental Microbiology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 509–550. [Google Scholar] [CrossRef]
- Gholizadeh, O.; Akbarzadeh, S.; Ghazanfari Hashemi, M.; Gholami, M.; Amini, P.; Yekanipour, Z.; Tabatabaie, R.; Yasamineh, S.; Hosseini, P.; Poortahmasebi, V. Hepatitis A: Viral Structure, Classification, Life Cycle, Clinical Symptoms, Diagnosis Error, and Vaccination. Can. J. Infect. Dis. Med. Microbiol. 2023, 2023, 4263309. [Google Scholar] [CrossRef]
- Takuissu, G.R.; Kenmoe, S.; Ebogo-Belobo, J.T.; Kengne-Ndé, C.; Mbaga, D.S.; Bowo-Ngandji, A.; Ndzie Ondigui, J.L.; Kenfack-Momo, R.; Tchatchouang, S.; Kenfack-Zanguim, J.; et al. Occurrence of Hepatitis A Virus in Water Matrices: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2023, 20, 1054. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Ferrando, E.; Martínez-Murcia, A.; Pérez-Cataluña, A.; Sánchez, G.; Randazzo, W. Assessment of ISO Method 15216 to Quantify Hepatitis E Virus in Bottled Water. Microorganisms 2020, 8, 730. [Google Scholar] [CrossRef] [PubMed]
- ISO 15216-1:2017; Microbiology of the Food Chain—Horizontal Method for Determination of Hepatitis A Virus and Norovirus Using Real-Time RT-PCR—Part 1: Method for Quantification. ISO: Geneva, Switzerland, 2017.
- Fabiani, L.; Pucci, E.; Delibato, E.; Volpe, G.; Piermarini, S.; De Medici, D.; Capuano, F.; Palleschi, G. ELIME assay vs Real-Time PCR and conventional culture method for an effective detection of Salmonella in fresh leafy green vegetables. Talanta 2017, 166, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Chandran, S.; Gibson, K.E. Improving the Detection and Understanding of Infectious Human Norovirus in Food and Water Matrices: A Review of Methods and Emerging Models. Viruses 2024, 16, 776. [Google Scholar] [CrossRef]
- Hindson, C.M.; Chevillet, J.R.; Briggs, H.A.; Gallichotte, E.N.; Ruf, I.K.; Hindson, B.J.; Vessella, R.L.; Tewari, M. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods 2013, 10, 1003–1005. [Google Scholar] [CrossRef]
- Jeon, S.B.; Seo, D.J.; Oh, H.; Kingsley, D.H.; Choi, C. Development of one-step reverse transcription loop-mediated isothermal amplification for norovirus detection in oysters. Food Control 2017, 73, 1002–1009. [Google Scholar] [CrossRef]
- Elizaquível, P.; Aznar, R.; Sánchez, G. Recent developments in the use of viability dyes and quantitative PCR in the food microbiology field. J. Appl. Microbiol. 2014, 116, 1–13. [Google Scholar] [CrossRef]
- Wang, W.; Wang, B.; Li, Q.; Tian, R.; Lu, X.; Peng, Y.; Sun, J.; Bai, J.; Gao, Z.; Sun, X. Ultrasensitive Detection Strategy of Norovirus Based on a Dual Enhancement Strategy: CRISPR-Responsive Self-Assembled SNA and Isothermal Amplification. J. Agric. Food Chem. 2024, 72, 4415–4425. [Google Scholar] [CrossRef] [PubMed]
- MacLean, A.R.; Gunson, R. Automation and standardisation of clinical molecular testing using PCR.Ai—A comparative performance study. J. Clin. Virol. 2019, 120, 51–56. [Google Scholar] [CrossRef]
- Kumar, H.; Dhalaria, R.; Guleria, S.; Cimler, R.; Prerna, P.; Dhanjal, D.S.; Chopra, C.; Sethi, N.; Pathera, A.K.; Kala, D.; et al. Immunosensors in food, health, environment, and agriculture: A review. Environ. Chem. Lett. 2024, 22, 2573–2605. [Google Scholar] [CrossRef]
- Arduini, F.; Micheli, L.; Moscone, D.; Palleschi, G.; Piermarini, S.; Ricci, F.; Volpe, G. Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. TrAC Trends Anal. Chem. 2016, 79, 114–126. [Google Scholar] [CrossRef]
- Li, X.-M.; Yang, X.-Y.; Zhang, S.-S. Electrochemical enzyme immunoassay using model labels. TrAC Trends Anal. Chem. 2008, 27, 543–553. [Google Scholar] [CrossRef]
- Wignarajah, S.; Chianella, I.; Tothill, I.E. Development of Electrochemical Immunosensors for HER-1 and HER-2 Analysis in Serum for Breast Cancer Patients. Biosensors 2023, 13, 355. [Google Scholar] [CrossRef] [PubMed]
- Volpe, G.; Draisci, R.; Palleschi, G.; Compagnone, D. 3,3′,5,5′-Tetramethylbenzidine as electrochemical substrate for horseradish peroxidase based enzyme immunoassays. A comparative study. Analyst 1998, 123, 1303–1307. [Google Scholar] [CrossRef]
- Chen, C.; La, M.; Yi, X.; Huang, M.; Xia, N.; Zhou, Y. Progress in Electrochemical Immunosensors with Alkaline Phosphatase as the Signal Label. Biosensors 2023, 13, 855. [Google Scholar] [CrossRef] [PubMed]
- Delibato, E.; Volpe, G.; Romanazzo, D.; De Medici, D.; Toti, L.; Moscone, D.; Palleschi, G. Development and Application of an Electrochemical Plate Coupled with Immunomagnetic Beads (ELIME) Array for Salmonella enterica Detection in Meat Samples. J. Agric. Food Chem. 2009, 57, 7200–7204. [Google Scholar] [CrossRef]
- Corradini, A.; Cecchini, M.; Trevisani, M. A Rapid Enzyme-Linked Immunomagnetic Electrochemical (ELIME) Assay for the Detection of Escherichia coli O26 in Raw Milk. Food Anal. Methods 2020, 13, 1366–1370. [Google Scholar] [CrossRef]
- Fabiani, L.; Delibato, E.; Volpe, G.; Piermarini, S.; De Medici, D.; Palleschi, G. Development of a sandwich ELIME assay exploiting different antibody combinations as sensing strategy for an early detection of Campylobacter. Sens. Actuators B Chem. 2019, 290, 318–325. [Google Scholar] [CrossRef]
- Micheli, L.; Fasoli, A.; Attar, A.; Donia, D.T.; Divizia, M.; Amine, A.; Palleschi, G.; Salazar Carballo, P.A.; Moscone, D. An ELIME assay for hepatitis A virus detection. Talanta 2021, 234, 122672. [Google Scholar] [CrossRef]
- Masago, Y.; Konta, Y.; Kazama, S.; Inaba, M.; Imagawa, T.; Tohma, K.; Saito, M.; Suzuki, A.; Oshitani, H.; Omura, T. Comparative Evaluation of Real-Time PCR Methods for Human Noroviruses in Wastewater and Human Stool. PLoS ONE 2016, 11, e0160825. [Google Scholar] [CrossRef]
- Cancelliere, R.; Di Tinno, A.; Cataldo, A.; Bellucci, S.; Kumbhat, S.; Micheli, L. Nafion-based label-free immunosensor as a reliable warning system: The case of AFB1 detection in cattle feed. Microchem. J. 2023, 191, 108868. [Google Scholar] [CrossRef]
- Celio, L.; Ottaviani, M.; Cancelliere, R.; Di Tinno, A.; Panjan, P.; Sesay, A.M.; Micheli, L. Microfluidic Flow Injection Immunoassay System for Algal Toxins Determination: A Case of Study. Front. Chem. 2021, 9, 626630. [Google Scholar] [CrossRef] [PubMed]
- Hofmeister, M.G.; Foster, M.A.; Teshale, E.H. Epidemiology and Transmission of Hepatitis A Virus and Hepatitis E Virus Infections in the United States. Cold Spring Harb. Perspect. Med. 2019, 9, a033431. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Meng, B.; Corredig, M.; Griffiths, M.W. Rapid Detection of Hepatitis A Virus in Foods Using a Bioluminescent Assay in Real-Time (BART) and Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) Technology. Food Environ. Virol. 2023, 15, 144–157. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, S.; Agüí, L.; Yáñez-Sedeño, P.; Pingarrón, J.M. Design of electrochemical immunosen-sors using electro-click chemistry. Application to the detection of IL-1β cytokine in saliva. Bioelectrochemistry 2020, 133, 107484. [Google Scholar] [CrossRef]
- Antipchik, M.; Reut, J.; Ayankojo, A.G.; Öpik, A.; Syritski, V. MIP-based electrochemical sensor for direct detection of hepatitis C virus via E2 envelope protein. Talanta 2022, 250, 123737. [Google Scholar] [CrossRef]
- Manzano, M.; Viezzi, S.; Mazerat, S.; Marks, R.S.; Vidic, J. Rapid and label-free electrochemical DNA biosensor for detecting hepatitis A virus. Biosens. Bioelectron. 2018, 100, 89–95. [Google Scholar] [CrossRef]
Spiking Level | HAV Expected Value (g.c./mL) † | HAV Measured Value | |
---|---|---|---|
ELIME Assay & (g.c./mL) | RT-qPCR & (g.c./mL) | ||
0 | - | - | - |
1 | 0.8 ± 0.1 | 0.9 ± 0.1 | - |
2 | 4.1 ± 0.6 | 1.2± 0.2 | 0.56 * ± 0.3 |
3 | 8 ± 1 | 1.5 ± 0.2 | 0.56 * ± 0.2 |
4 | 41 ± 6 | 2.6 ± 0.4 | 2.70 ± 0.8 |
5 | 82 ± 12 | 3.2 ± 0.5 | 4.22 ± 0.7 |
6 | 411 ± 60 | 4.4 ± 0.6 | 35.44 ± 3 |
7 | 822 ± 121 | 104 ± 15 | 119 ± 9 |
8 | 4108 ± 603 | 531 ± 78 | 952 ± 65 |
9 | 8216 ± 1206 | 1089 ± 159 | 2684 ± 154 |
Spiking Level | HAV Expected Value (g.c./mL) † | HAV Measured Value | |
---|---|---|---|
ELIME Assay & (g.c./mL) | RT-qPCR & (g.c./mL) | ||
0 | - | - | - |
1 | 0.9 ± 0.3 | 1.5 ± 0.5 | - |
2 | 5 ± 2 | 1.7 ± 0.7 | 0.19 * ± 0.16 |
3 | 9 ± 3 | 1.67 ± 0.6 | 0.40 * ± 0.09 |
4 | 469 ± 17 | 1.98 ± 0.07 | 0.53 * ± 0.36 |
5 | 91 ± 33 | 2.18 ± 0.8 | 0.96 * ± 0.73 |
6 | 456 ± 167 | 4 ± 1 | 4.04 ± 2.01 |
7 | 912 ± 333 | 31 ± 11 | 6.46 ± 0.30 |
8 | 4559 ± 1667 | 136 ± 50 | 86.85 ± 5.21 |
9 | 9118 ± 3334 | 229 ± 84 | 93.02 ± 3.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Agostino, C.; Cancelliere, R.; Ceccarelli, A.; Moscone, D.; Cozzi, L.; La Rosa, G.; Suffredini, E.; Micheli, L. Evaluation of an Enzyme-Linked Magnetic Electrochemical Assay for Hepatitis a Virus Detection in Drinking and Vegetable Processing Water. Chemosensors 2024, 12, 188. https://doi.org/10.3390/chemosensors12090188
D’Agostino C, Cancelliere R, Ceccarelli A, Moscone D, Cozzi L, La Rosa G, Suffredini E, Micheli L. Evaluation of an Enzyme-Linked Magnetic Electrochemical Assay for Hepatitis a Virus Detection in Drinking and Vegetable Processing Water. Chemosensors. 2024; 12(9):188. https://doi.org/10.3390/chemosensors12090188
Chicago/Turabian StyleD’Agostino, Cristine, Rocco Cancelliere, Antonio Ceccarelli, Danila Moscone, Loredana Cozzi, Giuseppina La Rosa, Elisabetta Suffredini, and Laura Micheli. 2024. "Evaluation of an Enzyme-Linked Magnetic Electrochemical Assay for Hepatitis a Virus Detection in Drinking and Vegetable Processing Water" Chemosensors 12, no. 9: 188. https://doi.org/10.3390/chemosensors12090188
APA StyleD’Agostino, C., Cancelliere, R., Ceccarelli, A., Moscone, D., Cozzi, L., La Rosa, G., Suffredini, E., & Micheli, L. (2024). Evaluation of an Enzyme-Linked Magnetic Electrochemical Assay for Hepatitis a Virus Detection in Drinking and Vegetable Processing Water. Chemosensors, 12(9), 188. https://doi.org/10.3390/chemosensors12090188