Pyrogallol Detection Based on the Cobalt Metal–Organic Framework of Nanomaterial-Enhanced Chemiluminescence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Apparatus
2.3. Synthesis of Co-MOF
2.4. CL Emission Study of the Co-MOF-NaIO4-H2O2 System
2.5. CL Mechanism Study of the Co-MOF-NaIO4-H2O2 System
2.6. PG Detection
3. Results and Discussion
3.1. Characterization of Co-MOF
3.2. CL Emission of the Co-MOF-NaIO4-H2O2 System
3.3. CL Mechanism of the Co-MOF-NaIO4-H2O2 System
3.4. PG Detection
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Yang, Y.; Zeng, Y.; Wang, J.; Liu, H.; Guo, L.; Li, L. Novel imidazole fluorescent poly(ionic liquid) nanoparticles for selective and sensitive determination of pyrogallol. Talanta 2017, 174, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.; Park, E.; Lee, H. Plant-inspired pyrogallol-containing functional materials. Adv. Funct. Mater. 2019, 29, 1903022. [Google Scholar] [CrossRef]
- Singh, V.; Ahmad, S.; Rao, G.S. Prooxidant and antioxidant properties of iron-hydroquinone and iron-1,2,4-benzenetriol complex-implications for benzene toxicity. Toxicology 1994, 89, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.N.; Fu, Q.Q.; Lu, J.; Yang, H.; Orr, P.T.; Zhang, F.; Dong, J.; Zhang, M.; Gu, Q.H.; Zhou, C.J.; et al. Enhanced pyrogallol toxicity to cyanobacterium microcystis aeruginosa with increasing alkalinity. J. Appl. Phycol. 2020, 32, 1827–1835. [Google Scholar] [CrossRef]
- Hamed, M.; Martyniuk, C.J.; Said, R.E.M.; Soliman, H.A.M.; Badrey, A.E.A.; Hassan, E.A.; Abdelhamid, H.N.; Osman, A.G.M.; Sayed, A.E.H. Exposure to pyrogallol impacts the hemato-biochemical endpoints in catfish (clarias gariepinus). Environ. Pollut. 2023, 333, 122074. [Google Scholar] [CrossRef]
- He, S.; He, D.; Jiang, H. Fi-chemiluminescence determination of pyrogallol in water. Phys. Test. Chem. Anal. 2008, 44, 316–318. [Google Scholar]
- Park, W.H.; Han, Y.H.; Kim, S.H.; Kim, S.Z. Pyrogallol, ROS generator inhibits As4.1 juxtaglomerular cells via cell cycle arrest of G2 phase and apoptosis. Toxicology 2007, 235, 130–139. [Google Scholar] [CrossRef]
- Rajkumar, C.; Kim, H. An amperometric electrochemical sensor based on hierarchical dual-microporous structure polypyrrole nanoparticles for determination of pyrogallol in the aquatic environmental samples. Microchem. J. 2022, 183, 108038. [Google Scholar] [CrossRef]
- Torrini, F.; Renai, L.; Scarano, S.; Del Bubba, M.; Palladino, P.; Minunni, M. Colorimetric selective quantification of anthocyanins with catechol/pyrogallol moiety in edible plants upon zinc complexation. Talanta 2022, 240, 123156. [Google Scholar] [CrossRef]
- Mostafa, I.M.; Gilani, M.; Chen, Y.Q.; Lou, B.H.; Li, J.P.; Xu, G.B. Lucigenin-pyrogallol chemiluminescence for the multiple detection of pyrogallol, cobalt ion, and tyrosinase. J. Food Drug Anal. 2021, 29, 510–520. [Google Scholar] [CrossRef]
- Bao, A.; Xiao, N.; Zhu, Y.C.; Xin, S.G.; Zhang, H.B. The electrochemical catalytic behavior of pyrogallol at an 8-hydroxyquinoline-aluminum complex modified carbon paste electrode and its detection in tomato. RSC Adv. 2015, 5, 12710–12716. [Google Scholar] [CrossRef]
- Matemadombo, F.; Apetrei, C.; Nyokong, T.; Rodriguez-Mendez, M.L.; de Saja, J.A. Comparison of carbon screen-printed and disk electrodes in the detection of antioxidants using copc derivatives. Sensor. Actuat. B-Chem. 2012, 166, 457–466. [Google Scholar] [CrossRef]
- Chen, F.; Xia, X.; Ye, D.; Li, T.; Huang, X.; Cai, C.; Zhu, C.; Lin, C.; Deng, T.; Liu, F. A green-emitting luminol analogue as the next-generation chemiluminescent substrate in biochemical analysis. Anal. Chem. 2023, 95, 5773–5779. [Google Scholar] [CrossRef]
- Yuan, S.J.; Yu, R.; Tu, Y.; Du, Y.H.; Feng, X.; Nie, F. An enhanced chemiluminescence hybrids of luminol by sulfonated polyaniline decorated copper-based metal organic frame composite applicable to the measurement of hydrogen peroxide in a wide ph range. Talanta 2023, 254, 124183. [Google Scholar] [CrossRef]
- Li, J.L.; Yang, M.Q.; Cao, D.; Zhang, L.; Zong, C.; Li, P. Ultrasensitive homogeneous detection of pcsk9 and efficacy monitoring of the pcsk9 inhibitor based on proximity hybridization-dependent chemiluminescence imaging immunoassay. Anal. Chem. 2023, 95, 5428–5435. [Google Scholar] [CrossRef]
- Sun, M.X.; Song, H.J.; Liu, H.Y.; Su, Y.Y.; Xie, X.B.; Lv, Y. Organic semiconductor nanosheets for sulfite detecting based on activation of sulfite and a synergetic chemiluminescence resonance energy transfer process in a mild system of Fe2+-SO32−. Anal. Chem. 2023, 95, 3901–3908. [Google Scholar] [CrossRef]
- Chang, J.F.; Yu, L.; Hou, T.; Hu, R.X.; Li, F. Direct and specific detection of glyphosate using a phosphatase-like nanozyme-mediated chemiluminescence strategy. Anal. Chem. 2023, 95, 4479–4485. [Google Scholar] [CrossRef]
- Yang, M.; Huang, J.; Fan, J.; Du, J.; Pu, K.; Peng, X. Chemiluminescence for bioimaging and therapeutics: Recent advances and challenges. Chem. Soc. Rev. 2020, 49, 6800–6815. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, X.; Hai, X.; Song, W.; Ding, C.; Cao, J.; Bi, S. Chemiluminescence resonance energy transfer: From mechanisms to analytical applications. Trac-Trend. Anal. Chem. 2020, 123, 115755. [Google Scholar] [CrossRef]
- Zhu, H.; Huang, X.; Deng, Y.; Chen, H.; Fan, M.; Gong, Z. Applications of nanomaterial-based chemiluminescence sensors in environmental analysis. Trac-Trend. Anal. Chem. 2023, 158, 116879. [Google Scholar] [CrossRef]
- Zong, C.; Wu, J.; Zang, Y.; Ju, H.X. Resonance energy transfer and electron-hole annihilation induced chemiluminescence of quantum dots for amplified immunoassay. Chem. Commun. 2018, 54, 11861–11864. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Kang, J.; Wu, Y.; Pang, C.; Li, S.; Li, J.; Xiong, Y.; Luo, J.; Wang, M.; Xu, Z. Recent advances in metal/covalent organic framework-based materials for photoelectrochemical sensing applications. Trac-Trend. Anal. Chem. 2022, 157, 116793. [Google Scholar] [CrossRef]
- Ren, X.; Liao, G.; Li, Z.; Qiao, H.; Zhang, Y.; Yu, X.; Wang, B.; Tan, H.; Shi, L.; Qi, X.; et al. Two-dimensional MOF and COF nanosheets for next-generation optoelectronic applications. Coordin. Chem. Rev. 2021, 435, 213781. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, G.; Neogi, S. Devising mixed-ligand based robust Cd(II)-framework from bi-functional ligand for fast responsive luminescent detection of Fe3+ and Cr(VI) oxo-anions in water with high selectivity and recyclability. Front. Chem. 2021, 9, 651866. [Google Scholar] [CrossRef]
- Liu, B.; Hou, L.; Wu, W.P.; Dou, A.N.; Wang, Y.Y. Highly selective luminescence sensing for Cu2+ ions and selective CO2 capture in a doubly interpenetrated MOF with lewis basic pyridyl sites. Dalton Trans. 2015, 44, 4423–4427. [Google Scholar] [CrossRef] [PubMed]
- Rühle, B.; Virmani, E.; Engelke, H.; Hinterholzinger, F.M.; von Zons, T.; Brosent, B.; Bein, T.; Godt, A.; Wuttke, S. A chemiluminescent metal-organic framework. Chem-Eur. J. 2019, 25, 6349–6354. [Google Scholar] [CrossRef]
- Vaitsis, C.; Sourkouni, G.; Argirusis, C. Metal organic frameworks (MOFs) and ultrasound: A review. Ultrason. Sonochem. 2019, 52, 106–119. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, Y.; Dong, J.; He, C.; Yin, H.; An, P.; Zhao, K.; Zhang, X.; Gao, C.; Zhang, L.; et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184. [Google Scholar] [CrossRef]
- Zhang, L.; Ouyang, H.; Zhang, D.; Fu, Z. Novel cobalt-based metal-organic frameworks with superior catalytic performance on n-(4-aminobutyl)-n-ethylisoluminol chemiluminescent reaction. Anal. Chim. Acta 2021, 1148, 238174. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.; Wang, M.; Li, H.; Saqib, M.; Ge, C.; Zhang, X.; Jin, Y. Enhancing luminol electrochemiluminescence by combined use of cobalt-based metal organic frameworks and silver nanoparticles and its application in ultrasensitive detection of cardiac troponin i. Anal. Chem. 2019, 91, 3048–3054. [Google Scholar] [CrossRef]
- Zhong, H.; Ly, K.H.; Wang, M.; Krupskaya, Y.; Han, X.; Zhang, J.; Zhang, J.; Kataev, V.; Büchner, B.; Weidinger, I.M.; et al. A phthalocyanine-based layered two-dimensional conjugated metal-organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Edit. 2019, 58, 10677–10682. [Google Scholar] [CrossRef]
- Tirosh, E.; Shemer, G.; Markovich, G. Optimizing cobalt ferrite nanocrystal synthesis using a magneto-optical probe. Chem. Mater. 2006, 18, 465–470. [Google Scholar] [CrossRef]
- Shyamaldas; Bououdina, M.; Manoharan, C. Dependence of structure/morphology on electrical/magnetic properties of hydrothermally synthesised cobalt ferrite nanoparticles. J. Magn. Magn. Mater. 2020, 493, 165703. [Google Scholar] [CrossRef]
- Yang, J.; Xiong, P.; Zheng, C.; Qiu, H.; Wei, M. Metal-organic frameworks: A new promising class of materials for a high performance supercapacitor electrode. J. Mater. Chem. A 2014, 2, 16640–16644. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Wang, Y.; Chen, T.; Wu, J.; Liu, X.; Lin, C. Ultraweak chemiluminescence enhanced on the surface of lanthanide metal-organic framework nanosheets synthesized by ultrasonic wave. Appl. Surf. Sci. 2022, 579, 151860. [Google Scholar] [CrossRef]
- Wang, Y.F.; Wang, Y.R.; Huang, C.X.; Chen, T.Y.; Wu, J. Ultra-weak chemiluminescence enhanced by cerium-doped LaF3 nanoparticles: A potential nitrite analysis method. Front. Chem. 2020, 8, 639. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, C.; Wang, Y.; Chen, T.; Wu, J. Chemiluminescence enhanced by cerium-doped LaF3 nanoparticles through electron-hole annihilation. J. Lumin. 2021, 239, 118407. [Google Scholar] [CrossRef]
- Shah, S.N.A.; Khan, M.; Rehman, Z.U. A prolegomena of periodate and peroxide chemiluminescence. Trac-Trend. Anal. Chem. 2020, 122, 115722. [Google Scholar] [CrossRef]
- Adam, W.; Kazakov, D.V.; Kazakov, V.P. Singlet-oxygen chemiluminescence in peroxide reactions. Chem. Rev. 2005, 105, 3371–3387. [Google Scholar] [CrossRef]
- Shah, S.N.A.; Li, H.; Lin, J. Enhancement of periodate-hydrogen peroxide chemiluminescence by nitrogen doped carbon dots and its application for the determination of pyrogallol and gallic acid. Talanta 2016, 153, 23–30. [Google Scholar] [CrossRef]
- Cai, N.; Yang, D.Q.; He, Y.Y.; Chen, F.N. Enhanced chemiluminescence of the fluorescein-KIO4 system by cdte quantum dots for determination of catechol. Luminescence 2018, 33, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Kameda, T.; Toriba, A.; Hayakawa, K.; Lin, J. Determination of benzo[a]pyrene-7,10-quinone in airborne particulates by using a chemiluminescence reaction of hydrogen peroxide and hydrosulfite. Anal. Chem. 2012, 84, 3215–3221. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.Z.; Zhang, D.K.; Shah, S.; Li, H.F.; Lin, J.M. Ultra-weak chemiluminescence enhanced by facilely synthesized nitrogen-rich quantum dots through chemiluminescence resonance energy transfer and electron hole injection. Chem. Commun. 2017, 53, 5657–5660. [Google Scholar] [CrossRef] [PubMed]
- Lai, D.Z.; Lu, W.Y.; Liu, T.; Fu, Y.Q.; Yi, L.M.; Chen, W.X. Peroxy radical formation from Cu2O/poly(acrylonitrile) nanofibers and hydrogen peroxide. Sci. Adv. Mater. 2016, 8, 775–782. [Google Scholar] [CrossRef]
- Sun, X.; Lei, J.; Jin, Y.; Li, B. Long-lasting and intense chemiluminescence of luminol triggered by oxidized g-C3N4 nanosheets. Anal. Chem. 2020, 92, 11860–11868. [Google Scholar] [CrossRef]
- Liu, H.J.; Sun, M.X.; Su, Y.Y.; Deng, D.Y.; Hu, J.Y.; Lv, Y. Chemiluminescence of black phosphorus quantum dots induced by hypochlorite and peroxide. Chem. Commun. 2018, 54, 7987–7990. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Fernandez-Fueyo, E.; Ni, Y.; van Schie, M.; Gacs, J.; Renirie, R.; Wever, R.; Mutti, F.G.; Rother, D.; Alcalde, M.; et al. Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalizations. Nat. Catal. 2018, 1, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Chance, B.; Sies, H.; Boveris, A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 1979, 59, 527–605. [Google Scholar] [CrossRef]
- Xie, C.G.; Li, H.F. Determination of tannic acid in industrial wastewater based on chemiluminescence system of KIO4-H2O2-tween40. Luminescence 2010, 25, 350–354. [Google Scholar] [CrossRef]
- Huang, T.Y.; Lin, W.Y. A stopped-flow study of the dual chemiluminescence for the luminol-KIO4-Mn2+ system in strong alkaline solutions. Luminescence 2011, 26, 118–124. [Google Scholar] [CrossRef]
- Lin, Z.; Xue, W.; Chen, H.; Lin, J. Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Anal. Chem. 2011, 83, 8245–8251. [Google Scholar] [CrossRef]
- Shah, S.; Zheng, Y.Z.; Li, H.F.; Lin, J.M. Chemiluminescence character of ZnS quantum dots with bisulphite-hydrogen peroxide system in acidic medium. J. Phys. Chem. C. 2016, 120, 9308–9316. [Google Scholar] [CrossRef]
- Dou, X.N.; Lin, Z.; Chen, H.; Zheng, Y.Z.; Lu, C.; Lin, J.M. Production of superoxide anion radicals as evidence for carbon nanodots acting as electron donors by the chemiluminescence method. Chem. Commun. 2013, 49, 5871–5873. [Google Scholar] [CrossRef]
- Evmiridis, N.P.; Vlessidis, A.G.; Thanasoulias, N.C.; Fritsky, I.O. Chemical analysis through cl-detection assisted by periodate oxidation. Bioinorg. Chem. Appl. 2007, 2007, 92595. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, H.S.; Wang, Q.E.; Wu, F. Study on the chemiluminescence (CL) analysis for the determination of pyrogallol in water environment. Spectrosc. Spect. Anal. 2004, 24, 927–929. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, Z.; Liu, Y.; Liu, Z.; Gao, Z.; Li, K.; Zhao, D.; Wu, J.; Liu, X. Pyrogallol Detection Based on the Cobalt Metal–Organic Framework of Nanomaterial-Enhanced Chemiluminescence. Chemosensors 2023, 11, 395. https://doi.org/10.3390/chemosensors11070395
Wang Y, Wang Z, Liu Y, Liu Z, Gao Z, Li K, Zhao D, Wu J, Liu X. Pyrogallol Detection Based on the Cobalt Metal–Organic Framework of Nanomaterial-Enhanced Chemiluminescence. Chemosensors. 2023; 11(7):395. https://doi.org/10.3390/chemosensors11070395
Chicago/Turabian StyleWang, Yanran, Zhiqiang Wang, Yincheng Liu, Zixuan Liu, Zhan Gao, Kuangjun Li, Dajun Zhao, Jing Wu, and Xuanhe Liu. 2023. "Pyrogallol Detection Based on the Cobalt Metal–Organic Framework of Nanomaterial-Enhanced Chemiluminescence" Chemosensors 11, no. 7: 395. https://doi.org/10.3390/chemosensors11070395
APA StyleWang, Y., Wang, Z., Liu, Y., Liu, Z., Gao, Z., Li, K., Zhao, D., Wu, J., & Liu, X. (2023). Pyrogallol Detection Based on the Cobalt Metal–Organic Framework of Nanomaterial-Enhanced Chemiluminescence. Chemosensors, 11(7), 395. https://doi.org/10.3390/chemosensors11070395