Pd- and PdO-Decorated TiO2 Nanospheres: Hydrogen Sensing Properties under Visible Light Conditions at Room Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of TiO2 NSs
2.3. Synthesis of Pd-Decorated TiO2 NSs (PT NSs) and Hydrothermally Treated Pd-Decorated TiO2 NSs (HPT NSs)
2.4. Sensor Fabrication
2.5. Material Characterization
2.6. Sensor Measurements
- Iair: Current of the sensor in the baseline condition (i.e., in air).
- Igas: Current of the sensor in hydrogen environment.
3. Results and Discussions
3.1. Material Characterization
3.2. Hydrogen Sensing Characterization
3.3. Hydrogen Sensing Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RT | Room Temperature |
NSs | Nanospheres |
NPs | Nanoparticles |
PT NSs | Pd-decorated TiO2 NSs |
HPT NSs | Hydrothermally Treated Pd-decorated TiO2 NSs |
References
- Caliendo, C.; Russo, P.; Ciambelli, P. Hydrogen safety, state of the art, perspectives, risk assessment, and engineering solutions. Util. Hydrog. Sustain. Energy Fuels 2021, 3, 433. [Google Scholar]
- Hashtroudi, H.; Yu, A.; Juodkazis, S.; Shafiei, M. Ultra-sensitive photo-induced hydrogen gas sensor based on two-dimensional CeO2-Pd-PDA/rGO heterojunction nanocomposite. Nanomaterials 2022, 12, 1628. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Ghoshal, S.K. Hydrogen the future transportation fuel: From production to applications. Renew. Sustain. Energy Rev. 2015, 43, 1151–1158. [Google Scholar] [CrossRef]
- Chen, K.H.; Niu, J.S.; Liu, W.C. Study of a new hydrogen gas sensor synthesized with a sputtered cerium oxide thin film and evaporated palladium nanoparticles. IEEE Trans. Electron Devices 2021, 68, 4077–4083. [Google Scholar] [CrossRef]
- Wang, L.; Yu, Y.M.; Zhang, Y.Q.; Zhang, J.; Lu, N.; Liu, N. Hydrogen breath test to detect small intestinal bacterial overgrowth: A prevalence case–control study in autism. Eur. Child Adolesc. Psychiatry 2018, 27, 233–240. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Zhang, B.; Xiao, Y.; Gao, Y.; Yang, Q.; Wang, Y.; Lu, G. Ultrasensitive and low detection limit of nitrogen dioxide gas sensor based on flower-like ZnO hierarchical nanostructure modified by reduced graphene oxide. Sens. Actuators B Chem. 2017, 249, 715–724. [Google Scholar] [CrossRef]
- Huang, B.; Tong, X.; Zhang, X.; Feng, Q.; Rumyantseva, M.N.; Prakash, J.; Li, X. MXene/NiO composites for chemiresistive-type room temperature formaldehyde sensor. Chemosensors 2023, 11, 258. [Google Scholar] [CrossRef]
- Thathsara, S.; Harrison, C.; Hocking, R.; Shafiei, M. Photoactive semiconducting metal oxides: Hydrogen gas sensing mechanisms. Int. J. Hydrogen Energy 2022, 47, 18208–18227. [Google Scholar] [CrossRef]
- Kumar, R.; Liu, X.; Zhang, J.; Kumar, M. Room-temperature gas sensors under photoactivation: From metal oxides to 2D materials. Nano-Micro Lett. 2020, 12, 1–37. [Google Scholar] [CrossRef]
- Choo, T.F.; Saidin, N.U.; Kok, K.Y. Hydrogen sensing enhancement of zinc oxide nanorods via voltage biasing. R. Soc. Open Sci. 2018, 5, 172372. [Google Scholar] [CrossRef] [Green Version]
- Geng, Q.; He, Z.; Chen, X.; Dai, W.; Wang, X. Gas sensing property of ZnO under visible light irradiation at room temperature. Sens. Actuators B Chem. 2013, 188, 293–297. [Google Scholar] [CrossRef]
- Lupan, O.; Ursaki, V.; Chai, G.; Chow, L.; Emelchenko, G.A.; Tiginyanu, I.; Gruzintsev, A.N.; Redkin, A. Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature. Sens. Actuators B Chem. 2010, 144, 56–66. [Google Scholar] [CrossRef]
- Fan, S.W.; Srivastava, A.K.; Dravid, V.P. UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl. Phys. Lett. 2009, 95, 142106. [Google Scholar] [CrossRef]
- Nikfarjam, A.; Salehifar, N. Improvement in gas-sensing properties of TiO2 nanofiber sensor by UV irradiation. Sens. Actuators B Chem. 2015, 211, 146–156. [Google Scholar] [CrossRef]
- Peng, X.; Wang, Z.; Huang, P.; Chen, X.; Fu, X.; Dai, W. Comparative study of two different TiO2 film sensors on response to H2 under UV light and room temperature. Sensors 2016, 16, 1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Zeng, W.; Shi, D.; Hussain, S. UV-enhanced hydrogen sensor based on nanocone-assembled 3D SnO2 at low temperature. Mater. Lett. 2015, 161, 648–651. [Google Scholar] [CrossRef]
- Varghese, O.K.; Gong, D.; Paulose, M.; Ong, K.G.; Dickey, E.C.; Grimes, C.A. Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv. Mater. 2003, 15, 624–627. [Google Scholar] [CrossRef]
- Jun, Y.K.; Kim, H.S.; Lee, J.H.; Hong, S.H. High H2 sensing behavior of TiO2 films formed by thermal oxidation. Sens. Actuators B Chem. 2005, 107, 264–270. [Google Scholar] [CrossRef]
- Zhu, T.; Gao, S.P. The stability, electronic structure, and optical property of TiO2 polymorphs. J. Phys. Chem. C 2014, 118, 11385–11396. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Zhou, B. Titanium dioxide nanomaterials for sensor applications. Chem. Rev. 2014, 114, 10131–10176. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, C.; Zheng, B.; Geng, X.; Debliquy, M. Hydrogen sensors based on noble metal doped metal-oxide semiconductor: A review. Int. J. Hydrogen Energy 2017, 42, 20386–20397. [Google Scholar] [CrossRef]
- Drmosh, Q.; Hendi, A.; Hossain, M.; Yamani, Z.; Moqbel, R.; Hezam, A.; Gondal, M. UV-activated gold decorated rGO/ZnO heterostructured nanocomposite sensor for efficient room temperature H2 detection. Sens. Actuators B Chem. 2019, 290, 666–675. [Google Scholar] [CrossRef]
- Mai, H.D.; Jeong, S.; Nguyen, T.K.; Youn, J.S.; Ahn, S.; Park, C.M.; Jeon, K.J. Pd nanocluster/monolayer MoS2 heterojunctions for light-induced room-temperature hydrogen sensing. ACS Appl. Mater. Interfaces 2021, 13, 14644–14652. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yang, F.; Liu, H.; Yan, L.; Yang, W.; Xu, C.; Huang, S.; Li, Q.; Bao, W.; Liu, B. Assembling graphene-encapsulated Pd/TiO2 nanosphere with hierarchical architecture for high-performance visible-light-assisted methanol electro-oxidation material. Ind. Eng. Chem. Res. 2019, 58, 19486–19494. [Google Scholar] [CrossRef]
- Thathsara, T.; Meilak, J.; Sangchap, M.; Harrison, C.; Hocking, R.; Shafiei, M. Visible light active rGO nanosheet encapsulated Pd quantum-sized dots decorated TiO2 nano-spheres for hydrogen gas sensing at low temperatures. Int. J. Hydrogen Energy 2023. [Google Scholar] [CrossRef]
- Chen, P.; Hu, J.; Yin, M.; Bai, W.; Chen, X.; Zhang, Y. MoS2 nanoflowers decorated with Au nanoparticles for visible-light-enhanced gas sensing. ACS Appl. Nano Mater. 2021, 4, 5981–5991. [Google Scholar] [CrossRef]
- Xiong, Y.; Chen, J.; Wiley, B.; Xia, Y.; Yin, Y.; Li, Z.Y. Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process. Nano Lett. 2005, 5, 1237–1242. [Google Scholar] [CrossRef]
- Damkale, S.R.; Arbuj, S.S.; Umarji, G.G.; Rane, S.B.; Kale, B.B. Highly crystalline anatase TiO2 nanocuboids as an efficient photocatalyst for hydrogen generation. RSC Adv. 2021, 11, 7587–7599. [Google Scholar] [CrossRef]
- Johnston, S.K.; Bryant, T.A.; Strong, J.; Lazzarini, L.; Ibhadon, A.O.; Francesconi, M.G. Stabilization of Pd3−xIn1+x polymorphs with Pd-like crystal structure and their superior performance as catalysts for semi-hydrogenation of Alkynes. Chem. Cat. Chem. 2019, 11, 2909–2918. [Google Scholar]
- Wang, Z.; Wang, K.; Wang, H.; Chen, X.; Dai, W.; Fu, X. The correlation between surface defects and the behavior of hydrogen adsorption over ZnO under UV light irradiation. Catal. Sci. Technol. 2018, 8, 3260–3277. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, L. Controllable one-pot synthesis and enhanced photocatalytic activity of mixed-phase TiO2 nanocrystals with tunable brookite/rutile ratios. J. Phys. Chem. C 2009, 113, 1785–1790. [Google Scholar] [CrossRef]
- Hardcastle, F. Raman spectroscopy of titania (TiO2) nanotubular water-splitting catalysts. J. Ark. Acad. Sci. 2011, 65, 43–48. [Google Scholar]
- Challagulla, S.; Tarafder, K.; Ganesan, R.; Roy, S. Structure sensitive photocatalytic reduction of nitroarenes over TiO2. Sci. Rep. 2017, 7, 8783. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, L.; Yu, P.Y.; Mao, S.S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Dong, F.; Zhao, W.; Wang, H.; Liu, Y.; Guan, B. The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity. Nanotechnology 2009, 20, 235701. [Google Scholar] [CrossRef]
- Dhawale, D.S.; Gujar, T.P.; Lokhande, C.D. TiO2 nanorods decorated with Pd nanoparticles for enhanced liquefied petroleum gas sensing performance. Anal. Chem. 2017, 89, 8531–8537. [Google Scholar] [CrossRef]
- Wang, J.; Rao, P.; An, W.; Xu, J.; Men, Y. Boosting photocatalytic activity of Pd decorated TiO2 nanocrystal with exposed (001) facets for selective alcohol oxidations. Appl. Catal. B 2016, 195, 141–148. [Google Scholar] [CrossRef]
- Camposeco, R.; Castillo, S.; Mejía-Centeno, I.; Navarrete, J.; Marín, J. Characterization of physicochemical properties of Pd/TiO2 nanostructured catalysts prepared by the photodeposition method. Mater. Charact. 2014, 95, 201–210. [Google Scholar] [CrossRef]
- Voogt, E.; Mens, A.; Gijzeman, O.; Geus, J. XPS analysis of palladium oxide layers and particles. Surf. Sci. 1996, 350, 21–31. [Google Scholar] [CrossRef]
- Alenezy, E.K.; Sabri, Y.M.; Kandjani, A.E.; Korcoban, D.; Abdul Haroon Rashid, S.S.A.; Ippolito, S.J.; Bhargava, S.K. Low-temperature hydrogen sensor: Enhanced performance enabled through photoactive Pd-decorated TiO2 colloidal crystals. ACS Sens. 2020, 5, 3902–3914. [Google Scholar] [CrossRef]
- Hashtroudi, H.; Kumar, R.; Savu, R.; Moshkalev, S.; Kawamura, G.; Matsuda, A.; Shafiei, M. Hydrogen gas sensing properties of microwave-assisted 2D Hybrid Pd/rGO: Effect of temperature, humidity and UV illumination. Int. J. Hydrogen Energy 2021, 46, 7653–7665. [Google Scholar] [CrossRef]
- Kapoor, A.; Ritter, J.; Yang, R.T. An extended Langmuir model for adsorption of gas mixtures on heterogeneous surfaces. Langmuir 1990, 6, 660–664. [Google Scholar] [CrossRef]
- Thathsara, S.; Cooray, A.T.; Ratnaweera, D.R.; Mudiyanselage, T.K. A novel tri-metal composite incorporated polyacrylamide hybrid material for the removal of arsenate, chromate and fluoride from aqueous media. Environ. Technol. Innov. 2019, 14, 100353. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, R.; Rajamani, S.; Ranwa, S.; Fanetti, M.; Valant, M. Efficient room temperature hydrogen sensor based on UV-activated ZnO nano-network. Nanotechnology 2017, 36, 365502. [Google Scholar] [CrossRef] [PubMed]
- Long, G.L.; Winefordner, J.D. Limit of detection. A closer look at the IUPAC definition. Anal. Chem. 1983, 55, 712A–724A. [Google Scholar]
- Chen, Y.; Pei, Y.; Jiang, Z.; Shi, Z.; Xu, J.; Wu, D.; Xu, T.; Tian, Y.; Wang, X.; Li, X. Humidity sensing properties of the hydrothermally synthesized WS2-modified SnO2 hybrid nanocomposite. Appl. Surf. Sci. 2018, 447, 325–330. [Google Scholar] [CrossRef]
- Hashtroudi, H.; Yu, A.; Juodkazis, S.; Shafiei, M. Two-Dimensional Dy2O3-Pd-PDA/rGO Heterojunction Nanocomposite: Synergistic Effects of Hybridisation, UV Illumination and Relative Humidity on Hydrogen Gas Sensing. Chemosensors 2022, 10, 78. [Google Scholar] [CrossRef]
- Choudhury, S.; Betty, C.; Bhattacharyya, K.; Saxena, V.; Bhattacharya, D. Nanostructured PdO thin film from Langmuir–Blodgett precursor for room-temperature H2 gas sensing. ACS Appl. Mater. 2016, 8, 16997–17003. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, T.; Li, X.; Li, Q.; Zhang, X.; Cao, T.; Li, Y.; Zhang, L.; Guo, L.; Fu, Y. Pd-decorated PdO hollow shells: A H2-sensing system in which catalyst nanoparticle and semiconductor support are interconvertible. ACS Appl. Mater. 2020, 12, 42971–42981. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Van Dao, D.; Ha, N.T.T.; Van Tran, T.; Kim, D.-S.; Yoon, J.W.; Ha, N.N.; Lee, I.H.; Yu, Y.T. Superhigh sensing response and selectivity for hydrogen gas using PdPt@ ZnO core-shell nanoparticles: Unique effect of alloyed ingredient from experimental and theoretical investigations. Sens. Actuators B Chem. 2022, 354, 131083. [Google Scholar] [CrossRef]
- Wang, D.; Yang, J.; Bao, L.; Cheng, Y.; Tian, L.; Ma, Q.; Xu, J.; Li, H.J.; Wang, X. Pd nanocrystal sensitization two-dimension porous TiO2 for instantaneous and high efficient H2 detection. J. Colloid Interface Sci. 2021, 597, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Luo, Y.; Zheng, B.; Zhang, C. Photon assisted room-temperature hydrogen sensors using PdO loaded WO3 nanohybrids. Int. J. Hydrogen Energy 2017, 42, 6425–6434. [Google Scholar] [CrossRef]
- Li, Y.F.; Aschauer, U.; Chen, J.; Selloni, A. Adsorption and reactions of O2 on anatase TiO2. Acc. Chem. Res. 2014, 47, 3361–3368. [Google Scholar] [CrossRef]
- Zeng, W.; Liu, T.; Wang, Z.; Tsukimoto, S.; Saito, M.; Ikuhara, Y. Oxygen adsorption on anatase TiO2 (101) and (001) surfaces from first principles. Mater. Trans. 2010, 51, 171–175. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Guan, Y.; Wang, D.; Zhang, X.; Liu, D.; Jiang, H.; Wang, J.; Liu, X.; Liu, H.; Chen, S. PdO/TiO2 and Pd/TiO2 heterostructured nanobelts with enhanced photocatalytic activity. Chem. Asian J. 2014, 9, 1648–1654. [Google Scholar] [CrossRef]
Voltage (mV) | Response (%) | Response Time (s) | Recover Time (s) |
---|---|---|---|
10 | 100.85 | 270 | 3300 |
50 | 100.97 | 183 | 3036 |
100 | 100.97 | 240 | 2640 |
500 | 101.12 | 180 | 1680 |
Temperature (°C) | Response (%) | Response Time (s) | Recover Time (s) |
---|---|---|---|
25 | 101.04 | 144 | 11,990 |
30 | 101.14 | 100 | 1680 |
35 | 101.14 | 114 | 1345 |
40 | 101.16 | 110 | 1380 |
45 | 101.23 | 110 | 1380 |
50 | 101.26 | 135 | 1345 |
60 | 101.19 | 55 | 2310 (unstable baseline) |
Wavelengths (nm) | Response (%) | Response Time (s) | Recover Time (s) |
---|---|---|---|
Dark condition | 101.08 | 100 | 1680 |
365 | 101.00 | 210 | 1470 |
490 (blue light) | 101.08 | 168 | 694 |
530 (green light) | 101.12 | 106 | 640 |
565 (yellow light) | 100.82 | 77 | 470 |
625 (orange light) | 100.82 | 154 | 660 (not fully recovered) |
Sensing Material | Applied Voltage (V) | Concentration (ppm) | Temperature (°C) | Light Source | Response | Response/Recovery Times (s) | Ref. |
---|---|---|---|---|---|---|---|
TiO2–Pd Long-range-ordered crystals (LROC) | 9 | 500 | 33 | UV (365 nm) | 91% a | 45/24 | [40] |
Pd–MoS2 | 3 | 140 | 25 | Visible light | 17.45% c | 351/515 | [23] |
PdO Thin films | - | 2% | RT (N2 as carrier gas) | - | - | 10/10 | [48] |
Pd–PdO Nanospheres | 1 | 1% | RT | - | 160% a | 5/32 | [49] |
PdPt@ZnO Core shell nanoparticles | - | 100 | 350 | - | 48 b | 0.7/3 min | [50] |
Pd/TiO2 Two-dimensional Porous TiO2 | - | 1000 | 230 | - | 9 c | 1.6/1.4 | [51] |
PdO-loaded WO3 Nanohybrids | - | 40 | RT | 450–490 nm Visible light | 8.02 b | 2.1/5.8 min | [52] |
PdPdO@TiO2 Nanospheres | 0.5 | 500 | 30 | 565 nm Visible light | 100.82% d | 77/470 | This research |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thathsara, T.; Harrison, C.J.; Hocking, R.K.; Shafiei, M. Pd- and PdO-Decorated TiO2 Nanospheres: Hydrogen Sensing Properties under Visible Light Conditions at Room Temperature. Chemosensors 2023, 11, 409. https://doi.org/10.3390/chemosensors11070409
Thathsara T, Harrison CJ, Hocking RK, Shafiei M. Pd- and PdO-Decorated TiO2 Nanospheres: Hydrogen Sensing Properties under Visible Light Conditions at Room Temperature. Chemosensors. 2023; 11(7):409. https://doi.org/10.3390/chemosensors11070409
Chicago/Turabian StyleThathsara, Thilini, Christopher J. Harrison, Rosalie K. Hocking, and Mahnaz Shafiei. 2023. "Pd- and PdO-Decorated TiO2 Nanospheres: Hydrogen Sensing Properties under Visible Light Conditions at Room Temperature" Chemosensors 11, no. 7: 409. https://doi.org/10.3390/chemosensors11070409
APA StyleThathsara, T., Harrison, C. J., Hocking, R. K., & Shafiei, M. (2023). Pd- and PdO-Decorated TiO2 Nanospheres: Hydrogen Sensing Properties under Visible Light Conditions at Room Temperature. Chemosensors, 11(7), 409. https://doi.org/10.3390/chemosensors11070409