An Accessible Yarn-Based Sensor for In-Field Detection of Succinylcholine Poisoning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Fabrication of Conventional ISEs for SUX
2.3. Fabrication of Thread-Based ISEs for SUX
2.4. Calibration Curves and Selectivity Studies
2.5. Data Analysis
3. Results and Discussion
3.1. Design and Operating Principle
3.2. Characterization of the SUX Sensing Membrane
3.3. Development of the Thread-Based SUX Sensor
3.4. SUX Recovery
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuepper, U.; Musshoff, F.; Madea, B. Succinylmonocholine analytics as an example for selectivity problems in high-performance liquid chromatography/tandem mass spectrometry, and resulting implications for analytical toxicology. Rapid Commun. Mass Spectrom. 2008, 22, 1965–1970. [Google Scholar] [CrossRef] [PubMed]
- Pitts, N.; Deftereos, D.; Mitchell, G. Determination of succinylcholine in plasma by high-pressure liquid chromatography with electrochemical detection. Br. J. Anaesth. 2000, 85, 592–598. [Google Scholar] [CrossRef] [Green Version]
- Kuepper, U.; Musshoff, F.; Madea, B. Fully validated isotope dilution HPLC-MS/MS method for the simultaneous determination of succinylcholine and succinylmonocholine in serum and urine samples. J. Mass Spectrom. 2008, 43, 1344–1352. [Google Scholar] [CrossRef] [PubMed]
- Van der Zee, E.A.; Platt, B.; Riedel, G. Acetylcholine: Future research and perspectives. Behav. Brain Res. 2011, 221, 583–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubinstein, H.M.; Rosenberg, M.K.; Bolgla, J.H.; Cohen, B.M. Prolonged Apnea after Administration of Succinylcholine. N. Engl. J. Med. 1960, 262, 1107–1111. [Google Scholar] [CrossRef]
- Geyer, B.C.; Larrimore, K.E.; Kilbourne, J.; Kannan, L.; Mor, T.S. Reversal of Succinylcholine Induced Apnea with an Organophosphate Scavenging Recombinant Butyrylcholinesterase. PLoS ONE 2013, 8, e59159. [Google Scholar] [CrossRef]
- Kuepper, U.; Herbstreit, F.; Peters, J.; Madea, B.; Musshoff, F. Degradation and elimination of succinylcholine and succinylmonocholine and definition of their respective detection windows in blood and urine for forensic purposes. Int. J. Leg. Med. 2012, 126, 259–269. [Google Scholar] [CrossRef]
- Kuepper, U.; Musshoff, F.; Hilger, R.A.; Herbstreit, F.; Madea, B. Pharmacokinetic Properties of Succinylmonocholine in Surgical Patients. J. Anal. Toxicol. 2011, 35, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Roy, J.J.; Boismenu, D.; Gao, H.; Mamer, O.A.; Varin, F. Measurement of succinylcholine concentration in human plasma by electrospray tandem mass spectrometry. Anal. Biochem. 2001, 290, 238–244. [Google Scholar] [CrossRef]
- Lagerwerf, A.; Vanlinthout, L.; Vree, T. Rapid determination of succinylcholine in human plasma by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. 1991, 570, 390–395. [Google Scholar] [CrossRef]
- Xing, J.; Li, W.; Tong, F.; Liang, Y.; He, G.; Zhou, Y. Three homicides with darts tainted with succinylcholine: Autopsy and toxicology. Int. J. Leg. Med. 2016, 130, 1541–1545. [Google Scholar] [CrossRef]
- Guo, W.; Luo, G.; Wang, H.; Meng, X. Homicide by Sch from a syringe-like dart ejected by a compound crossbow. J. Forensic Leg. Med. 2014, 30, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Yorker, B.C.; Kizer, K.W.; Lampe, P.; Forrest, A.; Lannan, J.M.; Russell, D.A. Serial Murder by Healthcare Professionals. J. Forensic Sci. 2006, 51, 1362–1371. [Google Scholar] [CrossRef]
- Maeda, H.; Fujita, M.Q.; Zhu, B.L.; Ishidam, K.; Oritani, S.; Tsuchihashi, H.; Nishikawa, M.; Izumi, M.; Matsumoto, F. A case of serial homicide by injection of succinylcholine. Med. Sci. Law 2000, 40, 169–174. [Google Scholar] [CrossRef]
- Stevens, H.; Moffat, A. A Rapid Screening Procedure for Quaternary Ammonium Compounds in Fluids and Tissues with Special Reference to Suxamethonium (Succinylcholine). J. Forensic Sci. Soc. 1974, 14, 141–148. [Google Scholar] [CrossRef]
- Cheong, Y.H.; Ge, L.; Lisak, G. Highly reproducible solid contact ion selective electrodes: Emerging opportunities for potentiometry—A review. Anal. Chim. Acta 2021, 1162, 338304. [Google Scholar] [CrossRef]
- De Rycke, E.; Stove, C.; Dubruel, P.; De Saeger, S.; Beloglazova, N. Recent developments in electrochemical detection of illicit drugs in diverse matrices. Biosens. Bioelectron. 2020, 169, 112579. [Google Scholar] [CrossRef] [PubMed]
- ElDin, N.B.; El-Rahman, M.K.A.; Zaazaa, H.E.; Moustafa, A.A.; Hassan, S.A. Microfabricated potentiometric sensor for personalized methacholine challenge tests during the COVID-19 pandemic. Biosens. Bioelectron. 2021, 190, 113439. [Google Scholar] [CrossRef]
- Hu, J.; Stein, A.; Bühlmann, P. Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC Trends Anal. Chem. 2016, 76, 102–114. [Google Scholar] [CrossRef]
- Mousavi, M.P.S.; Ainla, A.; Tan, E.K.W.; El-Rahman, M.K.A.; Yoshida, Y.; Yuan, L.; Sigurslid, H.H.; Arkan, N.; Yip, M.C.; Abrahamsson, C.K.; et al. Ion sensing with thread-based potentiometric electrodes. Lab Chip 2018, 18, 2279–2290. [Google Scholar] [CrossRef]
- Rousseau, C.R.; Bühlmann, P. Calibration-free potentiometric sensing with solid-contact ion-selective electrodes. TrAC Trends Anal. Chem. 2021, 140, 116277. [Google Scholar] [CrossRef]
- Shao, Y.; Ying, Y.; Ping, J. Recent advances in solid-contact ion-selective electrodes: Functional materials, transduction mechanisms, and development trends. Chem. Soc. Rev. 2020, 49, 4405–4465. [Google Scholar] [CrossRef]
- Teymourian, H.; Parrilla, M.; Sempionatto, J.R.; Montiel, N.F.; Barfidokht, A.; Van Echelpoel, R.; De Wael, K.; Wang, J. Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs. ACS Sens. 2020, 5, 2679–2700. [Google Scholar] [CrossRef] [PubMed]
- Vasantham, S.; Alhans, R.; Singhal, C.; Nagabooshanam, S.; Nissar, S.; Basu, T.; Ray, S.C.; Wadhwa, S.; Narang, J.; Mathur, A. Paper based point of care immunosensor for the impedimetric detection of cardiac troponin I biomarker. Biomed. Microdevices 2020, 22, 6. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.; Ju, J.; Lu, H.; Shi, X.; Wang, X.; Wang, W.; Xia, Q.; Zhou, G.; Sun, W.; Li, C.M.; et al. A Weavable and Scalable Cotton-Yarn-Based Battery Activated by Human Sweat for Textile Electronics. Adv. Sci. 2022, 9, e2103822. [Google Scholar] [CrossRef]
- Banks, M.; Amirghasemi, F.; Mitchell, E.; Mousavi, M.P.S. Home-Based Electrochemical Rapid Sensor (HERS): A Diagnostic Tool for Bacterial Vaginosis. Sensors 2023, 23, 1891. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, M.; Nemade, H.B.; Bandyopadhyay, D. Nano-enabled paper humidity sensor for mobile based point-of-care lung function monitoring. Biosens. Bioelectron. 2017, 94, 544–551. [Google Scholar] [CrossRef]
- Hu, J.; Wang, S.; Wang, L.; Li, F.; Pingguan-Murphy, B.; Lu, T.J.; Xu, F. Advances in paper-based point-of-care diagnostics. Biosens. Bioelectron. 2014, 54, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, W.; Lv, Q.; Xi, G.; Bai, H.; Zhang, Q. Disposable paper-based electrochemical sensor based on stacked gold nanoparticles supported carbon nanotubes for the determination of bisphenol A. Electrochem. Commun. 2016, 68, 104–107. [Google Scholar] [CrossRef]
- Madhu, S.; Ramasamy, S.; Magudeeswaran, V.; Manickam, P.; Nagamony, P.; Chinnuswamy, V. SnO2 nanoflakes deposited carbon yarn-based electrochemical immunosensor towards cortisol measurement. J. Nanostruct. Chem. 2022, 13, 115–127. [Google Scholar] [CrossRef]
- Wang, L.; Lu, J.; Li, Q.; Li, L.; He, E.; Jiao, Y.; Ye, T.; Zhang, Y. A Core–Sheath Sensing Yarn-Based Electrochemical Fabric System for Powerful Sweat Capture and Stable Sensing. Adv. Funct. Mater. 2022, 32, 2200922. [Google Scholar] [CrossRef]
- Wang, C.C.C.C.; Hennek, J.W.J.W.; Ainla, A.A.; Kumar, A.A.A.A.; Lan, W.J.W.J.; Im, J.J.; Smith, B.B.; Zhao, M.M.; Whitesides, G.M.G.M. A Paper-Based “Pop-up” Electrochemical Device for Analysis of Beta-Hydroxy-butyrate. Anal. Chem. 2016, 88, 6326–6333. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, Y.; Wang, Y.; Zhu, R.; Chen, Y.; Liu, X.; Xu, J.; Li, M.; Wang, D. Urea Detection of Electrochemical Transistor Sensors based on Polyanline (PANI)/MWCNT/Cotton Yarns. Electroanalysis 2021, 33, 2406–2416. [Google Scholar] [CrossRef]
- Scordo, G.; Moscone, D.; Palleschi, G.; Arduini, F. A reagent-free paper-based sensor embedded in a 3D printing device for cholinesterase activity measurement in serum. Sens. Actuators B Chem. 2018, 258, 1015–1021. [Google Scholar] [CrossRef]
- Mujawar, L.H.; Felemban, A.A.; El-Shahawi, M.S. Hexamethyldisilazane Modified Paper as an Ultra-sensitive Platform for Visual Detection of Hg2+, Co2+, Zn2+ and the Application to Semi-quantitative Determination of Hg2+ in Wastewater. Anal. Sci. 2016, 32, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.M.; Lian, X.; Liu, H.; Guo, Z.Z.; Huang, H.H.; Lei, Y.; Peng, H.P.; Chen, W.; Lin, X.H.; Liu, A.L.; et al. A colorimetric assay for sensitive detection of hydrogen peroxide and glucose in microfluidic paper-based analytical devices integrated with starch-iodide-gelatin system. Talanta 2019, 200, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Zhao, M.; Sheng, Y.; Bentolila, L.A.; Tang, Y. Detection of Mercury Ion by Infrared Fluorescent Protein and Its Hydrogel-Based Paper Assay. Anal. Chem. 2011, 83, 2324–2329. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Ko, S.; Kwon, C.H.; Lima, M.D.; Baughman, R.H.; Kim, S.J. Carbon Nanotube Yarn-Based Glucose Sensing Artificial Muscle. Small 2016, 12, 2085–2091. [Google Scholar] [CrossRef]
- Mousavi, M.P.S.; Abd El-Rahman, M.K.; Mahmoud, A.M.; Abdelsalam, R.M.; Bühlmann, P. In Situ Sensing of the Neurotransmitter Acetylcholine in a Dynamic Range of 1 nM to 1 mM. ACS Sens. 2018, 3, 2581–2589. [Google Scholar] [CrossRef]
- Bühlmann, P.; Chen, L.D. Ion-Selective Electrodes with Ionophore-Doped Sensing Membranes. Supramol. Chem. 2012, 5, 2539. [Google Scholar] [CrossRef]
- Parrilla, M.; De Wael, K. Wearable Self-Powered Electrochemical Devices for Continuous Health Management. Adv. Funct. Mater. 2021, 31, 2107042. [Google Scholar] [CrossRef]
- Zdrachek, E.; Bakker, E. Potentiometric Sensing. Anal. Chem. 2021, 93, 72–102. [Google Scholar] [CrossRef] [PubMed]
- Veder, J.P.; De Marco, R.; Clarke, G.; Chester, R.; Nelson, A.; Prince, K.; Pretsch, E.; Bakker, E. Elimination of undesirable water layers in solid-contact polymeric ion-selective electrodes. Anal. Chem. 2008, 80, 6731–6740. [Google Scholar] [CrossRef] [Green Version]
- Bieg, C.; Fuchsberger, K.; Stelzle, M. Introduction to polymer-based solid-contact ion-selective electrodes—Basic concepts, practical considerations, and current research topics. Anal. Bioanal. Chem. 2017, 409, 45–61. [Google Scholar] [CrossRef]
- Guzinski, M.; Jarvis, J.M.; Pendley, B.D.; Lindner, E. Equilibration Time of Solid Contact Ion-Selective Electrodes. Anal. Chem. 2015, 87, 6654–6659. [Google Scholar] [CrossRef] [PubMed]
- Nikolskii, B.P.; Materova, E.A. Solid Contact in Membrane Ion-Selective Electrodes. In Ion-Selective Electrode Reviews; Thomas, J.D.R., Ed.; Elsevier: Amsterdam, The Netherlands, 1985; Volume 7, pp. 3–39. [Google Scholar] [CrossRef]
- Tutulea-Anastasiu, M.D.; Wilson, D.; Del Valle, M.; Schreiner, C.M.; Cretescu, I. A Solid-Contact Ion Selective Electrode for Copper(II) Using a Succinimide Derivative as Ionophore. Sensors 2013, 13, 4367–4377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd El-Rahman, M.K.; Mazzone, G.; Mahmoud, A.M.; Sicilia, E.; Shoeib, T. Novel choline selective electrochemical membrane sensor with application in milk powders and infant formulas. Talanta 2021, 221, 121409. [Google Scholar] [CrossRef]
- Garima; Sachdev, A.; Matai, I. An electrochemical sensor based on cobalt oxyhydroxide nanoflakes/reduced graphene oxide nanocomposite for detection of illicit drug-clonazepam. J. Electroanal. Chem. 2022, 919, 116537. [Google Scholar] [CrossRef]
- Goodchild, S.A.; Hubble, L.J.; Mishra, R.K.; Li, Z.; Goud, K.Y.; Barfidokht, A.; Shah, R.; Bagot, K.S.; McIntosh, A.J.S.; Wang, J. Ionic Liquid-Modified Disposable Electrochemical Sensor Strip for Analysis of Fentanyl. Anal. Chem. 2019, 91, 3747–3753. [Google Scholar] [CrossRef]
- Klimuntowski, M.; Alam, M.M.; Singh, G.; Howlader, M.M.R. Electrochemical Sensing of Cannabinoids in Biofluids: A Noninvasive Tool for Drug Detection. ACS Sens. 2020, 5, 620–636. [Google Scholar] [CrossRef]
- Parrilla, M.; Joosten, F.; De Wael, K. Enhanced electrochemical detection of illicit drugs in oral fluid by the use of surfactant-mediated solution. Sens. Actuators B Chem. 2021, 348, 130659. [Google Scholar] [CrossRef]
- Shaw, L.; Dennany, L. Applications of electrochemical sensors: Forensic drug analysis. Curr. Opin. Electrochem. 2017, 3, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Bakker, E.; Pretsch, E.; Bühlmann, P. Selectivity of Potentiometric Ion Sensors. Anal. Chem. 2000, 72, 1127–1133. [Google Scholar] [CrossRef]
- Skoog, D.; West, D.; Holler, F.; Crouch, S. Fundamentals of Analytical Chemistry; Cengage Learning: Boston, MA, USA, 2013. [Google Scholar]
- Shaukat, S.; Fedotova, M.V.; Kruchinin, S.E.; Bešter-Roga, M.; Podlipnik, B.-R.; Buchner, R. Hydration and ion association of aqueous choline chloride and chlorocholine chloride. Phys. Chem. Chem. Phys. PCCP 2019, 21, 197–198. [Google Scholar] [CrossRef]
- Bühlmann, P.; Pretsch, E.; Bakker, E. Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors. Chem. Rev. 1998, 98, 1593–1688. [Google Scholar] [CrossRef]
- El-Rahman, M.K.A.; Mahmoud, A.M. A novel approach for spectrophotometric determination of succinylcholine in pharmaceutical formulation via host–guest complexation with water-soluble p-sulfonatocalixarene. RSC Adv. 2015, 5, 62469–62476. [Google Scholar] [CrossRef]
- Ceresa, A.; Pretsch, E. Determination of formal complex formation constants of various Pb2+ ionophores in the sensor membrane phase. Anal. Chim. Acta 1999, 395, 41–52. [Google Scholar] [CrossRef]
- Sarigul, N.; Korkmaz, F.; Kurultak, İ. A New Artificial Urine Protocol to Better Imitate Human Urine. Sci. Rep. 2019, 9, 20159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boswell, P.G.; Bühlmann, P. Fluorous Bulk Membranes for Potentiometric Sensors with Wide Selectivity Ranges: Observation of Exceptionally Strong Ion Pair Formation. J. Am. Chem. Soc. 2005, 127, 8958–8959. [Google Scholar] [CrossRef]
- Chen, X.V.; Mousavi, M.P.; Bühlmann, P. Fluorous-Phase Ion-Selective pH Electrodes: Electrode Body and Ionophore Optimization for Measurements in the Physiological pH Range. ACS Omega 2020, 5, 13621–13629. [Google Scholar] [CrossRef]
- Boswell, P.G.; Szíjjártó, C.; Jurisch, M.; Gladysz, J.A.; Rábai, J.; Bühlmann, P. Fluorophilic Ionophores for Potentiometric pH Determinations with Fluorous Membranes of Exceptional Selectivity. Anal. Chem. 2008, 80, 2084–2090. [Google Scholar] [CrossRef] [PubMed]
Interfering Solution | Limit of Detection (M) | Response (mV/decade) | |
---|---|---|---|
None | 0.12 | 29.3 ± 1 | – |
20% Urine | 4.21 | 23.1 ± 2 | – |
100 mM KCl | 7.73 | 24.5 ± 2 | −2.79 |
100 mM NaCl | 0.08 | 28.9 ± 1 | −3.78 * |
100 mM NH4Cl | 1.66 | 27.3 ± 3 | −3.46 |
100 mM CaCl2 | 0.10 | 28.5 ± 2 | −3.70 * |
100 mM MgCl2 | 0.06 | 28.0 ± 2 | −3.97 * |
Interfering Solution | Limit of Detection (M) | Response (mV/decade) | |
---|---|---|---|
None | 1.04 | 29.7 ± 0.1 | – |
20% Urine | 4.27 | 27.6 ± 0.3 | – |
100 mM KCl | 0.23 | 27.9 ± 2 | −4.32 * |
100 mM NaCl | 0.53 | 29.9 ± 0.2 | −3.95 * |
100 mM NH4Cl | 1.24 | 29.1 ± 0.4 | −3.58 * |
100 mM CaCl2 | 0.13 | 29.5± 0.7 | −3.60 * |
100 mM MgCl2 | 0.12 | 29.7 ± 0.1 | −3.62 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ong, V.; Cortez, N.R.; Xu, Z.; Amirghasemi, F.; Abd El-Rahman, M.K.; Mousavi, M.P.S. An Accessible Yarn-Based Sensor for In-Field Detection of Succinylcholine Poisoning. Chemosensors 2023, 11, 175. https://doi.org/10.3390/chemosensors11030175
Ong V, Cortez NR, Xu Z, Amirghasemi F, Abd El-Rahman MK, Mousavi MPS. An Accessible Yarn-Based Sensor for In-Field Detection of Succinylcholine Poisoning. Chemosensors. 2023; 11(3):175. https://doi.org/10.3390/chemosensors11030175
Chicago/Turabian StyleOng, Victor, Nicholas R. Cortez, Ziru Xu, Farbod Amirghasemi, Mohamed K. Abd El-Rahman, and Maral P. S. Mousavi. 2023. "An Accessible Yarn-Based Sensor for In-Field Detection of Succinylcholine Poisoning" Chemosensors 11, no. 3: 175. https://doi.org/10.3390/chemosensors11030175
APA StyleOng, V., Cortez, N. R., Xu, Z., Amirghasemi, F., Abd El-Rahman, M. K., & Mousavi, M. P. S. (2023). An Accessible Yarn-Based Sensor for In-Field Detection of Succinylcholine Poisoning. Chemosensors, 11(3), 175. https://doi.org/10.3390/chemosensors11030175