Simultaneous Electrochemical Analysis of Uric Acid and Xanthine in Human Saliva and Serum Samples Using a 3D Reduced Graphene Oxide Nanocomposite-Modified Electrode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Apparatus
2.3. Fabrication of GNP-Incorporated 3D rGO-CNT on GCE
2.4. Electrochemical Detection of UA and XT Utilizing GNP/rGO-CNT/GCE
2.5. Real Sample Test
3. Results and Discussion
3.1. Characterization of 3D Macroporous GNP/rGO-CNT/GCE
3.2. Optimization for Simultaneous Detection of UA and XT Using GNP/rGO-CNT/GCE
3.3. Analytical Performance of GNP/rGO-CNT/GCE for Simultaneous Detection of UA and XT
3.4. Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neogi, T.; Jansen, T.L.T.A.; Dalbeth, N.; Fransen, J.; Schumacher, H.R.; Berendsen, D.; Brown, M.; Choi, H.; Edwards, N.L.; Janssens, H.J.E.M.; et al. 2015 Gout Classification Criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheumatol. 2015, 67, 2557–2568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safiri, S.; Kolahi, A.A.; Cross, M.; Carson-Chahhoud, K.; Hoy, D.; Almasi-Hashiani, A.; Sepidarkish, M.; Ashrafi-Asgarabad, A.; Moradi-Lakeh, M.; Mansournia, M.A.; et al. Prevalence, Incidence, and Years Lived with Disability Due to Gout and Its Attributable Risk Factors for 195 Countries and Territories 1990–2017: A Systematic Analysis of the Global Burden of Disease Study 2017. Arthritis Rheumatol. 2020, 72, 1916–1927. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Ko, D.J.; Yoo, J.J.; Chang, S.H.; Cho, H.J.; Kang, E.H.; Park, J.K.; Song, Y.W.; Lee, Y.J. Clinical factors and treatment outcomes associated with failure in the detection of urate crystal in patients with acute gouty arthritis. Korean J. Intern. Med. 2014, 29, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, N. Diagnosing and treating gout: A review to aid primary care physicians. Postgrad Med. 2010, 122, 157–161. [Google Scholar] [CrossRef] [PubMed]
- FitzGerald, J.D.; Dalbeth, N.; Mikuls, T.; Brignardello-Petersen, R.; Guyatt, G.; Abeles, A.M.; Gelber, A.C.; Harrold, L.R.; Khanna, D.; King, C.; et al. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Care Res. 2020, 72, 744–760. [Google Scholar] [CrossRef]
- Löffler, W.; Fairbanks, L. Refractory gout—Does it exist? Nucleosides Nucleotides Nucleic Acids 2020, 39, 1410–1423. [Google Scholar] [CrossRef]
- De Vera, M.A.; Marcotte, G.; Rai, S.; Galo, J.S.; Bhole, V. Medication adherence in gout: A systematic review. Arthritis Care Res. 2014, 66, 1551–1559. [Google Scholar] [CrossRef]
- Stamp, L.K.; Merriman, T.; Frampton, C.; Zhang, M.; Wallace, M.; Miner, J.N.; Dalbeth, N. Plasma oxypurinol as a measure of adherence in clinical trials. Ann. Rheum. Dis. 2018, 77, 313–314. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Fogacci, F.; Cincione, R.I.; Tocci, G.; Borghi, C. Clinical Effects of Xanthine Oxidase Inhibitors in Hyperuricemic Patients. Med. Princ. Pract. 2021, 30, 122–130. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Liang, Q.L.; Luo, G.; Wang, Y.; Zuo, Y.; Jiang, M.; Yu, G.; Zhang, T. Purine metabolites in gout and asymptomatic hyperuricemia: Analysis by HPLC-electrospray tandem mass spectrometry. Clin. Chem. 2005, 51, 1742–1744. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, M.; Deng, B.; Ye, L.; Fei, X.; Huang, Z. Study on the diagnosis of gout with xanthine and hypoxanthine. J. Clin. Lab. Anal. 2019, 33, e55868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khosravan, R.; Grabowski, B.A.; Wu, J.T.; Joseph-Ridge, N.; Vernillet, L. Pharmacokinetics, pharmacodynamics and safety of febuxostat, a non-purine selective inhibitor of xanthine oxidase, in a dose escalation study in healthy subjects. Clin. Pharmacokinet. 2006, 45, 821–841. [Google Scholar] [CrossRef] [PubMed]
- Furuhashi, M.; Koyama, M.; Higashiura, Y.; Murase, T.; Nakamura, T.; Matsumoto, M.; Sakai, A.; Ohnishi, H.; Tanaka, M.; Saitoh, S.; et al. Differential regulation of hypoxanthine and xanthine by obesity in a general population. J. Diabetes Investig. 2020, 11, 878–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czauderna, M.; Kowalczyk, J. Quantification of allantoin, uric acid, xanthine and hypoxanthine in ovine urine by high-performance liquid chromatography and photodiode array detection. J. Chromatogr. B 2000, 744, 129–138. [Google Scholar] [CrossRef]
- Cooper, N.; Khosravan, R.; Erdmann, C.; Fiene, J.; Lee, J.W. Quantification of uric acid, xanthine and hypoxanthine in human serum by HPLC for pharmacodynamic studies. J. Chromatogr. B 2006, 837, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.; Tong, L.L. Electrochemical sensor for simultaneous determination of uric acid, xanthine and hypoxanthine based on poly (bromocresol purple) modified glassy carbon electrode. Sens. Actuator B Chem. 2010, 150, 43–49. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, Y.; Wang, F.; Wu, K.; Chen, J.; Zhou, Y. Electrochemical sensor for simultaneous detection of ascorbic acid, uric acid and xanthine based on the surface enhancement effect of mesoporous silica. Sens. Actuator B Chem. 2009, 141, 641–645. [Google Scholar] [CrossRef]
- Thangaraj, R.; Kumar, A.S. Graphitized mesoporous carbon modified glassy carbon electrode for selective sensing of xanthine, hypoxanthine and uric acid. Anal. Methods 2012, 4, 2162–2171. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Z.; Zhang, Y.; Zheng, Z.; Wang, C.; Du, Y.; Ye, W. Simultaneous electrochemical determination of uric acid, xanthine and hypoxanthine based on poly (l-arginine)/graphene composite film modified electrode. Talanta 2012, 93, 320–325. [Google Scholar] [CrossRef]
- Raj, M.A.; John, S.A. Simultaneous determination of uric acid, xanthine, hypoxanthine and caffeine in human blood serum and urine samples using electrochemically reduced graphene oxide modified electrode. Anal. Chim. Acta 2013, 771, 14–20. [Google Scholar] [CrossRef]
- Wang, Y. Simultaneous determination of uric acid, xanthine and hypoxanthine at poly(pyrocatechol violet)/functionalized multi-walled carbon nanotubes composite film modified electrode. Colloid Surf. B Biointerfaces 2011, 88, 614–621. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.F.; Wang, A.J.; Zhang, Q.L.; Huang, H.; Feng, J.J. Ultrafine Fe3C nanoparticles embedded in N-doped graphitic carbon sheets for simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine. Microchim. Acta 2019, 186, 660. [Google Scholar] [CrossRef] [PubMed]
- Ojani, R.; Alinezhad, A.; Abedi, Z. A highly sensitive electrochemical sensor for simultaneous detection of uric acid, xanthine and hypoxanthine based on poly (l-methionine) modified glassy carbon electrode. Sens. Actuator B Chem. 2013, 188, 621–630. [Google Scholar] [CrossRef]
- Hoan, N.T.V.; Minh, N.N.; Trang, N.T.H.; Thuy, L.T.T.; Van Hoang, C.; Mau, T.X.; Vu, H.X.A.; Thu, P.T.K.; Phong, N.H.; Khieu, D.Q. Simultaneous Voltammetric Determination of Uric Acid, Xanthine, and Hypoxanthine Using CoFe2O4/Reduced Graphene Oxide-Modified Electrode. J. Nanomater. 2020, 2020, 9797509. [Google Scholar] [CrossRef]
- Sen, S.; Sarkar, P. A simple electrochemical approach to fabricate functionalized MWCNT-nanogold decorated PEDOT nanohybrid for simultaneous quantification of uric acid, xanthine and hypoxanthine. Anal. Chim. Acta 2020, 1114, 15–28. [Google Scholar] [CrossRef]
- Ghanbari, K.; Nejabati, F. Ternary nanocomposite-based reduced graphene oxide/chitosan/Cr2O3 for the simultaneous determination of dopamine, uric acid, xanthine, and hypoxanthine in fish meat. Anal. Methods 2020, 12, 1650–1661. [Google Scholar] [CrossRef]
- Ghanbari, M.H.; Mashhadizadeh, M.H.; Norouzi, Z.; Salehzadeh, H. Simultaneous electrochemical detection of uric acid and xanthine based on electrodeposited B, N co-doped reduced graphene oxide, gold nanoparticles and electropolymerized poly (L-cysteine) gradually modified electrode platform. Microchem. J. 2022, 175, 107213. [Google Scholar] [CrossRef]
- Lee, J.; Lee, Y.J.; Eun, Y.G.; Lee, G.J. An ultrasensitive electrochemical detection of tryptase using 3D macroporous reduced graphene oxide nanocomposites by one-pot electrochemical synthesis. Anal. Chim. Acta 2019, 1069, 47–56. [Google Scholar] [CrossRef]
- Hong, Q.; Yang, K.; Ge, K.L.; Liua, Z.; Li, F. Direct-laser-writing of three dimensional porous graphene frameworks on indium-tin oxide for sensitive electrochemical biosensing. Analyst 2018, 143, 3327–3334. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, A.; Yang, H.; Wang, F.; Lu, K. 3D graphene-nitrogen doped carbon nanotubes network modified electrode as sensing materials for the determination of urapidil. Materials 2018, 11, 322. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Lee, Y.J.; Kim, J.H.; Lee, G.J. Electrochemical Detection of H2O2 Released from Prostate Cancer Cells Using Pt Nanoparticle-Decorated rGO–CNT Nanocomposite-Modified Screen-Printed Carbon Electrodes. Chemosensors 2020, 8, 63. [Google Scholar] [CrossRef]
- Govindhan, M.; Chen, A. Simultaneous synthesis of gold nanoparticle/graphene nanocomposite for enhanced oxygen reduction reaction. J. Power Sources 2015, 274, 928–936. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Engelhard, M.; Wang, C.; Lin, Y. Facile and controllable electrochemical reduction of graphene oxide and its applications. J. Mater. Chem. 2010, 20, 743–748. [Google Scholar] [CrossRef]
- Ibrahim, H.; Temerk, Y. Sensitive electrochemical sensor for simultaneous determination of uric acid and xanthine in human biological fluids based on the nano-boron doped ceria modified glassy carbon paste electrode. J. Electroanal. Chem. 2016, 780, 176–186. [Google Scholar] [CrossRef]
- Sun, Y.; Fei, J.; Wu, K.; Hu, S. Simultaneous electrochemical determination of xanthine and uric acid at a nanoparticle film electrode. Anal. Bioanal. Chem. 2003, 375, 544–549. [Google Scholar] [CrossRef]
- Liu, G.; Ma, W.; Luo, Y.; Sun, D.; Shao, S. Simultaneous Determination of Uric Acid and Xanthine Using a Poly(Methylene Blue) and Electrochemically Reduced Graphene Oxide Composite Film Modified Electrode. J. Anal. Methods Chem. 2014, 2014, 984314. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.S.; Yu, S.H.; Kim, T.H. One-Step Electrochemical Fabrication of Reduced Graphene Oxide/Gold Nanoparticles Nanocomposite-Modified Electrode for Simultaneous Detection of Dopamine, Ascorbic Acid, and Uric Acid. Nanomaterials 2018, 8, 17. [Google Scholar] [CrossRef] [Green Version]
Electrode | Analyte | Linear Range (μM) | LOD (μM) | Sensitivity 8 (μA·μM−1·cm−2) | Operating pH | Real Sample Applications | Ref. |
---|---|---|---|---|---|---|---|
PPV 1/C-MWCNT 2/GCE | UA | 0.3–80 | 0.16 | 16.31 | 6.6 | Human blood serum | [21] |
XT | 0.1–100 | 0.05 | 15.09 | ||||
Au-PEDOT-fMWCNT 3/GCE | 0.1–800 | 0.199 | 1.73 | 7.0 | Human serum and urine, Fish extracts | [25] | |
0.05–175 | 0.024 | 14.31 | |||||
MWCNT/GCE | UA | 0.1–100 | 0.04 | - | 5.5 | Human serum | [35] |
XT | 0.02–20 | 0.01 | - | ||||
Nano-B-CeO2 4/GCPE 5 | UA | 0.42–11.87 | 0.005 | 122 | 5.0 | Human serum and urine | [34] |
XT | 0.07–2.02 | 0.002 | 449 | ||||
ERGO 6/HAD 7/GCE | UA | 20–120 | 0.088 | - | 7.2 | Human serum and urine | [20] |
XT | 10–60 | 0.11 | - | ||||
Poly(l-Arginine)/ERGO/GCE | UA | 0.1–10 | 0.05 | 5.482 | 6.5 | Human urine | [19] |
XT | 0.1–10 | 0.05 | 7.590 | ||||
CoFe2O4/rGO/GCE | UA | 2–10 | 0.767 | 0.145 (μA·μM−1) | 5.0 | Human urine | [24] |
XT | 2–10 | 0.650 | 0.126 (μA·μM−1) | ||||
Poly(methylene blue)/ERGO/GCE | UA | 0.08–400 | 0.03 | 0.5705 (Log C (M) vs. Log I (μA)) | 3.0 | Human urine | [36] |
XT | 0.1–400 | 0.05 | 0.4832 (Log C (M) vs. Log I (μA)) | ||||
B,N co-doped rGO/GNP/poly(L-cysteine)/GCE | UA | 0.003–3 | 0.9 (nM) | 1.908 | 7.0 | Human serum | [27] |
XT | 0.0003–3 | 0.09 (nM) | 0.846 | ||||
3D GNP/rGO-CNT/GCE | UA | 1.56–25 | 0.910 | 78.11 | 7.4 | Human saliva and serum | This work |
XT | 3.13–25 | 2.573 | 40.88 |
Title 1 | Added (μM) | Found (μM) | Recovery (%) | |||
---|---|---|---|---|---|---|
UA | XT | UA | XT | UA | XT | |
Saliva 1 | 10 | 10 | 10.90 ± 0.53 | 9.19 ± 0.96 | 109.0 | 91.9 |
Saliva 2 | 10 | 10 | 10.05 ± 0.44 | 10.78 ± 0.62 | 100.5 | 107.8 |
Saliva 3 | 10 | 10 | 10.14 ± 0.65 | 9.37 ± 0.27 | 101.4 | 93.7 |
Saliva 4 | 10 | 10 | 9.16 ± 0.19 | 10.59 ± 1.67 | 91.6 | 105.9 |
Saliva 5 | 10 | 10 | 9.26 ± 0.27 | 10.00 ± 0.69 | 92.6 | 100.0 |
Blood serum 1 | 10 | 10 | 9.61 ± 0.39 | 9.47 ± 0.57 | 96.1 | 94.7 |
Blood serum 2 | 10 | 10 | 10.0 ± 1.54 | 9.43 ± 1.99 | 100.3 | 94.3 |
Blood serum 3 | 10 | 10 | 10.2 ± 0.28 | 9.56 ± 0.31 | 101.5 | 95.6 |
Blood serum 4 | 10 | 10 | 9.93 ± 0.72 | 10.20 ± 0.95 | 99.3 | 102.0 |
Blood serum 5 | 10 | 10 | 10.9 ± 0.79 | 10.38 ± 0.54 | 108.9 | 103.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.-H.; Moon, K.W.; Lee, Y.J.; Lee, G.-J. Simultaneous Electrochemical Analysis of Uric Acid and Xanthine in Human Saliva and Serum Samples Using a 3D Reduced Graphene Oxide Nanocomposite-Modified Electrode. Chemosensors 2023, 11, 185. https://doi.org/10.3390/chemosensors11030185
Han S-H, Moon KW, Lee YJ, Lee G-J. Simultaneous Electrochemical Analysis of Uric Acid and Xanthine in Human Saliva and Serum Samples Using a 3D Reduced Graphene Oxide Nanocomposite-Modified Electrode. Chemosensors. 2023; 11(3):185. https://doi.org/10.3390/chemosensors11030185
Chicago/Turabian StyleHan, Seong-Hyun, Ki Won Moon, Yun Jong Lee, and Gi-Ja Lee. 2023. "Simultaneous Electrochemical Analysis of Uric Acid and Xanthine in Human Saliva and Serum Samples Using a 3D Reduced Graphene Oxide Nanocomposite-Modified Electrode" Chemosensors 11, no. 3: 185. https://doi.org/10.3390/chemosensors11030185
APA StyleHan, S. -H., Moon, K. W., Lee, Y. J., & Lee, G. -J. (2023). Simultaneous Electrochemical Analysis of Uric Acid and Xanthine in Human Saliva and Serum Samples Using a 3D Reduced Graphene Oxide Nanocomposite-Modified Electrode. Chemosensors, 11(3), 185. https://doi.org/10.3390/chemosensors11030185