A Facile Sensor for Detection of Lysozyme in Egg White Based on AuNPs and Ferrocene Dicarboxylic Acid
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Methods
2.2. Instrumentation
2.3. Preparation of Sensors and Electrochemical Detection of Lyz
3. Results and Discussion
3.1. Comparison of the Modified Materials on Electrode Surface
3.2. Characterization of the As-Prepared Electrodes
3.3. Optimization Studies
3.4. Lyz Assay, Selectivity, Reproducibility, and Stability
3.5. Foods Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamdani, A.M.; Wani, I.A.; Bhat, N.A.; Siddiqi, R.A. Effect of guar gum conjugation on functional, antioxidant and antimicrobial activity of egg white lysozyme. Food Chem. 2018, 240, 1201–1209. [Google Scholar] [CrossRef] [PubMed]
- Menacho-Melgar, R.; Moreb, E.A.; Efromson, J.P.; Yang, T.; Hennigan, J.N.; Wang, R.; Lynch, M.D. Improved two-stage protein expression and purification via autoinduction of both autolysis and auto DNA/RNA hydrolysis conferred by phage lysozyme and DNA/RNA endonuclease. Biotechnol. Bioeng. 2020, 117, 2852–2860. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.-L.; Ding, B.-X.; Lan, X.-M.; Guo, S.-B.; Xie, Y.-Y.; Wang, C.-B. The toxicity study on marine low-temperature lysozyme. Food Chem. Toxicol. 2008, 46, 604–609. [Google Scholar] [CrossRef]
- Konstan, M.W.; Chen, P.W.; Sherman, J.M.; Thomassen, M.J.; Wood, R.E.; Boat, T.F. Human lung lysozyme: Sources and properties. Am. Rev. Respir. Dis. 1981, 123, 120–124. [Google Scholar] [PubMed]
- Porstmann, B.; Jung, K.; Schmechta, H.; Evers, U.; Pergande, M.; Porstmann, T.; Kramm, H.J.; Krause, H. Measurement of lysozyme in human body fluids: Comparison of various enzyme immunoassay techniques and their diagnostic application. Clin. Biochem. 1989, 22, 349–355. [Google Scholar] [CrossRef]
- Huang, J.M.; Nandi, S.; Wu, L.Y.; Yalda, D.; Bartley, G.; Rodriguez, R.; Lonnerdal, B.; Huang, N. Expression of natural antimicrobial human lysozyme in rice grains. Mol. Breed. 2002, 10, 83–94. [Google Scholar] [CrossRef]
- Ishii, H.; Iwata, A.; Oka, H.; Sakamoto, N.; Ishimatsu, Y.; Kadota, J.-i. Elevated serum levels of lysozyme in desquamative interstitial pneumonia. Intern. Med. 2010, 49, 847–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venge, P.; Foucard, T.; Henriksen, J.; Hakansson, L.; Kreuger, A. Serum-levels of lactoferrin, lysozyme and myeloperoxidase in normal, infection-prone and leukemic children. Clin. Chim. Acta 1984, 136, 121–130. [Google Scholar] [CrossRef]
- Grieco, M.H.; Reddy, M.M.; Kothari, H.B.; Lange, M.; Buimovici-Klein, E.; William, D. Elevated beta 2-microglobulin and lysozyme levels in patients with acquired immune deficiency syndrome. Clin. Immunol. Immunopathol. 1984, 32, 174–184. [Google Scholar] [CrossRef]
- Perillie, P.E.; Khan, K.; Finch, S.C. Serum lysozyme in pulmonary tuberculosis. Am. J. Med. Sci. 1973, 265, 297–302. [Google Scholar] [CrossRef]
- Falchuk, K.R.; Perrotto, J.L.; Isselbacher, K.J. Serum lysozyme in Crohn’s: A useful index of disease activity. Gastroenterology 1975, 69, 893–896. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, T.; Ueda, K.; Maeda, H.; Kambara, T. Determination of lysozyme activity by fluorescence polarization in rheumatoid synovial fluids and release of lysozyme from polymorphonuclear leukocytes by chemotactic factors. J. Immunol. Methods 1987, 103, 221–227. [Google Scholar] [CrossRef]
- Thonar, E.J.; Feist, S.B.; Fassbender, K.; Lenz, M.E.; Matijevitch, B.L.; Kuettner, K.E. Quantification of hen egg white lysozyme in cartilage by an enzyme-linked immunosorbent assay. Connect. Tissue Res. 1988, 17, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Jaeser, M.; Moeckel, U.; Weigel, K.; Henle, T. Natural association of lysozyme and casein micelles in human milk. J. Agric. Food Chem. 2022, 70, 1652–1658. [Google Scholar] [CrossRef]
- Haselberg, R.; Harmsen, S.; Dolman, M.E.M.; de Jong, G.J.; Kok, R.J.; Somsen, G.W. Characterization of drug-lysozyme conjugates by sheathless capillary electrophoresis-time-of-flight mass spectrometry. Anal. Chim. Acta 2011, 698, 77–83. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, Y.-Y.; Chen, H.; Wang, X.-H.; Chen, Q.; He, P.-G. Sensitive fluorescence detection of lysozyme using a tris(bipyridine)ruthenium(II) complex containing multiple cyclodextrins. Chem. Commun. 2015, 51, 6613–6616. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Wu, W.; Ruan, Y.; Huang, L.; Wu, Z.; Cai, Y.; Fu, F. Ultra-sensitive quantification of lysozyme based on element chelate labeling and capillary electrophoresis inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2014, 812, 12–17. [Google Scholar] [CrossRef]
- Melinte, G.; Selvolini, G.; Cristea, C.; Marrazza, G. Aptasensors for lysozyme detection: Recent advances. Talanta 2021, 226, 122169. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, Q.; Tang, G.; Liu, S.; Xu, S.; Zhang, X. A facile electrochemical aptasensor for lysozyme detection based on target-induced turn-off of photosensitization. Biosens. Bioelectron. 2019, 126, 412–417. [Google Scholar] [CrossRef]
- Lahcen, A.A.; Baleg, A.A.; Baker, P.; Iwuoha, E.; Amine, A. Synthesis and electrochemical characterization of nanostructured magnetic molecularly imprinted polymers for 17-beta-Estradiol determination. Sen. Actuators B Chem. 2017, 241, 698–705. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, X.; Kong, B.; Wang, Y.; Wei, W. A sensitive nonenzymatic hydrogen peroxide sensor based on DNA-Cu2+ complex electrodeposition onto glassy carbon electrode. Sen. Actuators B Chem. 2008, 133, 381–386. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, S.; Jiang, R.; Sun, L.; Pang, S.; Luo, A. Fluorescent molecularly imprinted membranes as biosensor for the detection of target protein. Sen. Actuators B Chem. 2018, 254, 1078–1086. [Google Scholar] [CrossRef]
- Liu, J.G.; Wan, J.Z.; Lin, Q.M.; Han, G.C.; Feng, X.Z.; Chen, Z. Convenient heme nanorod modified electrode for quercetin sensing by two common electrochemical methods. Micromachines 2021, 12, 1519. [Google Scholar] [CrossRef] [PubMed]
- An, Q.Q.; Feng, X.Z.; Zhou, Z.F.; Zhan, T.; Lian, S.F.; Zhu, J.; Han, G.C.; Chen, Z.; Kraatz, H.B. One step construction of an electrochemical sensor for melamine detection in milk towards an integrated portable system. Food Chem. 2022, 383, 132403. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.Z.; Ferranco, A.; Su, X.R.; Chen, Z.C.; Jiang, Z.L.; Han, G.C. A facile electrochemical sensor labeled by ferrocenoyl cysteine conjugate for the detection of nitrite in pickle juice. Sensors 2019, 19, 268. [Google Scholar] [CrossRef] [Green Version]
- Li, L.-D.; Chen, Z.-B.; Zhao, H.-T.; Guo, L.; Mu, X. An aptamer-based biosensor for the detection of lysozyme with gold nanoparticles amplification. Sens. Actuators B Chem. 2010, 149, 110–115. [Google Scholar] [CrossRef]
- Si, P.; Razmi, N.; Nur, O.; Solanki, S.; Pandey, C.M.; Gupta, R.K.; Malhotra, B.D.; Willander, M.; de la Zerda, A. Gold nanomaterials for optical biosensing and bioimaging. Nanoscale Adv. 2021, 3, 2679–2698. [Google Scholar] [CrossRef]
- Guo, S.J.; Wang, E.K. Synthesis and electrochemical applications of gold nanoparticles. Anal. Chim. Acta 2007, 598, 181–192. [Google Scholar] [CrossRef]
- Aldewachi, H.; Chalati, T.; Woodroofe, M.N.; Bricklebank, N.; Sharrack, B.; Gardiner, P. Gold nanoparticle-based colorimetric biosensors. Nanoscale 2018, 10, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Kannan, P.; John, S.A. Determination of nanomolar uric and ascorbic acids using enlarged gold nanoparticles modified electrode. Anal. Biochem. 2009, 386, 65–72. [Google Scholar] [CrossRef]
- Chen, Z.; Li, L.; Zhao, H.; Guo, L.; Mu, X. Electrochemical impedance spectroscopy detection of lysozyme based on electrodeposited gold nanoparticles. Talanta 2011, 83, 1501–1506. [Google Scholar] [CrossRef]
- Zhan, T.; Feng, X.-Z.; Cheng, Y.-Y.; Han, G.-C.; Chen, Z.; Kraatz, H.-B. Synergistic electrochemical amplification of ferrocene carboxylic acid nanoflowers and Cu nanoparticles for folic acid sensing. J. Electrochem. Soc. 2022, 169, 007510. [Google Scholar] [CrossRef]
- Feng, X.Z.; Su, X.R.; Ferranco, A.; Chen, Z.C.; Han, G.C.; Jiang, Z.L.; Kraatz, H.B. Real-time electrochemical detection of uric acid, dopamine and ascorbic acid by heme directly modified carbon electrode. J. Biomed. Nanotechnol. 2020, 16, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Han, G.C.; Su, X.R.; Hou, J.T.; Ferranco, A.; Feng, X.Z.; Zeng, R.S.; Chen, Z.C.; Kraatz, H.B. Disposable electrochemical sensors for hemoglobin detection based on ferrocenoyl cysteine conjugates modified electrode. Sen. Actuators B Chem. 2019, 282, 130–136. [Google Scholar] [CrossRef]
- Kondzior, M.; Grabowska, I. Antibody-electroactive probe conjugates based electrochemical immunosensors. Sensors 2020, 20, 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, G.C.; Hou, J.T.; Huang, Z.L.; Feng, X.Z.; Chen, Z.C.; Xiao, W.X.; Li, S. Electrochemical behaviors of ferrocene dicarboxylate and its application for heme detection. Int. J. Electrochem. Sci. 2017, 12, 6245–6254. [Google Scholar] [CrossRef]
- Han, G.C.; Su, X.R.; Hou, J.T.; Feng, X.Z.; Chen, Z.C. Interaction study of Fc(COOH)(2) and BSA by UV-Vis spectroscopy. Spectrosc. Spect. Anal. 2018, 38, 3958–3962. [Google Scholar]
- Cheng, Y.Y.; Zhan, T.; Feng, X.Z.; Han, G.C. A synergistic effect of gold nanoparticles and melamine with signal amplifification for C-reactive protein sensing. J. Electroanal. Chem. 2021, 895, 115417. [Google Scholar] [CrossRef]
- Sano, S.; Kato, K.; Ikada, Y. Introduction of functional-groups onto the surface of polyethylene for protein immobilization. Biomaterials 1993, 14, 817–822. [Google Scholar] [CrossRef]
- Bezuneh, T.T.; Fereja, T.H.; Kitte, S.A.; Li, H.; Jin, Y. Gold nanoparticle-based signal amplified electrochemiluminescence for biosensing applications. Talanta 2022, 248, 123611. [Google Scholar] [CrossRef]
- Ates, M.; Chebil, A. Supercapacitor and battery performances of multi-component nanocomposites: Real circuit and equivalent circuit model analysis br. J. Energy Storage 2022, 53, 105093. [Google Scholar] [CrossRef]
- Gaberscek, M. Impedance spectroscopy of battery cells: Theory versus experiment. Curr. Opin. Electrochem. 2022, 32, 100917. [Google Scholar] [CrossRef]
- Sarkar, D.; Kang, P.; Nielsen, S.O.; Qin, Z. Non-arrhenius reaction-diffusion kinetics for protein inactivation over a large temperature range. ACS Nano 2019, 13, 8669–8679. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Aguayo, D.; del Valle, M. Label-free aptasensor for lysozyme detection using electrochemical impedance spectroscopy. Sensors 2018, 18, 354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Titoiu, A.M.; Porumb, R.; Fanjul-Bolado, P.; Epure, P.; Zamfir, M.; Vasilescu, A. Detection of allergenic lysozyme during winemaking with an electrochemical aptasensor. Electroanal 2019, 31, 2262–2273. [Google Scholar] [CrossRef]
- Cao, X.; Xia, J.; Liu, H.; Zhang, F.; Wang, Z.; Lu, L. A new dual-signalling electrochemical aptasensor with the integration of “signal on/off” and “labeling/label-free” strategies. Sen. Actuators B Chem. 2017, 239, 166–171. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, J.; Li, J.; Guo, L. Tetrahexahedral Au nanocrystals/aptamer based ultrasensitive electrochemical biosensor. RSC Adv. 2013, 3, 14385–14389. [Google Scholar] [CrossRef]
- Arabzadeh, A.; Salimi, A. Novel voltammetric and impedimetric sensor for femtomolar determination of lysozyme based on metal-chelate affinity immobilized onto gold nanoparticles. Biosens. Bielectron 2015, 74, 270–276. [Google Scholar] [CrossRef]
Food | Added (mmol·L−1) | Current (μA) | Detect Concentration (mmol·L−1) | Average Concentration (mmol·L−1) | RSD % | Recovery % |
---|---|---|---|---|---|---|
Egg white | 0.00 | 4.423 | 0.019 | 0.019 ± 0.001 | 6.75 | - |
4.420 | 0.018 | |||||
4.431 | 0.021 | |||||
0.20 | 5.140 | 0.219 | 0.224 ± 0.020 | 3.72 | 102.62 | |
5.134 | 0.218 | |||||
5.200 | 0.236 | |||||
0.40 | 5.840 | 0.415 | 0.417 ± 0.002 | 1.47 | 100.54 | |
5.840 | 0.415 | |||||
5.853 | 0.419 | |||||
0.60 | 6.598 | 0.628 | 0.592 ± 0.065 | 4.42 | 95.45 | |
6.439 | 0.583 | |||||
6.376 | 0.565 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, J.; Han, G. A Facile Sensor for Detection of Lysozyme in Egg White Based on AuNPs and Ferrocene Dicarboxylic Acid. Chemosensors 2023, 11, 209. https://doi.org/10.3390/chemosensors11040209
Wan J, Han G. A Facile Sensor for Detection of Lysozyme in Egg White Based on AuNPs and Ferrocene Dicarboxylic Acid. Chemosensors. 2023; 11(4):209. https://doi.org/10.3390/chemosensors11040209
Chicago/Turabian StyleWan, Jiazheng, and Guocheng Han. 2023. "A Facile Sensor for Detection of Lysozyme in Egg White Based on AuNPs and Ferrocene Dicarboxylic Acid" Chemosensors 11, no. 4: 209. https://doi.org/10.3390/chemosensors11040209
APA StyleWan, J., & Han, G. (2023). A Facile Sensor for Detection of Lysozyme in Egg White Based on AuNPs and Ferrocene Dicarboxylic Acid. Chemosensors, 11(4), 209. https://doi.org/10.3390/chemosensors11040209