Evaluation of the Transfer and Occurrence of Opium Alkaloids in Poppy Seed Teas Using Preconcentrations with µSPEed® Followed by GC-MS Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. OAs in Poppy Seeds and the Study of Their Transfer to Tea
2.3. μSPEed® Extraction Procedure for OAs in Tea Infusions
2.4. Derivatization of OAs and GC-MS Analysis
2.5. Analytical Method Validation
2.6. Statistical Analysis
3. Results and Discussions
3.1. OA Derivatization Step and GC-MS Analysis
3.2. Validation of the Proposed Method Based on μSPEed® Followed by GC-MS
3.3. Transfer Study of OAs from Poppy Seeds to Tea Infusions
3.4. Occurrence of OAs in Tea Infusions from Different Poppy Seeds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.Y.; Swortwood, M.J.; Chi, J.; Yu, C. Determination of morphine, codeine, and thebaine concentrations from poppy seed tea using magnetic carbon nanotubes facilitated dispersive micro-solid phase extraction and GC-MS analysis. Forensic Sci. Int. 2021, 329, 111052. [Google Scholar] [CrossRef] [PubMed]
- Haber, I.; Pergolizzi, J.; LeQuang, J.A. Poppy Seed Tea: A Short Review and Case Study. Pain Ther. 2019, 8, 151–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powers, F.; Erickson, S.; Swortwood, M.J. Quantification of Morphine, Codeine, and Thebaine in Home-Brewed Poppy Seed Tea by LC-MS/MS. J. Forensic Sci. 2018, 63, 1229–1235. [Google Scholar] [CrossRef]
- Montgomery, M.T.; Conlan, X.A.; Barnett, N.W.; Theakstone, A.G.; Quayle, K.; and Smith, Z.M. Determination of morphine in culinary poppy seed tea extractions using high performance liquid chromatography with chemiluminescence detection. Aust. J. Forensic Sci. 2019, 51, S225–S228. [Google Scholar] [CrossRef]
- Casado-Hidalgo, G.; Pérez-Quintanilla, D.; Morante-Zarcero, S.; Sierra, I. Mesostructured Silica-Coated Magnetic Nanoparticles to Extract Six Opium Alkaloids in Poppy Seeds Prior to Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry Analysis. Foods 2021, 10, 1587. [Google Scholar] [CrossRef] [PubMed]
- López, P.; Pereboom-de Fauw, D.P.; Mulder, P.P.; Spanjer, M.; de Stoppelaar, J.; Mol, H.; de Nijs, M. Straightforward analytical method to determine opium alkaloids in poppy seeds and bakery products. Food Chem. 2018, 242, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Sproll, C.; Perz, R.C.; Lachenmeier, D.W. Optimized LC/MS/MS Analysis of Morphine and Codeine in Poppy Seed and Evaluation of Their Fate during Food Processing as a Basis for Risk Analysis. J. Agric. Food Chem. 2006, 54, 5292–5298. [Google Scholar] [CrossRef]
- Carlin, M.G.; Dean, J.R.; Ames, J.M. Opium Alkaloids in Harvested and Thermally Processed Poppy Seeds. Front. Chem. 2020, 8, 737. [Google Scholar] [CrossRef]
- Meos, A.; Saks, L.; Raal, A. Content of alkaloids in ornamental Papaver somniferum L. cultivars growing in Estonia. Proc. Estonian Acad. Sci. 2017, 66, 34. [Google Scholar] [CrossRef]
- Cassella, G.; Wu, A.H.B.; Shaw, B.R.; Hill, D.W. The Analysis of Thebaine in Urine for the Detection of Poppy Seed Consumption. J. Anal. Toxicol. 1997, 21, 376–383. [Google Scholar] [CrossRef] [Green Version]
- Hayes, L.W.; Krasselt, W.G. Concentrations of Morphine and Codeine in Serum and Urine after Ingestion of Poppy Seeds. Clin. Chem. 1987, 33, 806–809. [Google Scholar] [CrossRef] [PubMed]
- Van Thuyne, W.; van Eenoo, P.; Delbeke, F.T. Urinary concentrations of morphine after the administration of herbal teas containing Papaveris fructus in relation to doping analysis. J. Chromatogr. B 2003, 785, 245–251. [Google Scholar] [CrossRef]
- Thevis, M.; Opfermann, G.; Schänzer, W. Urinary Concentrations of Morphine and Codeine After Consumption of Poppy Seeds. J. Anal. Toxicol. 2003, 27, 53–56. [Google Scholar] [CrossRef] [Green Version]
- Struempler, R.E. Excretion of Codeine and Morphine Following Ingestion of Poppy Seeds. J. Anal. Toxicol. 1987, 11, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Meadway, C.; George, S.; Braithwaite, R. Opiate concentrations following the ingestion of poppy seed products—evidence for `the poppy seed defence’. Forensic Sci. Int. 1998, 96, 29–38. [Google Scholar] [CrossRef]
- Braye, K.; Harwood, T.; Inder, R.; Beasley, R.; Robinson, G. Poppy seed tea and opiate abuse in New Zealand. Drug Alcohol Rev. 2007, 26, 215–219. [Google Scholar] [CrossRef]
- EFSA. Update of the Scientific Opinion on opium alkaloids in poppy seeds. EFS2 2018, 16, 5243. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Sproll, C.; Musshoff, F. Poppy Seed Foods and Opiate Drug Testing-Where Are We Today? Ther. Drug Monit. 2010, 32, 11–18. [Google Scholar] [CrossRef]
- Bishop-Freeman, S.C.; Fox, L.; Winecker, R.E.; Hudson, J.S. Death from Poppy Tea Consumption. J. Anal. Toxicol. 2020, 44, 734–740. [Google Scholar] [CrossRef]
- King, M.A.; McDonough, M.A.; Drummer, O.H.; Berkovic, S.F. Poppy tea and the baker’s first seizure. Lancet 1997, 350, 716. [Google Scholar] [CrossRef] [PubMed]
- Spyres, M.B.; van Wijk, X.M.R.; Lapoint, J.; Levine, M. Two cases of severe opiate toxicity after ingestion of poppy seed tea. Toxicol. Commun. 2018, 2, 102–104. [Google Scholar] [CrossRef]
- Garcia, M.R.; Swortwood, M.J.; Aune, C.N.; Ahmad, K.A. Maternal Poppy Seed Tea Ingestion and Ensuing Neonatal Abstinence Syndrome. Neonatology 2020, 117, 529–531. [Google Scholar] [CrossRef]
- Commission Regulation. Commission Regulation (EU) 2021/2142 of 3 December 2021 amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Opium Alkaloids in Certain Foodstuffs. Off. J. Eur. Union 2021, L 433/8. [Google Scholar]
- Casado-Hidalgo, G.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Sierra, I. Pulsed ultrasound-assisted extraction followed by purification with SBA-15 for the control of opium alkaloids in biscuits and sponge cakes. Microchem. J. 2022, 183, 108059. [Google Scholar] [CrossRef]
- Casado, N.; Gañán, J.; Morante-Zarcero, S.; Sierra, I. New Advanced Materials and Sorbent-Based Microextraction Techniques as Strategies in Sample Preparation to Improve the Determination of Natural Toxins in Food Samples. Molecules 2020, 25, 702. [Google Scholar] [CrossRef] [Green Version]
- Pereira, J.A.M.; Gonçalves, J.; Porto-Figueira, P.; Figueira, J.A.; Alves, V.; Perestrelo, R.; Medina, S.; Câmara, J.S. Current trends on microextraction by packed sorbent - fundamentals, application fields, innovative improvements and future applications. Analyst 2019, 144, 5048–5074. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.A.M.; Casado, N.; Porto-Figueira, P.; Câmara, J.S. The Potential of Microextraction Techniques for the Analysis of Bioactive Compounds in Food. Front. Nutr. 2022, 9, 825519. [Google Scholar] [CrossRef] [PubMed]
- Casado, N.; Perestrelo, R.; Silva, C.L.; Sierra, I.; Câmara, J.S. Comparison of high-throughput microextraction techniques, MEPS and μ-SPEed, for the determination of polyphenols in baby food by ultrahigh pressure liquid chromatography. Food Chem. 2019, 292, 14–23. [Google Scholar] [CrossRef]
- Casado, N.; Fernández-Pintor, B.; Morante-Zarcero, S.; Sierra, I. Quick and Green Microextraction of Pyrrolizidine Alkaloids from Infusions of Mallow, Calendula, and Hibiscus Flowers Using Ultrahigh-Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry Analysis. J. Agric. Food Chem. 2022, 70, 7826–7841. [Google Scholar] [CrossRef]
- González-Gómez, L.; Pereira, J.A.M.; Morante-Zarcero, S.; Câmara, J.S.; Sierra, I. Green extraction approach based on μSPEed® followed by HPLC-MS/MS for the determination of atropine and scopolamine in tea and herbal tea infusions. Food Chem. 2022, 394, 133512. [Google Scholar] [CrossRef]
- Casado-Hidalgo, G.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Sierra, I. Opium alkaloids in food products: Current and future perspectives. Trends Food Sci. Technol. 2021, 108, 92–102. [Google Scholar] [CrossRef]
- Barea-Sepúlveda, M.; Duarte, H.; Aliaño-González, M.J.; Romano, A.; Medronho, B. Total Ion Chromatogram and Total Ion Mass Spectrum as Alternative Tools for Detection and Discrimination (A Review). Chemosensors 2022, 10, 465. [Google Scholar] [CrossRef]
- European Commission. Commission Recommendation 2014/662/EU of 10 September 2014 on good practices to prevent and to reduce the presence of opium alkaloids in poppy seeds and poppy seed products. Off. J. Eur. Union 2014, L 271/96. [Google Scholar] [CrossRef]
- ISO 3103; Tea—Preparation of Liquor for use in Sensory Tests. ISO: Geneva, Switzerland, 2019.
- European Union (2021). SANTE/11312/2021. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed; Accredia: Rome, Italy; pp. 1–57. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11312_2021.pdf (accessed on 18 July 2022).
- European Commission Regulation No. 401/2006 of 23 February 2006 Laying Down the Methods of Sampling and Analysis for the Official Control of the Levels of Mycotoxins in Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R0401&from=EN (accessed on 18 July 2022).
- Tietje, C.; Brouder, A. Q2(R1) ICH guidelines (Internation Council for Harmonisation, 2005). In Handbook of Transnational Economic Governance Regimes; Brill: Leiden, The Netherlands, 2010; pp. 1041–1053. [Google Scholar] [CrossRef] [Green Version]
- Vera-Baquero, F.L.; Morante-Zarcero, S.; Sierra, I. Evaluation of thermal degradation of tropane and opium alkaloids in gluten-free corn breadsticks samples contaminated with stramonium seeds and baked with poppy seeds under different conditions. Foods 2022, 11, 2196. [Google Scholar] [CrossRef] [PubMed]
- Shetge, S.A.; Dzakovich, M.P.; Cooperstone, J.L.; Kleinmeier, D.; Redan, B.W. Concentrations of the Opium Alkaloids Morphine, Codeine, and Thebaine in Poppy Seeds are Reduced after Thermal and Washing Treatments but are Not Affected when Incorporated in a Model Baked Product. J. Agric. Food Chem. 2020, 68, 5241–5248. [Google Scholar] [CrossRef]
Compound Name | Quantification 1 (m/z) | Ion 2 (m/z) | Ion 3 (m/z) |
---|---|---|---|
Codeine | 299 | 229 | 162 |
Morphine | 285 | 215 | 162 |
Thebaine | 311 | 296 | 242 |
Papaverine | 338 | 324 | 154 |
Noscapine | 220 | 215 | 205 |
Analytes | Linear Range (µg/L) a | Matrix-Matched Calibration (R2) | MDL (µg/L) b | MQL (µg/L) c | ME d | Accuracy e | Precision (%RSD) e | ||
---|---|---|---|---|---|---|---|---|---|
Recovery (% ± SD) | Intra-Day | Inter-Day | |||||||
Codeine | 5–800 | y = 3.7 × 106 × − 4.1 × 102 (0.999) | 0.3 | 1 | 8 | LL | 91 ± 8 | 9 | 11 |
ML | 101 ± 4 | 4 | 7 | ||||||
HL | 99 ± 1 | 1 | 4 | ||||||
Morphine | 5–800 | y = 3.0 × 106 × − 1.6 × 104 (0.998) | 0.5 | 1.6 | −4 | LL | 90± 8 | 8 | 10 |
ML | 102 ± 7 | 7 | 13 | ||||||
HL | 90 ± 3 | 3 | 7 | ||||||
Thebaine | 5–800 | y = 3.6 × 106 × + 9.6 × 103 (0.999) | 0.2 | 0.7 | 1 | LL | 91 ± 4 | 5 | 9 |
ML | 100 ± 10 | 10 | 14 | ||||||
HL | 101 ± 3 | 3 | 4 | ||||||
Papaverine | 5–800 | y = 2.9 × 107 × − 2.3 × 105 (1.000) | 0.06 | 0.2 | −6 | LL | 89 ± 4 | 4 | 7 |
ML | 100 ± 7 | 7 | 10 | ||||||
HL | 95 ± 6 | 6 | 10 | ||||||
Noscapine | 5–800 | y = 1.6 × 107 × − 3.3 × 105 (0.999) | 0.07 | 0.2 | 10 | LL | 93 ± 8 | 9 | 13 |
ML | 102 ± 7 | 7 | 10 | ||||||
HL | 108 ± 7 | 6 | 11 |
Code Sample | Morphine | Codeine | Thebaine | Papaverine | Noscapine | ME a |
---|---|---|---|---|---|---|
S-1 tea | 25 ± 3 | 4 ± 1 | ˂ MQL | 8.13 ± 0.02 | 20.6 ± 0.2 | 26 |
S-2 tea | 43 ± 25 | 1.8 ± 0.4 | ˂ MQL | 8.2 ± 0.2 | 23 ± 2 | 43 |
S-3 tea | 227 ± 39 | 58 ± 42 | 56 ± 36 | 11 ± 6 | 29 ± 6 | 239 |
S-4 tea | 1563 ± 33 | 254 ± 35 | 71 ± 13 | 29 ± 2 | 56 ± 1 | 1614 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casado-Hidalgo, G.; Perestelo, R.; Morante-Zarcero, S.; Câmara, J.S.; Sierra, I. Evaluation of the Transfer and Occurrence of Opium Alkaloids in Poppy Seed Teas Using Preconcentrations with µSPEed® Followed by GC-MS Analysis. Chemosensors 2023, 11, 94. https://doi.org/10.3390/chemosensors11020094
Casado-Hidalgo G, Perestelo R, Morante-Zarcero S, Câmara JS, Sierra I. Evaluation of the Transfer and Occurrence of Opium Alkaloids in Poppy Seed Teas Using Preconcentrations with µSPEed® Followed by GC-MS Analysis. Chemosensors. 2023; 11(2):94. https://doi.org/10.3390/chemosensors11020094
Chicago/Turabian StyleCasado-Hidalgo, Gema, Rosa Perestelo, Sonia Morante-Zarcero, José S. Câmara, and Isabel Sierra. 2023. "Evaluation of the Transfer and Occurrence of Opium Alkaloids in Poppy Seed Teas Using Preconcentrations with µSPEed® Followed by GC-MS Analysis" Chemosensors 11, no. 2: 94. https://doi.org/10.3390/chemosensors11020094
APA StyleCasado-Hidalgo, G., Perestelo, R., Morante-Zarcero, S., Câmara, J. S., & Sierra, I. (2023). Evaluation of the Transfer and Occurrence of Opium Alkaloids in Poppy Seed Teas Using Preconcentrations with µSPEed® Followed by GC-MS Analysis. Chemosensors, 11(2), 94. https://doi.org/10.3390/chemosensors11020094