Fabrication of Vertically Aligned ZnO Nanorods Modified with Dense Silver Nanoparticles as Effective SERS Substrates
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Fabrication of ZnO NR Arrays
2.3. Deposition of Ag Nanoparticles on ZnO NR Arrays
2.4. Characterization
2.5. Preparation of SERS Sample
3. Results and Discussion
3.1. Characterization of 3D Ag/ZnO NR Arrays
3.2. SERS Performance of Ag/ZnO NR Arrays
3.3. Recyclable Properties of the Ag/ZnO NR Arrays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, X.; Hu, Z.; Yang, D.; Xie, S.; Jiang, Z.; Niessner, R.; Haisch, C.; Zhou, H.; Sun, P. Bacteria Detection: From Powerful SERS to Its Advanced Compatible Techniques. Adv. Sci. 2020, 7, 2001739. [Google Scholar] [CrossRef] [PubMed]
- Neng, J.; Zhang, Q.; Sun, P. Application of Surface-Enhanced Raman Spectroscopy in Fast Detection of Toxic and Harmful Substances in Food. Biosens. Bioelectron. 2020, 167, 112480. [Google Scholar] [CrossRef]
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; DuChene, J.; Huo, F.; Wei, W. An in situ Approach for Facile Fabrication of Robust and Scalable SERS Substrates. Nanoscale 2014, 6, 7232. [Google Scholar] [CrossRef] [PubMed]
- Cialla, D.; Marz, A.; Bohme, R.; Theil, F.; Weber, K.; Schmitt, M.; Popp, J. Surface-Enhanced Raman Spectroscopy (SERS): Progress and Trends. Anal. Bioanal. Chem. 2012, 403, 27–54. [Google Scholar] [CrossRef] [PubMed]
- Jun, B.-H.; Kim, G.; Noh, M.S.; Kang, H.; Kim, Y.-K.; Cho, M.-H.; Jeong, D.H.; Lee, Y.-S. Surface-Enhanced Raman Scattering-Active Nanostructures and Strategies for Bioassays. Nanomed. 2011, 6, 1463–1480. [Google Scholar] [CrossRef]
- Guo, L.; Tang, H.; Wang, X.; Yuan, Y.; Zhu, C. Nanoporous Ag-Decorated Ag7O8NO3 Micro-Pyramids for Sensitive Surface-Enhanced Raman Scattering Detection. Chemosensors 2022, 10, 539. [Google Scholar] [CrossRef]
- Zhai, H.; Zhu, C.; Wang, X.; Yuan, Y.; Tang, H. Arrays of Ag-Nanoparticles Decorated TiO2 Nanotubes as Reusable Three-Dimensional Surface-Enhanced Raman Scattering Substrates for Molecule Detection. Front. Chem. 2022, 10, 992236. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, X.; Li, H.; Luo, Y.; Yu, R.; Zhang, L.; Yang, Y.; Song, Q. Au Nanoflower–Ag Nanoparticle Assembled SERS-Active Substrates for Sensitive MC-LR Detection. Chem. Commun. 2015, 51, 16908–16911. [Google Scholar] [CrossRef]
- Xu, Y.; Kutsanedzie, F.Y.H.; Hassan, M.M.; Zhu, J.; Li, H.; Chen, Q. Functionalized Hollow Au@Ag Nanoflower SERS Matrix for Pesticide Sensing in Food. Sens. Actuators B Chem. 2020, 324, 128718. [Google Scholar] [CrossRef]
- Gambucci, M.; Cambiotti, E.; Sassi, P.; Latterini, L. Multilayer Gold-Silver Bimetallic Nanostructures to Enhance SERS Detection of Drugs. Mol. Basel Switz. 2020, 25, 3405. [Google Scholar] [CrossRef]
- Liu, Y.J.; Zhang, Z.Y.; Dluhy, R.A.; Zhao, Y.P. The SERS Response of Semiordered Ag Nanorod Arrays Fabricated by Template Oblique Angle Deposition. Raman Spectrosc. 2010, 41, 1112–1118. [Google Scholar] [CrossRef]
- Wu, C.; Hu, Q.; Benison, M.; Faulds, K.; Graham, D. Modulation of Interparticle Gap for Enhanced SERS Sensitivity in Chemically Stable Ag@Au Hetero-Architectures. New J. Chem. 2020, 44, 13843–13851. [Google Scholar] [CrossRef]
- Wang, D.; Hui, B.; Zhang, X.; Zhu, J.; Gong, Z.; Fan, M. Facile Preparation of Ag-NP-Deposited HRGB-SERS Substrate for Detection of Polycyclic Aromatic Hydrocarbons in Water. Chemosensors 2022, 10, 406. [Google Scholar] [CrossRef]
- Arabi, M.; Ostovan, A.; Wang, Y.; Mei, R.; Fu, L.; Li, J.; Wang, X.; Chen, L. Chiral Molecular Imprinting-Based SERS Detection Strategy for Absolute Enantiomeric Discrimination. Nat. Commun. 2022, 13, 5757. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Li, Z.; Wang, W.; Wu, Y.; Xu, H. Highly Surface-Roughened “Flower-like” Silver Nanoparticles for Extremely Sensitive Substrates of Surface-Enhanced Raman Scattering. Adv. Mater. 2009, 21, 4614–4618. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Y.; Ma, Y.; Li, S.; Wei, Y.; Huang, Z.; Long, N.V. Fabrication of Semiconductor ZnO Nanostructures for Versatile SERS Application. Nanomaterials 2017, 7, 398. [Google Scholar] [CrossRef] [Green Version]
- Kandjani, A.E.; Mohammadtaheri, M.; Thakkar, A.; Bhargava, S.K.; Bansal, V. Zinc Oxide/Silver Nanoarrays as Reusable SERS Substrates with Controllable ‘Hot-Spots’ for Highly Reproducible Molecular Sensing. J. Colloid Interface Sci. 2014, 436, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Huang, S.; Yang, X.; Yuan, R.; Chai, Y. A SERS Biosensor Constructed by Calcined ZnO Substrate with High-Efficiency Charge Transfer for Sensitive Detection of Pb2+. Sens. Actuators B Chem. 2021, 343, 130142. [Google Scholar] [CrossRef]
- Zheng, Z.; Cong, S.; Gong, W.; Xuan, J.; Li, G.; Lu, W.; Geng, F.; Zhao, Z. Semiconductor SERS Enhancement Enabled by Oxygen Incorporation. Nat Commun. 2017, 8, 1993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Guo, X.; Fu, Q. TiO2 Thickness-Dependent Charge Transfer in an Ordered Ag/TiO2/Ni Nanopillar Arrays Based on Surface-Enhanced Raman Scattering. Mater. Basel Switz. 2022, 15, 3716. [Google Scholar] [CrossRef]
- Marica, I.; Nekvapil, F.; Ștefan, M.; Farcău, C.; Falamaș, A. Zinc Oxide Nanostructures for Fluorescence and Raman Signal Enhancement: A Review. Beilstein J. Nanotechnol. 2022, 13, 472–490. [Google Scholar] [CrossRef]
- Yang, J.; Chen, B.; Peng, J.; Huang, B.; Deng, W.; Xie, W.; Luo, Z. Preparation of CuO Nanowires/Ag Composite Substrate and Study on SERS Activity. Plasmonics 2021, 16, 1059–1070. [Google Scholar] [CrossRef]
- Lu, Z.; Wei, W.; Yang, J.; Xu, Q.; Hu, X.-Y. Improved SERS Performance of a Silver Triangular Nanoparticle/TiO2 Nanoarray Heterostructure and Its Application for Food Additive Detection. New J. Chem. 2022, 46, 7070–7077. [Google Scholar] [CrossRef]
- Xue, X.; Chen, L.; Wang, L.; Wang, C.; Qiao, Y.; Zhao, C.; Wang, H.; Nie, P.; Shi, J.; Chang, L. Facile Fabrication of PS/Cu2S/Ag Sandwich Structure as SERS Substrate for Ultra-Sensitive Detection. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2022, 265, 120370. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Jin, B.; Liu, H.; Li, X.; Zhang, Q.; Chu, S.; Peng, R.; Chu, S. Controllable Synthesis of Flower-like MoSe2 3D Microspheres for Highly Efficient Visible-Light Photocatalytic Degradation of Nitro-Aromatic Explosives. J. Mater. Chem. A 2018, 6, 11424–11434. [Google Scholar] [CrossRef]
- Mendonça, C.D.; Khan, S.U.; Rahemi, V.; Verbruggen, S.W.; Machado, S.A.S.; De Wael, K. Surface Plasmon Resonance-Induced Visible Light Photocatalytic TiO2 Modified with AuNPs for the Quantification of Hydroquinone. Electrochimica Acta 2021, 389, 138734. [Google Scholar] [CrossRef]
- Georgekutty, R.; Seery, M.K.; Pillai, S.C. A Highly Efficient Ag-ZnO Photocatalyst: Synthesis, Properties, and Mechanism. J. Phys. Chem. C 2008, 112, 13563–13570. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Zhu, C.; Meng, G.; Wu, N. Review—Surface-Enhanced Raman Scattering Sensors for Food Safety and Environmental Monitoring. J. Electrochem. Soc. 2018, 165, B3098–B3118. [Google Scholar] [CrossRef]
- Zhao, W.; Xiao, S.; Zhang, Y.; Pan, D.; Wen, J.; Qian, X.; Wang, D.; Cao, H.; He, W.; Quan, M.; et al. Binary “Island” Shaped Arrays with High-Density Hot Spots for Surface-Enhanced Raman Scattering Substrates. Nanoscale 2018, 10, 14220–14229. [Google Scholar] [CrossRef]
- Chang, C.-C.; Hsu, T.-C.; Liu, Y.-C.; Yang, K.-H. Surface-Enhanced Raman Scattering-Active Silver Substrates Electrochemically Prepared in Solutions Containing Bielectrolytes. J. Mater. Chem. 2011, 21, 6660–6667. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Yu, C.-C.; Sheu, S.-F. Improved Surface-Enhanced Raman Scattering on Optimum Electrochemically Roughened Silver Substrates. Anal. Chim. Acta 2006, 577, 271–275. [Google Scholar] [CrossRef]
- Zhu, C.; Meng, G.; Zheng, P.; Huang, Q.; Li, Z.; Hu, X.; Wang, X.; Huang, Z.; Li, F.; Wu, N. A Hierarchically Ordered Array of Silver-Nanorod Bundles for Surface-Enhanced Raman Scattering Detection of Phenolic Pollutants. Adv. Mater. 2016, 28, 4871–4876. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, S.; Huo, Y.; Ning, T.; Liu, A.; Zhang, C.; He, Y.; Wang, M.; Li, C.; Man, B. 3D Silver Nanoparticles with Multilayer Graphene Oxide as a Spacer for Surface Enhanced Raman Spectroscopy Analysis. Nanoscale 2018, 10, 5897–5905. [Google Scholar] [CrossRef]
- Long, G.L.; Winefordner, J.D. Limit of Detection a Closer Look at the IUPAC Definition. Anal. Chem. 1983, 55, 712A–724A. [Google Scholar] [CrossRef]
- Li, J.; Yan, H.; Tan, X.; Lu, Z.; Han, H. Cauliflower-Inspired 3D SERS Substrate for Multiple Mycotoxins Detection. Anal. Chem. 2019, 91, 3885–3892. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Xu, Y.; Gao, Z.; Zhou, H.; Zhang, Q.; Xu, R.; Zhang, C.; Yao, H.; Liu, M. High-Performance Surface-Enhanced Raman Scattering Substrates Based on the ZnO/Ag Core-Satellite Nanostructures. Nanomaterials 2022, 12, 1286. [Google Scholar] [CrossRef]
- Vemuri, S.K.; Khanna, S.; Utsav; Paneliya, S.; Takhar, V.; Banerjee, R.; Mukhopadhyay, I. Fabrication of Silver Nanodome Embedded Zinc Oxide Nanorods for Enhanced Raman Spectroscopy. Colloids Surf. Physicochem. Eng. Asp. 2022, 639, 128336. [Google Scholar] [CrossRef]
- Zhang, G.; Deng, C.; Shi, H.; Zou, B.; Li, Y.; Liu, T.; Wang, W. ZnO/Ag Composite Nanoflowers as Substrates for Surface-Enhanced Raman Scattering. Appl. Surf. Sci. 2017, 402, 154–160. [Google Scholar] [CrossRef]
- Sakir, M.; Salem, S.; Sanduvac, S.T.; Sahmetlioglu, E.; Sarp, G.; Onses, M.S.; Yilmaz, E. Photocatalytic Green Fabrication of Au Nanoparticles on ZnO Nanorods Modified Membrane as Flexible and Photocatalytic Active Reusable SERS Substrates. Colloids Surf. Physicochem. Eng. Asp. 2020, 585, 124088. [Google Scholar]
- He, X.; Yue, C.; Zang, Y.; Yin, J.; Sun, S.; Li, J.; Kang, J. Multi-Hot Spot Configuration on Urchin-like Ag Nanoparticle/ZnO Hollow Nanosphere Arrays for Highly Sensitive SERS. J. Mater. Chem. A 2013, 1, 15010–15015. [Google Scholar] [CrossRef]
- Tiwari, M.; Singh, A.; Dureja, S.; Basu, S.; Pattanayek, S.K. Au Nanoparticles Decorated ZnO/ZnFe2O4 Composite SERS-Active Substrate for Melamine Detection. Talanta 2022, 236, 122819. [Google Scholar] [CrossRef]
- Shan, Y.; Yang, Y.; Cao, Y.; Fu, C.; Huang, Z. Synthesis of Wheatear-like ZnO Nanoarrays Decorated with Ag Nanoparticles and Its Improved SERS Performance through Hydrogenation. Nanotechnology 2016, 27, 145502. [Google Scholar] [CrossRef]
- Korkmaz, I.; Sakir, M.; Sarp, G.; Salem, S.; Torun, I.; Volodkin, D.; Yavuz, E.; Onses, M.S.; Yilmaz, E. Fabrication of Superhydrophobic Ag@ZnO@Bi2WO6 Membrane Disc as Flexible and Photocatalytic Active Reusable SERS Substrate. J. Mol. Struct. 2021, 1223, 129258. [Google Scholar] [CrossRef]
- Xiao, C.; Xiao, B.; Wang, Y.; Zhang, J.; Wang, S.; Wang, P.; Yang, T.; Zhao, R.; Yu, H.; Li, Z.; et al. Synthesis of ZnO Nanosheets Decorated with Au Nanoparticles and Its Application in Recyclable 3D Surface-Enhanced Raman Scattering Substrates. RSC Adv. 2015, 5, 17945–17952. [Google Scholar] [CrossRef]
- Tieu, D.T.; Quynh Trang, T.N.; Tuan Hung, L.V.; Hanh Thu, V.T. Assembly Engineering of Ag@ZnO Hierarchical Nanorod Arrays as a Pathway for Highly Reproducible Surface-Enhanced Raman Spectroscopy Applications. J. Alloys Compd. 2019, 808, 151735. [Google Scholar] [CrossRef]
- Pal, A.K.; Chandra, G.K.; Umapathy, S.; Mohan, D.B. Ultra-Sensitive, Reusable, and Superhydrophobic Ag/ZnO/Ag 3D Hybrid Surface Enhanced Raman Scattering Substrate for Hemoglobin Detection. J. Appl. Phys. 2020, 127, 164501. [Google Scholar] [CrossRef]
- Pinheiro, P.C.; Fateixa, S.; Nogueira, H.I.S.; Trindade, T. SERS Study on Adenine Using a Ag/Poly(t-Butylacrylate) Nanocomposite. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2013, 101, 36–39. [Google Scholar] [CrossRef]
- Tegegne, W.A.; Su, W.-N.; Beyene, A.B.; Huang, W.-H.; Tsai, M.-C.; Hwang, B.-J. Flexible Hydrophobic Filter Paper-Based SERS Substrate Using Silver Nanocubes for Sensitive and Rapid Detection of Adenine. Microchem. J. 2021, 168, 106349. [Google Scholar] [CrossRef]
- Liu, A.; Zhang, S.; Guang, S.; Ge, F.; Wang, J. Ag-Coated Nylon Fabrics as Flexible Substrates for Surface-Enhanced Raman Scattering Swabbing Applications. J. Mater. Res. 2020, 35, 1271–1278. [Google Scholar] [CrossRef]
- Erol, M.; Han, Y.; Stanley, S.K.; Stafford, C.M.; Du, H.; Sukhishvili, S. SERS Not to Be Taken for Granted in the Presence of Oxygen. J. Am. Chem. Soc. 2009, 131, 7480–7481. [Google Scholar] [CrossRef]
- Gao, N.; Yang, T.; Liu, T.; Zou, Y.; Jiang, J. Graphene Oxide Wrapped Individual Silver Nanocomposites with Improved Stability for Surface-Enhanced Raman Scattering. RSC Adv. 2015, 5, 55801–55807. [Google Scholar] [CrossRef]
- Han, Y.; Lupitskyy, R.; Chou, T.-M.; Stafford, C.M.; Du, H.; Sukhishvili, S. Effect of Oxidation on Surface-Enhanced Raman Scattering Activity of Silver Nanoparticles: A Quantitative Correlation. Anal. Chem. 2011, 83, 5873–5880. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, W.; Yao, L.; Wang, J.; Han, H.; Zhu, T.; Liang, Y.; Fu, J.; Wang, Y. 3D Ag/ZnO Microsphere SERS Substrate with Ultra-Sensitive, Recyclable and Self-Cleaning Performances: Application for Rapid in Site Monitoring Catalytic Dye Degradation and Insight into the Mechanism. Colloids Surf. Physicochem. Eng. Asp. 2020, 607, 125507. [Google Scholar] [CrossRef]
- Wu, J.Y.; Hsieh, C.-H.; Feria, D.N.; Shen, J.-L. PAA/ZnO Raspberry-Shaped Composite Microspheres Decorated with Ag Nanoparticles as Cleanable SERS Substrates. ACS Omega 2020, 5, 29795–29800. [Google Scholar] [CrossRef]
- Zhao, K.; Lin, J.; Guo, L. ZnO/Ag Porous Nanosheets Used as Substrate for Surface-Enhanced Raman Scattering to Detect Organic Pollutant. RSC Adv. 2015, 5, 53524–53528. [Google Scholar] [CrossRef]
- Su, G.; Dang, L.; Liu, G.; Feng, T.; Wang, W.; Wang, C.; Wei, H. MOF-Derived Hierarchical Porous 3D ZnO/Ag Nanostructure as a Reproducible SERS Substrate for Ultrasensitive Detection of Multiple Environmental Pollutants. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2022, 270, 120818. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, L.; Ma, Z.; Wang, M.; Zhao, R.; Zou, Y.; Fan, Y. Ag Nanoparticles Decorated ZnO Nanorods as Multifunctional SERS Substrates for Ultrasensitive Detection and Catalytic Degradation of Rhodamine B. Nanomaterials 2022, 12, 2394. [Google Scholar] [CrossRef]
- Tang, F.; Zhang, M.; Li, Z.; Du, Z.; Chen, B.; He, X.; Zhao, S. Hexagonally Arranged Arrays of Urchin-like Ag-Nanoparticle Decorated ZnO-Nanorods Grafted on PAN-Nanopillars as Surface-Enhanced Raman Scattering Substrates. CrystEngComm 2018, 20, 3550–3558. [Google Scholar] [CrossRef]
- Ye, F.; Ju, S.; Liu, Y.; Jiang, Y.; Chen, H.; Ge, L.; Yan, C.; Yuan, A. Ag-CuO Nanocomposites: Surface-Enhanced Raman Scattering Substrate and Photocatalytic Performance. Cryst. Res. Technol. 2019, 54, 1800257. [Google Scholar] [CrossRef]
- Singh, N.; Prakash, J.; Misra, M.; Sharma, A.; Gupta, R.K. Dual Functional Ta-Doped Electrospun TiO2 Nanofibers with Enhanced Photocatalysis and SERS Detection for Organic Compounds. ACS Appl. Mater. Interfaces 2017, 9, 28495–28507. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Sun, L.; Xi, M.; Feng, Q.; Jiang, C.; Fong, H. Electrospun TiO2 Nanofelt Surface-Decorated with Ag Nanoparticles as Sensitive and UV-Cleanable Substrate for Surface Enhanced Raman Scattering. ACS Appl. Mater. Interfaces 2014, 6, 5759–5767. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, A.; Wang, J.; Ge, F.; Zhu, Q. Recyclable SERS Substrate with Coral-like Nano Ag/ZnO Structure Based on Cotton Fabric Used for In-Situ Detection of Pesticides. Fibers Polym. 2022, 23, 636–643. [Google Scholar] [CrossRef]
- Pal, A.K.; Pagal, S.; Prashanth, K.; Chandra, G.K.; Umapathy, S.; Mohan, D.B. Ag/ZnO/Au 3D Hybrid Structured Reusable SERS Substrate as Highly Sensitive Platform for DNA Detection. Sens. Actuators B Chem. 2019, 279, 157–169. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Xu, G.; Yan, M.; Chen, B.; Yuan, Y.; Zhu, C. Fabrication of Vertically Aligned ZnO Nanorods Modified with Dense Silver Nanoparticles as Effective SERS Substrates. Chemosensors 2023, 11, 210. https://doi.org/10.3390/chemosensors11040210
Li N, Xu G, Yan M, Chen B, Yuan Y, Zhu C. Fabrication of Vertically Aligned ZnO Nanorods Modified with Dense Silver Nanoparticles as Effective SERS Substrates. Chemosensors. 2023; 11(4):210. https://doi.org/10.3390/chemosensors11040210
Chicago/Turabian StyleLi, Na, Gengsheng Xu, Manqing Yan, Bensong Chen, Yupeng Yuan, and Chuhong Zhu. 2023. "Fabrication of Vertically Aligned ZnO Nanorods Modified with Dense Silver Nanoparticles as Effective SERS Substrates" Chemosensors 11, no. 4: 210. https://doi.org/10.3390/chemosensors11040210
APA StyleLi, N., Xu, G., Yan, M., Chen, B., Yuan, Y., & Zhu, C. (2023). Fabrication of Vertically Aligned ZnO Nanorods Modified with Dense Silver Nanoparticles as Effective SERS Substrates. Chemosensors, 11(4), 210. https://doi.org/10.3390/chemosensors11040210