A Fluorogenic Covalent Chromone-Based Intercalator with a Mega-Stokes Shift for Sensing DNA Hybridization
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Methods and Instruments
2.2. Synthesis Procedures
- 6-Ethynyl-3-hydroxy-2-(thiophen-2-yl)-4H-chromen-4-one (2, 6-EHT): To a stirred solution of 1 (252 mg, 0.65 mmol) [21] in CH2Cl2 (3.2 mL), a saturated solution of K2CO3 in MeOH (3.2 mL) was added. The reaction mixture was stirred at room temperature overnight before being quenched by the addition of a few drops of glacial acetic acid, and volatiles were concentrated under reduced pressure. The resulting residue was washed twice with cyclohexane to remove any impurities and then dried to give the crude product 2 (6-EHT) as a yellow solid (174 mg, 0.65 mmol, quant.), which was directly used in the next step. HRMS (ESI+): m/z calcd for C15H9O3S+: 269.0267 [M + H]+; found: 269.0251.
- 6-Ethynyl-3-methoxy-2-(thiophen-2-yl)-4H-chromen-4-one (3, 6-EMT): To a stirred solution of 6-EHT (174 mg, 0.65 mmol, 1 eq.) in CH2Cl2 (6.5 mL) were sequentially added 18-crown-6 (85 mg, 10 mol%), a KOH aq. solution (25% w/v, 0.9 mL, DCM/KOH 7:1), and dimethyl sulfate (323 µL, 3.25 mmol, 5 eq.). The resulting mixture was stirred overnight at room temperature. After quenching the reaction with the addition of H2O (13 mL), the organic layer was extracted with CH2Cl2 (3×). The combined organic phases were dried over MgSO4 and filtered, and the volatiles were removed in vacuo. The residue was purified by flash chromatography on silica gel eluted with cyclohexane/ethyl acetate (9:1 → 1:1, v/v) to afford the desired compound 3 (6-EMT) as a yellowish solid (111 mg, 0.39 mmol, 60% over 2 steps). Rf = 0.52 (Cyclohexane/EtOAc 3:1). 1H-NMR (CDCl3, 400 MHz): δ 3.07 (s, 1H, HC≡C), 4.00 (s, 3H, OCH3), 7.15 (dd, 3J = 5.0 Hz, 3J = 3.9 Hz, 1H, Hβ), 7.42 (d, 3J = 8.7 Hz, 1H, H8), 7.57 (dd, 3J = 5.0 Hz, 4J = 1.1 Hz, 1H, Hγ), 7.67 (dd, 3J = 8.7 Hz, 4J = 2.0 Hz, 1H, H7), 7.88 (dd, 3J = 3.9 Hz, 4J = 1.1 Hz, 1H, Hα), 8.30 (d, 4J = 2.0 Hz, 1H, H5). 13C-NMR (CDCl3, 101 MHz): δ 59.7 (OCH3). 78.2 (HC≡C), 82.0 (HC≡C), 118.2 (C8), 119.0 (C6), 124.2 (C10), 127.6 (Cβ), 129.8 (Cα), 129.9 (C5), 131.5 (C3), 131.9 (Cγ), 136.6 (C7), 138.7 (C11), 151.8 (C2), 154.5 (C9), 173.2 (C4). HRMS (ESI+): m/z calcd for C16H11O3S+: 283.0423 [M + H]+; found: 283.0442.
- 1-(Azidomethyl)-4-methoxybenzene (4): To a stirred solution of NaN3 (1.05 g, 16.15 mmol, 2.5 eq.) in DMSO was added PMBCl (1.0 g, 6.39 mmol, 1 eq.). The solution was stirred at 45 °C overnight until the starting material was consumed (monitored by GC-MS). The reaction mixture was cooled to room temperature and then quenched with H2O (30 mL). The organic layer was extracted with Et2O (3 × 20 mL). The combined organic phases were washed with H2O (2 × 30 mL) and brine (30 mL), dried over MgSO4, and filtered, and the volatiles were removed in vacuo to yield the desired product 4 as a yellowish oil (1.04 g, 6.39 mmol, quant.). Rf = 0.70 (Cyclohexane/EtOAc 3:1). 1H-NMR (CDCl3, 400 MHz): δ 3.84 (s, 3H), 4.30 (s, 2H), 6.95 (d, J = 8.7 Hz, 2H), 7.28 (d, J = 8.7 Hz, 2H). 13C-NMR (CDCl3, 101 MHz): δ 54.4 (N3CH2), 55.3 (OCH3), 114.2 (Cortho), 127.5 (Cpara), 129.8 (Cmeta), 159.7 (Ci). HRMS (ESI+): m/z calcd for C8H10N3O+: 164.0818 [M + H]+; found: 164.0833.
- 3-Methoxy-6-(1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)-2-(thiophen-2-yl)-4H-chromen-4-one (5, Mo-Thio): To a stirred solution of 6-EMT (41 mg, 0.15 mmol, 1 eq.) in DCE were sequentially added 4 (43 mg, 0.26 mmol, 1.8 eq.), DIPEA (306 µL, 1.74 mmol, 12 eq.), acetic acid (50 µL, 0.87 mmol, 6 eq.), and CuI (78 mg, 0.41 mmol, 2.8 eq.). The resulting solution was heated at 40 °C overnight under an argon atmosphere to give a homogeneous blue liquid. The reaction mixture was cooled to room temperature and then concentrated under reduced pressure. The crude was purified by flash chromatography on silica gel eluted with cyclohexane/ethyl acetate (9:1 → 3:2, v/v) to provide the desired product 5 (Mo-Thio) as a yellowish powder (37 mg, 0.08 mmol, 57%). Rf = 0.14 (Cyclohexane/EtOAc 3:1). 1H-NMR (CDCl3, 400 MHz): δ 3.77 (s, 3H, PhOCH3), 3.99 (s, 3H, OCH3), 5.46 (s, 2H, H12), 6.87 (d, 3J = 8.7 Hz, 2H, Hmeta), 7.16 (dd, 3J = 5.0 Hz, 3J = 3.9 Hz, 1H, Hβ), 7.24 (d, 3J = 8.7 Hz, 2H, Hortho), 7.54 (d, 3J = 8.8 Hz, 1H, H8), 7.57 (dd, 3J = 5.0 Hz, 4J = 1.2 Hz, 1H, Hγ), 7.69 (s, 1H, Hα’), 7.91 (dd, 3J = 3.9 Hz, 4J = 1.2 Hz, 1H, Hα), 8.28 (d, 4J = 2.2 Hz, 1H, H5), 8.33 (dd, 3J = 8.8 Hz, 4J = 2.2 Hz, 1H, H7). 13C-NMR (CDCl3, 400 MHz): δ 54.0 (C12), 55.4 (PhOCH3), 59.7 (OCH3), 114.7 (Cmeta), 118.6 (C8), 119.9 (Cα’), 122.0 (C5), 124.3 (C10), 126.2 (Ci), 127.6 (Cβ), 127.7 (C6), 129.8 (Cα), 129.9 (Cortho), 131.0 (C7), 131.7 (C3), 131.8 (Cγ), 138.7 (C11), 146.6 (Cβ’), 151.9 (C2), 154.8 (C9), 160.2 (Cpara), 173.9 (C4). HRMS (ESI+): m/z calcd for C24H20N3O4S+: 446.1169 [M + H]+; found: 446.1166.
3. Results and Discussion
3.1. Molecular Design and Synthesis
3.2. Photophysical Properties of Mo-Thio
3.3. Spectroscopic Features of Labeled ODNs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khadem, S.; Marles, R.J. Chromone and Flavonoid Alkaloids: Occurrence and Bioactivity. Molecules 2012, 17, 191–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, C.F.M.; Pinto, D.C.G.A.; Silva, A.M.S. Chromones: A Promising Ring System for New Anti-inflammatory Drugs. ChemMedChem 2016, 11, 2252–2260. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, A.; Matos, M.J.; Garrido, J.; Uriarte, E.; Borges, F. Chromone: A valid scaffold in medicinal chemistry. Chem. Rev. 2014, 114, 4960–4992. [Google Scholar] [CrossRef] [Green Version]
- Klymchenko, A.S.; Mély, Y. Fluorescent Environment-Sensitive Dyes as Reporters of Biomolecular Interactions. In Progress in Molecular Biology and Translational Science; Morris, M.C., Ed.; Academic Press: Burlington, VT, USA, 2013; Volume 113, Chapter 2; pp. 35–58. [Google Scholar] [CrossRef]
- Demchenko, A.P.; Klymchenko, A.S.; Pivovarenko, V.G.; Ercelen, S. Ratiometric Probes: Design and Applications. In Fluorescence Spectroscopy, Imaging and Probes; Springer Series on Fluorescence; Kraayenhof, R., Visser, A.J.W.G., Gerritsen, H.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2, Chapter 5; pp. 101–110. [Google Scholar] [CrossRef]
- Kumpulainen, T.; Lang, B.; Rosspeintner, A.; Vauthey, E. Ultrafast Elementary Photochemical Processes of Organic Molecules in Liquid Solution. Chem. Rev. 2017, 117, 10826–10939. [Google Scholar] [CrossRef]
- Tomin, V.I.; Demchenko, A.P.; Chou, P.-T. Thermodynamic vs. kinetic control of excited-state proton transfer reactions. J. Photochem. Photobiol. C Photochem. Rev. 2015, 22, 1–18. [Google Scholar] [CrossRef]
- Sedgwick, A.C.; Wu, L.; Han, H.-H.; Bull, S.D.; He, X.-P.; James, T.D.; Sessler, J.L.; Tang, B.Z.; Tian, H.; Yoon, J. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem. Soc. Rev. 2018, 46, 7105–7139. [Google Scholar] [CrossRef] [Green Version]
- Michel, B.Y.; Dziuba, D.; Benhida, R.; Demchenko, A.P.; Burger, A. Probing of Nucleic Acid Structures, Dynamics, and Interactions wiamoth Environment-Sensitive Fluorescent Labels. Front. Chem. 2020, 8, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dziuba, D.; Didier, P.; Ciaco, S.; Barth, A.; Seidel, C.A.M.; Mély, Y. Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues. Chem. Soc. Rev. 2021, 50, 7062–7107. [Google Scholar] [CrossRef]
- Nakatani, K.; Tor, Y. (Eds.) Modified Nucleic Acids; Nucleic Acids and Molecular Biology Series; Springer: Cham, Switzerland, 2016; Volume 31, p. 276. [Google Scholar] [CrossRef]
- Demchenko, A.P. Introduction to Fluorescence Sensing, 3rd ed.; Springer: Cham, Switzerland, 2020; Volume 1, Materials and Devices; p. 657. [Google Scholar] [CrossRef]
- Dziuba, D.; Postupalenko, V.Y.; Spadafora, M.; Klymchenko, A.S.; Guérineau, V.; Mély, Y.; Benhida, R.; Burger, A. A Universal Nucleoside with Strong Two-Band Switchable Fluorescence and Sensitivity to the Environment for Investigating DNA Interactions. J. Am. Chem. Soc. 2012, 134, 10209–10213. [Google Scholar] [CrossRef]
- Spadafora, M.; Postupalenko, V.Y.; Shvadchak, V.V.; Klymchenko, A.S.; Mély, Y.; Burger, A.; Benhida, R. Efficient Synthesis of Ratiometric Fluorescent Nucleosides Featuring 3-Hydroxychromone Nucleobases. Tetrahedron 2009, 65, 7809–7816. [Google Scholar] [CrossRef]
- Kuznetsova, A.A.; Kuznetsov, N.A.; Vorobjev, Y.N.; Barthes, N.P.F.; Michel, B.Y.; Burger, A.; Fedorova, O.S. New environment-sensitive multichannel DNA fluorescent label for investigation of the protein-DNA interactions. PLoS ONE 2014, 9, e100007. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, A.A.; Kladova, O.A.; Barthes, N.P.F.; Michel, B.Y.; Burger, A.; Fedorova, O.S.; Kuznetsov, N.A. Comparative Analysis of Nucleotide Fluorescent Analogs for Registration of DNA Conformational Changes Induced by Interaction with Formamidopyrimidine-DNA Glycosylase Fpg. Russ. J. Bioorg. Chem. 2019, 45, 591–598. [Google Scholar] [CrossRef]
- Kilin, V.; Gavvala, K.; Barthes, N.P.F.; Michel, B.Y.; Shin, D.; Boudier, C.; Mauffret, O.; Yashchuk, V.; Mousli, M.; Ruff, M.; et al. Dynamics of Methylated Cytosine Flipping by UHRF1. J. Am. Chem. Soc. 2017, 139, 2520–2528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sholokh, M.; Sharma, R.; Grytsyk, N.; Zaghzi, L.; Postupalenko, V.Y.; Dziuba, D.; Barthes, N.P.F.; Michel, B.Y.; Boudier, C.; Zaporozhets, O.A.; et al. Environmentally Sensitive Fluorescent Nucleoside Analogues for Surveying Dynamic Interconversions of Nucleic Acid Structures. Chem. Eur. J. 2018, 24, 13850–13861. [Google Scholar] [CrossRef] [PubMed]
- Zargarian, L.; Ben Imeddourene, A.; Gavvala, K.; Barthes, N.P.F.; Michel, B.Y.; Kenfack, C.A.; Morellet, N.; René, B.; Fossé, P.; Burger, A.; et al. Structural and Dynamical Impact of a Universal Fluorescent Nucleoside Analogue Inserted Into a DNA Duplex. J. Phys. Chem. B 2017, 121, 11249–11261. [Google Scholar] [CrossRef] [PubMed]
- Le, H.-N.; Brazard, J.; Barnoin, G.; Vincent, S.; Michel, B.Y.; Léonard, J.; Burger, A. Control of Intermolecular Photoinduced Electron Transfer in Deoxyadenosine-Based Fluorescent Probes. Chem. Eur. J. 2020, 26, 276–286. [Google Scholar] [CrossRef]
- Le, H.-N.; Zilio, C.; Barnoin, G.; Barthes, N.P.F.; Guigonis, J.-M.; Martinet, N.; Michel, B.Y.; Burger, A. Rational design, synthesis, and photophysics of dual-emissive deoxyadenosine analogs. Dyes Pigments 2019, 170, 107553. [Google Scholar] [CrossRef]
- Barthes, N.P.F.; Gavvala, K.; Dziuba, D.; Bonhomme, D.; Karpenko, I.A.; Dabert-Gay, A.S.; Debayle, D.; Demchenko, A.P.; Benhida, R.; Michel, B.Y.; et al. Dual emissive analogue of deoxyuridine as a sensitive hydration-reporting probe for discriminating mismatched from matched DNA and DNA/DNA from DNA/RNA duplexes. J. Mater. Chem. C 2016, 4, 3010–3017. [Google Scholar] [CrossRef]
- Gavvala, K.; Barthes, N.P.F.; Bonhomme, D.; Dabert-Gay, A.S.; Debayle, D.; Michel, B.Y.; Burger, A.; Mély, Y. A turn-on dual emissive nucleobase sensitive to mismatches and duplex conformational changes. RSC Adv. 2016, 6, 87142–87146. [Google Scholar] [CrossRef]
- Kladova, O.A.; Kuznetsova, A.A.; Barthes, N.P.F.; Michel, B.Y.; Burger, A.; Fedorova, O.S.; Kuznetsov, N.A. New Fluorescent Analogs of Nucleotides Based on 3-Hydroxychromone for Recording Conformational Changes of DNA. Russ. J. Bioorg. Chem. 2019, 45, 599–607. [Google Scholar] [CrossRef]
- Dziuba, D.; Karpenko, I.A.; Barthes, N.P.F.; Michel, B.Y.; Klymchenko, A.S.; Benhida, R.; Demchenko, A.P.; Mély, Y.; Burger, A. Rational design of a solvatochromic fluorescent uracil analogue with a dual-band ratiometric response based on 3-hydroxychromone. Chem. Eur. J. 2014, 20, 1998–2009. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmsson, L.M.; Tor, Y. (Eds.) Fluorescent Analogues of Biomolecular Building Blocks: Design and Applications; Wiley-VCH: Hoboken, NJ, USA, 2016; p. 448. [Google Scholar] [CrossRef]
- Herdewijn, P. (Ed.) Modified Nucleosides: In Biochemistry, Biotechnology and Medicine; Wiley-VCH: Weinheim, Germany, 2008; p. 658. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, USA, 2006; p. 954. [Google Scholar] [CrossRef]
- Medintz, I.; Hildebrandt, N. (Eds.) FRET—Förster Resonance Energy Transfer: From Theory to Applications; Wiley-VCH: Weinheim, Germany, 2013; p. 791. [Google Scholar] [CrossRef]
- Shi, W.; Ma, H. Spectroscopic probes with changeable π-conjugated systems. Chem. Commun. 2012, 48, 8732–8744. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, A. Next-generation fluorescent nucleic acids probes for microscopic analysis of intracellular nucleic acids. Appl. Microsc. 2019, 49, 14. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, G.; Okamoto, A. Probe Design for the Effective Fluorescence Imaging of Intracellular RNA. Chem. Rec. 2013, 13, 209–217. [Google Scholar] [CrossRef]
- Okamoto, A. ECHO probes: A concept of fluorescence control for practical nucleic acid sensing. Chem. Soc. Rev. 2011, 40, 5815–5828. [Google Scholar] [CrossRef]
- Lee, S.-C.; Heo, J.; Woo, H.C.; Lee, J.-A.; Seo, Y.H.; Lee, C.-L.; Kim, S.; Kwon, O.-P. Fluorescent Molecular Rotors for Viscosity Sensors. Chem. Eur. J. 2018, 24, 13706–13718. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Teoh, C.L.; Wang, L.; Liu, X.; Chang, Y.-T. Motion-induced change in emission (MICE) for developing fluorescent probes. Chem. Soc. Rev. 2017, 46, 4833–4844. [Google Scholar] [CrossRef]
- Dal Molin, M.; Verolet, Q.; Soleimanpour, S.; Matile, S. Mechanosensitive Membrane Probes. Chem. Eur. J. 2015, 21, 6012–6021. [Google Scholar] [CrossRef] [Green Version]
- Hövelmann, F.; Seitz, O. DNA Stains as Surrogate Nucleobases in Fluorogenic Hybridization Probes. Acc. Chem. Res. 2016, 49, 714–723. [Google Scholar] [CrossRef]
- Köhler, O.; Jarikote, D.V.; Singh, I.; Parmar, V.S.; Weinhold, E.; Seitz, O. Forced intercalation as a tool in gene diagnostics and in studying DNA-protein interactions. Pure Appl. Chem. 2005, 77, 327–338. [Google Scholar] [CrossRef]
- Gebhard, J.; Hirsch, L.; Schwechheimer, C.; Wagenknecht, H.-A. Hybridization-Sensitive Fluorescent Probes for DNA and RNA by a Modular “click” Approach. Bioconjugate Chem. 2022, 33, 1634–1642. [Google Scholar] [CrossRef] [PubMed]
- Chamiolo, J.; Fang, G.-M.; Hövelmann, F.; Friedrich, D.; Knoll, A.; Loewer, A.; Seitz, O. Comparing Agent-Based Delivery of DNA and PNA Forced Intercalation (FIT) Probes for Multicolor mRNA Imaging. ChemBioChem 2019, 20, 595–604. [Google Scholar] [CrossRef]
- Gaspar, I.; Hövelmann, F.; Chamiolo, J.; Ephrussi, A.; Seitz, O. Quantitative mRNA Imaging with Dual Channel qFIT Probes to Monitor Distribution and Degree of Hybridization. ACS Chem. Biol. 2018, 13, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Hövelmann, F.; Gaspar, I.; Chamiolo, J.; Kasper, M.; Steffen, J.; Ephrussi, A.; Seitz, O. LNA-enhanced DNA FIT-probes for multicolour RNA imaging. Chem. Sci. 2016, 7, 128–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hövelmann, F.; Gaspar, I.; Loibl, S.; Ermilov, E.A.; Röder, B.; Wengel, J.; Ephrussi, A.; Seitz, O. Brightness through Local Constraint—LNA-Enhanced FIT Hybridization Probes for in Vivo Ribonucleotide Particle Tracking. Angew. Chem. Int. Ed. 2014, 53, 11370–11375. [Google Scholar] [CrossRef]
- Hövelmann, F.; Gaspar, I.; Ephrussi, A.; Seitz, O. Brightness Enhanced DNA FIT-Probes for Wash-Free RNA Imaging in Tissue. J. Am. Chem. Soc. 2013, 135, 19025–19032. [Google Scholar] [CrossRef]
- Hövelmann, F.; Bethge, L.; Seitz, O. Single Labeled DNA FIT Probes for Avoiding False-Positive Signaling in the Detection of DNA/RNA in qPCR or Cell Media. ChemBioChem 2012, 13, 2072–2081. [Google Scholar] [CrossRef]
- Kummer, S.; Knoll, A.; Socher, E.; Bethge, L.; Herrmann, A.; Seitz, O. Fluorescence Imaging of Influenza H1N1 mRNA in Living Infected Cells Using Single-Chromophore FIT-PNA. Angew. Chem. Int. Ed. 2011, 50, 1931–1934. [Google Scholar] [CrossRef] [PubMed]
- Socher, E.; Bethge, L.; Knoll, A.; Jungnick, N.; Herrmann, A.; Seitz, O. Low-Noise Stemless PNA Beacons for Sensitive DNA and RNA Detection. Angew. Chem. Int. Ed. 2008, 47, 9555–9559. [Google Scholar] [CrossRef]
- Socher, E.; Jarikote, D.V.; Knoll, A.; Röglin, L.; Burmeister, J.; Seitz, O. FIT probes: Peptide nucleic acid probes with a fluorescent base surrogate enable real-time DNA quantification and single nucleotide polymorphism discovery. Anal. Biochem. 2008, 375, 318–330. [Google Scholar] [CrossRef]
- Klymchenko, A.S. Solvatochromic and Fluorogenic Dyes as Environment-Sensitive Probes: Design and Biological Applications. Acc. Chem. Res. 2017, 50, 366–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinden, R.R.; Pearson, C.E.; Potaman, V.N.; Ussery, D.W. DNA: Structure and function. In Genes and Genomes; Advances in Genome Biology; Verma, R.S., Ed.; Elsevier: Stamford, CT, USA, 1998; Volume 5, pp. 1–141. [Google Scholar] [CrossRef]
- Braselmann, E.; Rathbun, C.; Richards, E.M.; Palmer, A.E. Illuminating RNA Biology: Tools for Imaging RNA in Live Mammalian Cells. Cell Chem. Biol. 2020, 27, 891–903. [Google Scholar] [CrossRef]
- Tomoike, F.; Abe, H. RNA imaging by chemical probes. Adv. Drug Deliv. Rev. 2019, 147, 44–58. [Google Scholar] [CrossRef] [PubMed]
- Socher, E.; Seitz, O. FIT-Probes in Real-Time PCR. In Molecular Beacons: Signalling Nucleic Acid Probes, Methods, and Protocols; Methods in Molecular, Biology; Marx, A., Seitz, O., Eds.; Humana Press: Totowa, NJ, USA, 2008; Volume 429, Chapter 13; pp. 187–197. [Google Scholar] [CrossRef]
- Suseela, Y.V.; Narayanaswamy, N.; Pratihar, S.; Govindaraju, T. Far-red fluorescent probes for canonical and non-canonical nucleic acid structures: Current progress and future implications. Chem. Soc. Rev. 2018, 47, 1098–1131. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, Y.; Wu, T.; Zhou, X.; Shao, Y. Triggered Excited-State Intramolecular Proton Transfer Fluorescence for Selective Triplex DNA Recognition. Anal. Chem. 2015, 87, 11620–11624. [Google Scholar] [CrossRef] [Green Version]
- Janjua, N.K.; Shaheen, A.; Yaqub, A.; Perveen, F.; Sabahat, S.; Mumtaz, M.; Jacob, C.; Ba, L.A.; Mohammed, H.A. Flavonoid-DNA binding studies and thermodynamic parameters. Spectrochim. Acta A 2011, 79, 1600–1604. [Google Scholar] [CrossRef]
- Ragazzon, P.A.; Bradshaw, T.; Matthews, C.; Iley, J.; Missailidis, S. The characterisation of flavone-DNA isoform interactions as a basis for anticancer drug development. Anticancer Res. 2009, 29, 2273–2283. [Google Scholar] [PubMed]
- Benson, S.; de Moliner, F.; Tipping, W.; Vendrell, M. Miniaturized Chemical Tags for Optical Imaging. Angew. Chem. Int. Ed. 2022, 61, e202204788. [Google Scholar] [CrossRef]
- Armarego, W.L.F.; Chai, C.L.L. Purification of Laboratory Chemicals, 8th ed.; Butterworth-Heinemann: Oxford, UK, 2017; p. 1024. [Google Scholar] [CrossRef]
- Jork, H.; Funk, W.; Fischer, W.R.; Wimmer, H. Thin-Layer Chromatography: Reagents and Detection Methods; Physical and Chemical Detection Methods: Fundamentals, Reagents I; VCH: Weinheim, Germany, 1990; Volume 1a, p. 464. [Google Scholar]
- Still, W.C.; Kahn, M.; Mitra, A. Rapid chromatographic technique for preparative separations with moderate resolution. J. Org. Chem. 1978, 43, 2923–2925. [Google Scholar] [CrossRef]
- Babij, N.R.; McCusker, E.O.; Whiteker, G.T.; Canturk, B.; Choy, N.; Creemer, L.C.; Amicis, C.V.D.; Hewlett, N.M.; Johnson, P.L.; Knobelsdorf, J.A.; et al. NMR Chemical Shifts of Trace Impurities: Industrially Preferred Solvents Used in Process and Green Chemistry. Org. Process Res. Dev. 2016, 20, 661–667. [Google Scholar] [CrossRef]
- Ormson, S.M.; Brown, R.G.; Vollmer, F.; Rettig, W. Switching between charge-and proton-transfer emission in the excited state of a substituted 3-hydroxyflavone. J. Photochem. Photobiol. A Chem. 1994, 81, 65–72. [Google Scholar] [CrossRef]
- Breslauer, K.J. [10] Extracting thermodynamic data from equilibrium melting curves for oligonucleotide order-disorder transitions. In Energetics of Biological Macromolecules; Methods in Enzymology; Johnson, M.L., Ackers, G.K., Eds.; Academic Press: San Diego, CA, USA, 1995; Volume 259, pp. 221–242. [Google Scholar] [CrossRef]
- Ivancová, I.; Leone, D.-L.; Hocek, M. Reactive modifications of DNA nucleobases for labelling, bioconjugations, and cross-linking. Curr. Opin. Chem. Biol. 2019, 52, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Kozma, E.; Kele, P. Fluorogenic probes for super-resolution microscopy. Org. Biomol. Chem. 2019, 17, 215–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jullien, L.; Gautier, A. Fluorogen-based reporters for fluorescence imaging: A review. Methods Appl. Fluoresc. 2015, 3, 042007. [Google Scholar] [CrossRef]
- Vincent, S.; Mallick, S.; Barnoin, G.; Le, H.-N.; Michel, B.Y.; Burger, A. An Expeditious Approach towards the Synthesis and Application of Water-Soluble and Photostable Fluorogenic Chromones for DNA Detection. Molecules 2022, 27, 2267. [Google Scholar] [CrossRef]
- Barthes, N.P.F.; Gavvala, K.; Bonhomme, D.; Dabert-Gay, A.S.; Debayle, D.; Mély, Y.; Michel, B.Y.; Burger, A. Design and Development of a Two-Color Emissive FRET Pair Based on a Photostable Fluorescent Deoxyuridine Donor Presenting a Mega-Stokes Shift. J. Org. Chem. 2016, 81, 10733–10741. [Google Scholar] [CrossRef]
- Kreder, R.; Oncul, S.; Kucherak, O.A.; Pyrshev, K.A.; Real, E.; Mély, Y.; Klymchenko, A.S. Blue fluorogenic probes for cell plasma membranes fill the gap in multicolour imaging. RSC Adv. 2015, 5, 22899–22905. [Google Scholar] [CrossRef] [Green Version]
- Kucherak, O.A.; Richert, L.; Mély, Y.; Klymchenko, A.S. Dipolar 3-methoxychromones as bright and highly solvatochromic fluorescent dyes. Phys. Chem. Chem. Phys. 2012, 14, 2292–2300. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z. Algar-Flynn-Oyamada (AFO) Reaction. In Comprehensive Organic Name Reactions and Reagents; Wiley-VCH: Weinheim, Germany, 2010; Chapter 13; pp. 52–56. [Google Scholar] [CrossRef]
- Sharma, A.; Singh Tuli, H.; Sharma, A.K. Chemistry and Synthetic Overview of Flavonoids. In Current Aspects of Flavonoids: Their Role in Cancer Treatment; Singh Tuli, H., Ed.; Springer: Singapore, 2019; pp. 23–38. [Google Scholar] [CrossRef]
- Dean, F.M.; Podimuang, V. 737. The course of the Algar–Flynn–Oyamada (A.F.O.) reaction. J. Chem. Soc. Perkin Trans. 1965, 3978–3987. [Google Scholar] [CrossRef]
- Fantoni, N.Z.; El-Sagheer, A.H.; Brown, T. A Hitchhiker’s Guide to Click-Chemistry with Nucleic Acids. Chem. Rev. 2021, 121, 7122–7154. [Google Scholar] [CrossRef]
- Amblard, F.; Cho, J.H.; Schinazi, R.F. Cu(l)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry. Chem. Rev. 2009, 109, 4207–4220. [Google Scholar] [CrossRef] [Green Version]
- Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. [Google Scholar] [CrossRef]
- Dziuba, D.; Benhida, R.; Burger, A. A Mild and Efficient Protocol for the Protection of 3-Hydroxychromones under Phase-Transfer Catalysis. Synthesis 2011, 47, 2159–2164. [Google Scholar] [CrossRef]
- Klymchenko, A.S.; Pivovarenko, V.G.; Demchenko, A.P. Perturbation of planarity as the possible mechanism of solvent-dependent variations of fluorescence quantum yield in 2-aryl-3-hydroxychromones. Spectrochim. Acta A 2003, 59, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.J.; Lynch, G.C.; Pettitt, B.M. Ion and solvent density distributions around canonical B-DNA from integral equations. J. Phys. Chem. B 2011, 115, 547–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Yuan, W.; Jia, Z.; Liu, G. H- and J-Aggregation of Fluorene-Based Chromophores. J. Phys. Chem. B 2014, 118, 14536–14545. [Google Scholar] [CrossRef]
- Demchenko, A.P. Photobleaching of organic fluorophores: Quantitative characterization, mechanisms, protection. Methods Appl. Fluoresc. 2020, 8, 022001. [Google Scholar] [CrossRef]
- Niko, Y.; Didier, P.; Mély, Y.; Konishi, G.-I.; Klymchenko, A.S. Bright and photostable push-pull pyrene dye visualizes lipid order variation between plasma and intracellular membranes. Sci. Rep. 2016, 6, 18870. [Google Scholar] [CrossRef] [Green Version]
- Reichardt, C. Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 1994, 94, 2319–2358. [Google Scholar] [CrossRef]
- Hainke, S.; Seitz, O. Binaphthyl-DNA: Stacking and Fluorescence of a Nonplanar Aromatic Base Surrogate in DNA. Angew. Chem. Int. Ed. 2009, 48, 8250–8253. [Google Scholar] [CrossRef] [PubMed]
- Singh, I.; Hecker, W.; Prasad, A.K.; Parmar, V.S.; Seitz, O. Local disruption of DNA-base stacking by bulky base surrogates. Chem. Commun. 2002, 500–501. [Google Scholar] [CrossRef] [PubMed]
- Sougnabé, A.; Lissouck, D.; Fontaine-Vive, F.; Nsangou, M.; Mély, Y.; Burger, A.; Kenfack, C.A. Electronic transitions and ESIPT kinetics of the thienyl-3-hydroxychromone nucleobase surrogate in DNA duplexes: A DFT/MD-TDDFT study. RSC Adv. 2020, 10, 7349–7359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenfack, C.A.; Klymchenko, A.S.; Duportail, G.; Burger, A.; Mély, Y. Ab initio study of the solvent H-bonding effect on ESIPT reaction and electronic transitions of 3-hydroxychromone derivatives. Phys. Chem. Chem. Phys. 2012, 14, 8910–8918. [Google Scholar] [CrossRef] [PubMed]
- Moreira, B.G.; You, Y.; Owczarzy, R. Cy3 and Cy5 dyes attached to oligonucleotide terminus stabilize DNA duplexes: Predictive thermodynamic model. Biophys. Chem. 2015, 198, 36–44. [Google Scholar] [CrossRef] [Green Version]
Solvent a | ETN (30) b | λAbs (nm) c | λEm (nm) d | Φ (%) e |
---|---|---|---|---|
HFIP | 1.07 | 352 | 435 | 4.1 |
MeOH | 0.76 | 342 | 442 | 2.1 |
EtOH | 0.65 | 342 | 437 | 2.4 |
BuOH | 0.59 | 343 | 432 | 3.7 |
CH3CN | 0.46 | 335 | 456 | 0.7 |
DMF | 0.39 | 339 | 457 | 1.6 |
CH2Cl2 | 0.31 | 339 | 454 | 1.1 |
EtOAc | 0.23 | 333 | 448 | 0.4 |
THF | 0.21 | 335 | 449 | 0.8 |
Toluene | 0.10 | 338 | 453 | 0.9 |
Sequence a | Functionalization (Y, X, and Xs) |
---|---|
5′-YGCA AAA TTT AAA ACG-3′ | |
5′-GCA AAA TXT AAA ACG-3′ | |
5′-GCA AAA TXsT AAA ACG-3′ |
ODN | λAbs (nm) a | λEm (nm) b | Φ (%) c |
---|---|---|---|
YGCA | 352 | 437 | 1.2 |
YGCA·CGT | 352 | 434 | 0.9 |
TXT | 352 | 439 | 1.1 |
TXT·AAA | 356 | 437 | 10.9 |
TXsT | 343 | 435 | 1.9 |
TXsT·AAA | 354 | 435 | 6.6 |
Duplex | Tm (°C) | ||
---|---|---|---|
6-EMT | Wild-Type a | ΔTm b | |
YGCA·CGT | 46.7 | 45.9 | +0.8 |
TXT·AAA | 40.7 | 45.9 | −5.2 |
TXsT·AAA | 39.1 | 45.9 | −6.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vincent, S.; Mallick, S.; Barnoin, G.; Le, H.-N.; Burger, A.; Michel, B.Y. A Fluorogenic Covalent Chromone-Based Intercalator with a Mega-Stokes Shift for Sensing DNA Hybridization. Chemosensors 2023, 11, 161. https://doi.org/10.3390/chemosensors11030161
Vincent S, Mallick S, Barnoin G, Le H-N, Burger A, Michel BY. A Fluorogenic Covalent Chromone-Based Intercalator with a Mega-Stokes Shift for Sensing DNA Hybridization. Chemosensors. 2023; 11(3):161. https://doi.org/10.3390/chemosensors11030161
Chicago/Turabian StyleVincent, Steve, Suman Mallick, Guillaume Barnoin, Hoang-Ngoan Le, Alain Burger, and Benoît Y. Michel. 2023. "A Fluorogenic Covalent Chromone-Based Intercalator with a Mega-Stokes Shift for Sensing DNA Hybridization" Chemosensors 11, no. 3: 161. https://doi.org/10.3390/chemosensors11030161
APA StyleVincent, S., Mallick, S., Barnoin, G., Le, H. -N., Burger, A., & Michel, B. Y. (2023). A Fluorogenic Covalent Chromone-Based Intercalator with a Mega-Stokes Shift for Sensing DNA Hybridization. Chemosensors, 11(3), 161. https://doi.org/10.3390/chemosensors11030161