Trimethylsilylethynyl-Substituted Pyrene Doped Materials as Improved Fluorescent Sensors towards Nitroaromatic Explosives and Related Compounds
Abstract
:1. Introduction
2. Results
2.1. Photophysical Studies of F in Chloroform Solution
2.2. Detection of Nitroaromatic Compounds in Acetonitrile Solution
2.3. Morphology and Photophysical Studies of Obtained Solid Sensory Materials
2.4. Sensing Performance towards Various Analytes in Vapor Phase
2.5. Sensing Properties Characterization Based on Diffusion Model
3. Conclusions
4. Materials and Methods
Preparation of Sensing Materials
5. Supplementary References That Are Not Used in Main Text
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Yinon, J. (Ed.) Counterterrorist Detection Techniques of Explosives; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Giannoukos, S.; Brkić, B.; Taylor, S.; Marshall, T.; Verbeck, G.F. Chemical Sniffing Instrumentation for Security Applications. Chem. Rev. 2016, 116, 8146–8172. [Google Scholar] [CrossRef]
- Meier, R.; Köhler, J.; Homburg, A. Explosives; Wiley-VCH: Weinheim, Germany, 2016. [Google Scholar]
- Lai, D.Y.; Woo, Y.-T. Hamilton & Hardy’s Industrial Toxicology; Wiley: New York, NY, USA, 2015. [Google Scholar]
- Sunahara, G.I.; Lotufo, G.; Kuperman, R.G.; Hawari, J. Ecotoxicology of Explosives; CRC Press: Boca Raton, FL, USA; Taylor & Francis: London, UK; New York, NY, USA, 2009. [Google Scholar]
- Official Journal of the European Union. Commission directive 2006/15/EC of 7 February 2006. Available online: https://web.archive.org/web/20220808200207/https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:32006L0015 (accessed on 8 August 2022).
- Occupational Safety and Health Administration. Occupational Safety and Health Standards. Available online: https://web.archive.org/web/20221219060115/https:/www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.1000TABLEZ1 (accessed on 19 December 2022).
- Moore, D.S. Instrumentation for trace detection of high explosives. Rev. Sci. Instum. 2004, 75, 2499–2512. [Google Scholar] [CrossRef]
- Moore, D.S. Recent advances in trace explosives detection instrumentation. Sens. Imaging 2007, 8, 9–38. [Google Scholar] [CrossRef]
- Chou, A.; Jaatinen, E.; Buividas, R.; Seniutinas, G.; Juodkazis, S. SERS substrate for detection of explosives. Nanoscale 2012, 4, 7419–7424. [Google Scholar] [CrossRef] [Green Version]
- Ponrathnam, T.; Cho, J.; Kurup, P.U.; Kumar, K.; Nagarajan, R. Enhancing detection of nitroaromatic vapors by utilizing polymer coatings on quartz crystal microbalances having strong dipoles. Sens. Actuators B 2015, 216, 443–452. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, T.; Hamedsoltani, L. Graphene/graphite/molecularly imprinted polymer nanocomposite as the highly selective gas sensor for nitrobenzene vapor recognition. J. Environ. Chem. Eng. 2014, 2, 1514–1526. [Google Scholar] [CrossRef]
- Salinas, Y.; Martínez-Máñez, R.; Marcos, M.D.; Sancenón, F.; Costero, A.M.; Parra, M.; Gil, S. Optical chemosensors and reagents to detect explosives. Chem. Soc. Rev. 2012, 41, 1261–1296. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Lei, Y. Fluorescence based explosive detection: From mechanisms to sensory materials. Chem. Soc. Rev. 2015, 44, 8019. [Google Scholar] [CrossRef] [Green Version]
- Songrui, L.; Wenhui, X.; Zhenzhen, H.; Qiong, J. Anchoring Cu Nanoclusters on Melamine–Formaldehyde Microspheres: A New Strategy for Triggering Aggregation-Induced Emission toward Specific Enzyme-Free Methyl Parathion Sensing. J. Agric. Food Chem. 2022, 70, 14522–14530. [Google Scholar]
- Liu, Y.; Li, L.; Yue, M.; Yang, L.; Sun, F.; Xu, G.; Fu, Y.; Ye, F. A Switch-On fluorescent probe for detection of mesotrione based on the straightforward cleavage of carbon-nitrogen double bond of Schiff base. Chem. Engin. J. 2022, 430, 132758. [Google Scholar] [CrossRef]
- MIT BWSI 2017 Featuring Tim Swager. Available online: https://youtu.be/1lS6LQ_T0-E?t=1273 (accessed on 15 February 2023).
- Verbitskiy, E.V.; Baranova, A.A.; Lugovik, K.I.; Khokhlov, K.O.; Cheprakova, E.M.; Shafikov, M.Z.; Rusinov, G.L.; Chupakhin, O.N.; Charushin, V.N. New 4,5-di(hetero)arylpyrimidines as sensing elements for detection of nitroaromatic explosives in vapor phase. Dye. Pigment. 2017, 137, 360–371. [Google Scholar] [CrossRef]
- Gillanders, R.N.; Samuel, I.D.W.; Turnbull, G.A. A low-cost, portable optical explosive-vapour sensor. Sens. Actuators B Chem. 2017, 245, 334–340. [Google Scholar] [CrossRef] [Green Version]
- Räupke, A.; Palma-Cando, A.; Shkura, E.; Teckhausen, P.; Polywka, A.; Görrn, P.; Scherf, U.; Riedl, T. Highly sensitive gas-phase explosive detection by luminescent microporous polymer networks. Sci. Rep. 2016, 6, 29118. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; La, A.; Ding, Y.; Liu, Y.; Lei, Y. Novel Signal-Amplifying Fluorescent Nanofibers for Naked-Eye-Based Ultrasensitive Detection of Buried Explosives and Explosive Vapors. Adv. Funct. Mater. 2012, 22, 3547–3555. [Google Scholar] [CrossRef]
- Kumar, V.; Saini, S.K.; Choudhury, N.; Kumar, A.; Maiti, B.; De, P.; Kumar, M.; Satapathi, S. Highly Sensitive Detection of Nitro Compounds Using a Fluorescent Copolymer-Based FRET System. ACS Appl. Polym. Mater. 2021, 3, 4017–4026. [Google Scholar]
- Li, J.; Kendig, C.E.; Nesterov, E.E. Chemosensory Performance of Molecularly Imprinted Fluorescent Conjugated Polymer Materials. J. Am. Chem. Soc. 2007, 129, 15911–15918. [Google Scholar]
- Nie, H.; Sun, G.; Zhang, M.; Baumgarten, M.; Müllen, K. Fluorescent conjugated polycarbazoles for explosives detection: Side chain effects on TNT sensor sensitivity. J. Mater. Chem. 2012, 22, 2129–2132. [Google Scholar] [CrossRef]
- Mo, W.; Zhu, Z.; Kong, F.; Li, X.; Chen, Y.; Liu, H.; Cheng, Z.; Ma, H.; Li, B. Controllable synthesis of conjugated microporous polymer films for ultrasensitive detection of chemical warfare agents. Nat. Commun. 2022, 13, 5189. [Google Scholar] [CrossRef]
- Zhou, Q.; Swager, T.M. Fluorescent Chemosensors Based on Energy Migration in Conjugated Polymers: The Molecular Wire Approach to Increased Sensitivity wire systems. J. Am. Chem. Soc. 1995, 117, 12593–12602. [Google Scholar] [CrossRef]
- Shaw, P.E.; Burn, P.L. Real-time fluorescence quenching-based detection of nitro-containing explosive vapours: What are the key processes? Phys. Chem. Chem. Phys. 2017, 19, 29714. [Google Scholar]
- Ali, M.A.; Geng, Y.; Cavaye, H.; Burn, P.L.; Gentle, I.R.; Meredith, P.; Shaw, P.E. Molecular versus exciton diffusion in fluorescence-based explosive vapour sensors. ChemComm 2015, 51, 17406. [Google Scholar] [CrossRef]
- Ali, M.A.; Shoaee, S.; Fan, S.; Burn, P.L.; Gentle, I.R.; Meredith, P.; Shaw, P.E. Detection of explosive vapors: The roles of Exciton and Molecular Diffusion in Real-Time Sensing. ChemPhysChem 2016, 17, 3350–3353. [Google Scholar] [CrossRef]
- Wu, W.; Shi, N.; Zhang, J.; Wu, X.; Wang, T.; Yang, L.; Yang, R.; Ou, C.; Xue, W.; Feng, X.; et al. Electrospun Fluorescent Sensors on Selective Detection of Nitro Explosive Vapors and Trace Water. J. Mater. Chem. A 2018, 6, 18543–18550. [Google Scholar] [CrossRef]
- Xue, W.; Zhang, Y.; Duan, J.; Liu, D.; Ma, Y.; Shi, N.; Chen, S.; Xie, L.; Qian, Y.; Huang, W. A Highly Sensitive Fluorescent Sensor Based on Small Molecule Doped in Electrospun Nanofibers: Detection of Explosives as well as Color Modulation. J. Mater. Chem. C 2015, 3, 8193–8199. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, H.; Su, K.; Long, Y.; Peng, Z.; Li, N.; Feng, L. A facile and sensitive fluorescent sensor using electrospun nanofibrous film for nitroaromatic explosive detection. J. Mater. Chem. 2011, 21, 11895. [Google Scholar] [CrossRef]
- Martelo, L.M.; Pimented das Neves, T.F.; Figueiredo, J.; Marques, L.; Fedorov, A.; Charas, A.; Berberan-Santos, M.N.; Burrows, H.D. Towards the Development of a Low-Cost Device for the Detection of Explosives Vapors by Fluorescence Quenching of Conjugated Polymers in Solid Matrices. Sensors 2017, 17, 2532. [Google Scholar] [CrossRef] [Green Version]
- Demchenko, A.P. Photobleaching of organic fluorophores: Quantitative characterization, mechanisms, protection. Methods Appl. Fluoresc. 2020, 8, 022001. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Long, Y.; Chen, H.; Wang, H.; Peng, Z.; Yang, Y.; Zhang, G.; Li, N.; Liu, F.; Pei, J. Highly sensitive detection of nitroaromatic explosives using an electrospun nanofibrous sensor based on a novel fluorescent conjugated polymer. Anal. Chim. Acta 2012, 744, 82–91. [Google Scholar]
- Zhang, A.; Bai, H.; Li, L. Breath Figure: A Nature-Inspired Preparation Method for Ordered Porous Films. Chem. Rev. 2015, 115, 9801–9868. [Google Scholar] [CrossRef] [Green Version]
- Desai, N.K.; Mahajan, P.G.; KUmbhar, A.S.; Kolekar, G.B.; Patil, S.R. Nanoporous p-terphenyl-polystyrene films containing perylene; fabrication, characterization and remarkable fluorescence resonance energy transfer based blue emitting properties. J. Mater. Sci. Mater. Electron. 2016, 27, 1118–1129. [Google Scholar] [CrossRef]
- Sun, X.; Brückner, C.; Nieh, M.-P.; Lei, Y. A fluorescent polymer film with self-assembled three-dimensionally ordered nanopores: Preparation, characterization and its application for explosives detection. J. Mater. Chem. A 2014, 2, 14613. [Google Scholar] [CrossRef]
- Jang, H.-S.; Cho, H.-S.; Uhrig, D.; Nieh, M.-P. Insight into interactions between pyrene and polystyrene for efficient quenching nitroaromatic explosives. J. Mater. Chem. C 2017, 5, 12466–12473. [Google Scholar] [CrossRef]
- Wang, J.; Yu, R.; Tao, F.; Cui, Y.; Li, T. Determination of Nitroaromatics Using a Double-Layer of Gelatin Nanofibers and a Pyrene-Doped Polystyrene Membrane. Anal. Lett. 2018, 51, 2878–2894. [Google Scholar] [CrossRef]
- Yu, R.; Li, Y.; Tao, F.; Cui, Y.; Song, W.; Li, T. A novel double-layer electrospun nanofibrous membrane sensor for detecting nitroaromatic compounds. J. Mater. Sci. 2016, 51, 10350–10360. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Liu, G.; Zhang, Z.; Wu, H.; Cui, H.; Cui, B.; Bai, J. Size effect of polystyrene microplastics on sorption of phenanthrene and nitrobenzene. Ecotoxicol. Environ. Saf. 2019, 173, 331–338. [Google Scholar] [CrossRef]
- Chu, L.; Deng, S.; Zhao, R.; Zhang, Z.; Li, C.; Kang, X. Adsorption/desorption performance of volatile organic compounds on electrospun nanofibers. RCS Adv. 2015, 5, 102625. [Google Scholar] [CrossRef]
- Liu, F.; Song, D.; Huang, X.; Hui, X. Electrospun polystyrene nanofibers as a novel adsorbent to transfer an organic phase from an aqueous phase. J. Sep. Sci. 2016, 39, 1326–1330. [Google Scholar] [CrossRef]
- Zail, S.; Jalali, F.; Es-haghi, A.; Shamsipur, M. Electrospun nanostructured polystyrene as a new coating material for solid-phase microextraction: Application to separation of multipesticides from honey samples. J. Chromatogr. B 2015, 1002, 387–393. [Google Scholar] [CrossRef]
- Turhan, H.; Tukenmez, E.; Karagoz, B.; Bicak, N. Highly fluorescent sensing of nitroaromatic explosives in aqueous media using pyrene-linked PBEMA microspheres. Talanta 2018, 179, 107–114. [Google Scholar] [CrossRef]
- Verbitskiy, E.V.; Baranova, A.A.; Lugovik, K.I.; Khokhlov, K.O.; Chuvashov, R.D.; Dinastiya, E.M.; Rusinov, G.L.; Chupakhin, O.N.; Charushin, V.N. Linear and V-shaped push–pull systems on a base of pyrimidine scaffold with a pyrene–donative fragment for detection of nitroaromatic compounds. J. Iran Chem. Soc. 2018, 15, 787–797. [Google Scholar] [CrossRef]
- Venkataramana, G.; Sankararaman, S. Synthesis, Absorption, and Fluorescence-Emission Properties of 1,3,6,8- Tetraethynylpyrene and Its Derivatives. Eur. J. Org. Chem. 2005, 4162–4166. [Google Scholar] [CrossRef]
- Shanmugaraju, S.; Joshi, S.A.; Mukherjee, P.S. Fluorescence and visual sensing of nitroaromatic explosives using electron rich discrete fluorophores. J. Mater. Chem. 2011, 21, 9130. [Google Scholar] [CrossRef]
- Xu, F.; Nishida, T.; Shinohara, K.; Peng, L.; Takezaki, M.; Kamada, T.; Akashi, H.; Nakamura, H.; Sugiyama, K.; Ohta, K.; et al. Trimethylsilyl Group Assisted Stimuli Response: Self-Assembly of 1,3,6,8-Tetrakis((trimethysilyl)ethynyl)pyrene. Organometallics 2017, 36, 556–563. [Google Scholar] [CrossRef]
- Fan, S.; Burn, P.L.; Shaw, P.E. Sensitive and fast fluorescence-based indirect sensing of TATP. RCS Adv. 2019, 9, 7032. [Google Scholar] [CrossRef] [Green Version]
- Barata, P.D.; Prata, J.V. Fluorescent Calix[4]arene-Carbazole-Containing Polymers as Sensors for Nitroaromatic Explosives. Chemosensors 2020, 8, 128. [Google Scholar] [CrossRef]
- Tian, D.; Li, Y.; Chen, R.-Y.; Chang, Z.; Wang, G.-Y.; Bu, X.-H. A luminescent metal–organic framework demonstrating ideal detection ability for nitroaromatic explosives. J. Mater. Chem. A 2014, 2, 1465. [Google Scholar] [CrossRef]
- Cheng, Z.; Mo, W.; Chen, Y.; Liu, H.; Li, X.; Ma, H.; Zhang, S.-T. A new strategy for selective fluorescence detection of benzaldehyde and nitrobenzene. Microchem. J. 2022, 172, 106896. [Google Scholar] [CrossRef]
- Askim, J.R.; Suslick, K.S. Hand-Held Reader for Colorimetric Sensor Arrays. Anal. Chem. 2015, 87, 7810–7816. [Google Scholar] [CrossRef] [Green Version]
- Baranova, A.A.; Khokhlov, K.O.; Chuvashov, R.D.; Verbitskiy, E.V.; Cherpakova, E.M.; Rusinov, G.L.; Charushin, V.N. The portable detector of nitro-explosives in vapor phase with new sensing elements on a base of pyrimidine scaffold. J. Phys. Conf. Ser. 2017, 830, 012159. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Wang, Z.; Shang, C.; Li, X.; Peng, H.; Miao, R.; Ding, L.; Liu, J.; Liu, T.; Fang, Y. Unambiguous Discrimination and Detection of Controlled Chemical Vapors by a Film-Based Fluorescent Sensor Array. Adv. Mater. Tech. 2019, 1800644. [Google Scholar] [CrossRef]
- Rurack, K. Standardization and Quality Assurance in Fluorescence Measurements I, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 101–145. ISBN 978-3-540-75207-3. [Google Scholar]
- Verbitskiy, E.V.; Baranova, A.A.; Lugovik, K.I.; Khokhlov, K.O.; Cheprakova, E.M.; Rusinov, G.L.; Chupakhin, O.N.; Charushin, V.N. New V-shaped push-pull systems based on 4,5-di(hetero)aryl substituted pyrimidines: Their synthesis and application to the detection of nitroaromatic explosives. Arkivoc 2016, 360–373. [Google Scholar] [CrossRef] [Green Version]
- Verbitskiy, E.V.; Rusinov, G.L.; Chupakhin, O.N.; Charushin, V.N. Design of fluorescent sensors based on azaheterocyclic push-pull systems towards nitroaromatic explosives and related compounds: A review. Dye. Pigment. 2020, 180, 108414. [Google Scholar] [CrossRef]
- The FS5 Spectrofluorometer Technical Specification. Available online: https://www.edinst.com/wp-content/uploads/2015/07/FS5-Data-Sheet-1.pdf (accessed on 18 January 2023).
- Eda, G.; Shivkumar, S. Bead-to-fiber transition in electrospun polystyrene. J. Appl. Polym. Sci. 2007, 106, 475–487. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, H.; Zhao, Z.; Han, C.C. Construction of hierarchical structures by electrospinning or electrospraying. Polymer 2012, 53, 546–554. [Google Scholar] [CrossRef]
- Casper, C.L.; Stephens, J.S.; Tassi, N.G.; Chase, D.B.; Rabolt, J.F. Controlling Surface Morphology of Electrospun Polystyrene Fibers: Effect of Humidity and Molecular Weight in the Electrospinning Process. Macromolecules 2004, 37, 573–578. [Google Scholar] [CrossRef]
- Zen Eddin, M.; Zhilina, E.F.; Chuvashov, R.D.; Dubovik, A.I.; Mekhaev, A.V.; Chistyakov, K.A.; Baranova, A.A.; Khokhlov, K.O.; Rusinov, G.L.; Verbitskiy, E.V.; et al. Random Copolymers of Styrene with Pendant Fluorophore Moieties: Synthesis and Applications as Fluorescence Sensors for Nitroaromatics. Molecules 2022, 27, 6957. [Google Scholar] [CrossRef]
- Li, Z.; Xu, X.; Quan, H.; Zhang, J.; Zhang, Q.; Fu, Y.; Ying, Y.; Li, Y. Adsorptive and responsive hybrid sponge of melamine foam and metal organic frameworks for rapid collection/removal and detection of mycotoxins. Chem. Eng. J. 2011, 410, 128268. [Google Scholar] [CrossRef]
- Han, J.; Miao, L.; Song, Y. Preparation of co-Co3O4/carbon nanotube/carbon foam for glucose sensor. J. Mol. Recognit. 2020, 33, e2820. [Google Scholar] [CrossRef]
- Zhang, C.; Hou, Z.-L.; Zhang, B.-X.; Fang, H.-M.; Bi, S. High sensitivity self-recovery ethanol sensor based on polyporous graphene oxide/melamine composites. Carbon 2018, 137, 467–474. [Google Scholar] [CrossRef]
- Kaewnu, K.; Promsuwan, K.; Phonchai, A.; Thiangchanya, A.; Somapa, D. Cost-Effective Foam-Based Colorimetric Sensor for Roadside Testing of Alcohol in Undiluted Saliva. Chemosensors 2021, 9, 334. [Google Scholar] [CrossRef]
- Song, Y.; Shan, B.; Feng, B.; Xu, P.; Zeng, Q.; Su, D. A novel biosensor based on ball-flower-like Cu-hemin MOF grown on elastic carbon foam for trichlorfon detection. RCS Adv. 2018, 8, 27008–27015. [Google Scholar] [CrossRef] [Green Version]
- Ara, A.M.; Iimori, T.; Makabayashi, T.; Maeda, H.; Mizuno, K.; Ohta, N. Electric Field Effects on Absorption and Fluorescence Spectra of Trimethylsilyl- and Trimethylsilylethynyl-Substituted Compounds of Pyrene in a PMMA Film. J. Phys. Chem. B 2007, 111, 10687–10696. [Google Scholar] [CrossRef]
- Verbitskiy, E.V.; Kvashnin, Y.A.; Baranova, A.A.; Khokhlov, K.O.; Chuvashov, R.D.; Schapov, I.E.; Yakovleva, Y.A.; Zhilina, E.F.; Shchepochkin, A.V.; Makarova, N.I.; et al. Synthesis and characterization of linear 1,4-diazine-triphenylamine–based selective chemosensors for recognition of nitroaromatic compounds and aliphatic amines. Dye. Pigment. 2020, 178, 108344. [Google Scholar] [CrossRef]
- Frisch, H.L. Sorption and transport in glassy polymers–a review. Polym. Eng. Sci. 1980, 20, 2–13. [Google Scholar] [CrossRef]
- Lasky, R.C.; Kramer, E.J.; Hui, C.-Y. The initial stages of Case II diffusion at low penetrant activities. Polymer 1988, 29, 673–679. [Google Scholar] [CrossRef]
- Ogieglo, W.; Wormeester, H.; Wessling, M.; Benes, N.E. Probing the Surface Swelling in Ultra-Thin Supported Polystyrene Films During Case II Diffusion of n-Hexane. Macromol. Chem. Phys. 2013, 214, 2480–2488. [Google Scholar]
- Lynch, E.J.; Wilke, C.R. Vapor Pressure of Nitrobenzene at Low Temperatures. J. Chem. Eng. Data 1960, 5, 300. [Google Scholar] [CrossRef] [Green Version]
- Östmark, H.; Wallin, S.; Ang, H.G. Vapor Pressure of Explosives: A Critical Review. Propellants Explos. Pyrotech. 2012, 37, 12–23. [Google Scholar] [CrossRef]
- Ewing, R.G.; Waltman, M.J.; Atkinson, D.A.; Grate, J.W.; Hotchkiss, P.J. The vapor pressures of explosives. Trends Anal. Chem. 2013, 42, 35–48. [Google Scholar] [CrossRef]
- Chung, F.-J.; Liu, H.-Y.; Jiang, B.-I.; He, G.-Y. Random Styrenic Copolymers with Pendant Pyrene Moieties: Synthesis and Applications in Organic Field-Effect Transistor Memory. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 910–917. [Google Scholar] [CrossRef]
Nitrocompound | KSV (M−1) | DL (M) |
---|---|---|
NB | 100,676 | 2.97 × 10−9 |
1,3-DNB | 8061 | 3.72 × 10−8 |
1,3,5-TNB | 9597 | 3.12 × 10−8 |
TATB | 4069 | 7.37 × 10−8 |
2-NP | 9236 | 3.24 × 10−8 |
4-NP | 4716 | 6.36 × 10−8 |
2,4-DNP | 147,193 | 2.03 × 10−9 |
4-NT | 3583 | 8.37 × 10−8 |
2,4-DNT | 6706 | 4.47 × 10−8 |
2,4,6-TNT | 5876 | 5.10 × 10−8 |
DDBu | 14,371 | 2.08 × 10−8 |
DNAN | 13,137 | 2.28 × 10−8 |
TNAN | 10,472 | 2.86 × 10−8 |
PA | 123,932 | 2.42 × 10−9 |
SA | 114,515 | 2.61 × 10−9 |
Nitrocompound | Sensor Material | (Mean ± Std) | a (Mean ± Std) | b (ppb−1, Mean ± Std) |
---|---|---|---|---|
NB | mF/Elsp | 0.27 ± 0.05 | −5.47 ± 0.72 | 0.70 ± 0.17 |
NB | mF+PS | 0.33 ± 0.02 | −6.95 ± 0.45 | 1.01 ± 0.11 |
DNT | mF/Elsp | 1.15 ± 0.17 | −6.54 ± 0.55 | 1.91 ± 0.43 |
DNT | mF+PS | 1.15 ± 0.12 | −7.02 ± 0.03 | 2.03 ± 0.02 |
Nitrocompound | Sensor Material | DLa, 10 s Exposure (ppb) | DLa, 50 s Exposure (ppb) | DLa, 100 s Exposure (ppb) |
---|---|---|---|---|
NB | mF/Elsp | 1389 | 747 | 571 |
NB | mF+PS | 3741 | 2205 | 1756 |
DNT | mF/Elsp | 17.9 | 6.8 | 4.5 |
DNT | mF+PS | 26.1 | 10.5 | 7.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuvashov, R.D.; Zhilina, E.F.; Lugovik, K.I.; Baranova, A.A.; Khokhlov, K.O.; Belyaev, D.V.; Zen Eddin, M.; Rusinov, G.L.; Verbitskiy, E.V.; Charushin, V.N. Trimethylsilylethynyl-Substituted Pyrene Doped Materials as Improved Fluorescent Sensors towards Nitroaromatic Explosives and Related Compounds. Chemosensors 2023, 11, 167. https://doi.org/10.3390/chemosensors11030167
Chuvashov RD, Zhilina EF, Lugovik KI, Baranova AA, Khokhlov KO, Belyaev DV, Zen Eddin M, Rusinov GL, Verbitskiy EV, Charushin VN. Trimethylsilylethynyl-Substituted Pyrene Doped Materials as Improved Fluorescent Sensors towards Nitroaromatic Explosives and Related Compounds. Chemosensors. 2023; 11(3):167. https://doi.org/10.3390/chemosensors11030167
Chicago/Turabian StyleChuvashov, Roman D., Ekaterina F. Zhilina, Kseniya I. Lugovik, Anna A. Baranova, Konstantin O. Khokhlov, Danil V. Belyaev, Mohamad Zen Eddin, Gennady L. Rusinov, Egor V. Verbitskiy, and Valery N. Charushin. 2023. "Trimethylsilylethynyl-Substituted Pyrene Doped Materials as Improved Fluorescent Sensors towards Nitroaromatic Explosives and Related Compounds" Chemosensors 11, no. 3: 167. https://doi.org/10.3390/chemosensors11030167
APA StyleChuvashov, R. D., Zhilina, E. F., Lugovik, K. I., Baranova, A. A., Khokhlov, K. O., Belyaev, D. V., Zen Eddin, M., Rusinov, G. L., Verbitskiy, E. V., & Charushin, V. N. (2023). Trimethylsilylethynyl-Substituted Pyrene Doped Materials as Improved Fluorescent Sensors towards Nitroaromatic Explosives and Related Compounds. Chemosensors, 11(3), 167. https://doi.org/10.3390/chemosensors11030167