E-Nose Quality Evaluation of Extra Virgin Olive Oil Stored in Different Containers
Abstract
:1. Introduction
2. Materials and Methods
2.1. EVOO Samples
2.2. Analyses
2.2.1. Sensory Analysis
2.2.2. Volatile Compound Analysis
2.2.3. Electronic Nose
- BME680: ambient temperature (oC), pressure (hPa), relative humidity (% RH), and gas measurement (Ω).
- SGP30: equivalent CO2 concentration (eCO2) (ppm), total volatile organic compounds concentration (TVOC) (ppb), and the raw measurements of H2 and ethanol.
- CCS811: eCO2 (ppm), TVOC (ppb), and sensor resistance (Ω).
- iAQ-Core: eCO2 (ppm), TVOC (ppb), and sensor resistance (Ω).
2.3. Statistical Analysis
3. Results and Discussion
3.1. Sensory Aroma of Olive Oils
3.2. Gas Chromatographic Analysis of Volatile Compounds
3.3. E-Nose Discrimination of VOO Stored in Different Containers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Inarejos-García, A.M.; Santacatterina, M.; Salvador, M.D.; Fregapane, G.; Gómez-Alonso, S. PDO virgin olive oil quality—Minor components and organoleptic evaluation. Food Res. Int. 2010, 43, 2138–2146. [Google Scholar] [CrossRef]
- Commission Regulation (EEC) No 2568/91 of 11 July 1991. Available online: https://eur-lex.europa.eu/legal-content/ES/TXT/PDF/?uri=CELEX:01991R2568-20151016&from=EN (accessed on 1 April 2022).
- Martín-Tornero, E.; Fernández, A.; Pérez-Rodríguez, J.M.; Durán-Merás, I.; Prieto, M.H.; Martín-Vertedor, D. Non-destructive fluorescence spectroscopy as a tool for discriminating between olive oils according to agronomic practices and for assessing quality parameters. Food Anal. Methods 2022, 15, 253–265. [Google Scholar] [CrossRef]
- Stefanoudaki, E.; Williams, M.; Harwood, J. Changes in virgin olive oil characteristics during different storage conditions. Eur. J. Lipid Sci. Technol. 2010, 112, 906–914. [Google Scholar] [CrossRef]
- Pristouri, G.; Badeka, A.; Kontominas, M.G. Effect of packaging material headspace, oxygen and light transmission, temperature and storage time on quality characteristics of extra virgin olive oil. Food Control 2010, 21, 412–418. [Google Scholar] [CrossRef]
- Gargouri, B.; Zribi, A.; Bouaziz, M. Effect of containers on the quality of Chemlali olive oil during storage. J. Food Sci. Technol. 2015, 52, 1948–1959. [Google Scholar] [CrossRef]
- Caponio, F.; Bilancia, M.T.; Pasqualone, A.; Sikorska, E.; Gomes, T. Influence of the exposure to light on extra virgin olive oil quality during storage. Eur. Food Res. Technol. 2005, 221, 92–98. [Google Scholar] [CrossRef]
- Méndez, A.I.; Falqué, E. Effect of storage time and container type on the quality of extra-virgin olive oil. Food Control 2007, 18, 521–529. [Google Scholar] [CrossRef]
- Cecchi, T.; Passamonti, P.; Cecchi, P. Study of the quality of extra virgin olive oil stored in PET bottles with or without an oxygen scavenger. Food Chem. 2010, 120, 730–735. [Google Scholar] [CrossRef]
- Cicerale, S.; Conlan, X.A.; Barnett, N.W.; Keast, R.S. Storage of extra virgin olive oil and its effect on the biological activity and concentration of oleocanthal. Food Res. Int. 2013, 50, 597–602. [Google Scholar] [CrossRef]
- Royal Decree 760/2021, de 31 de August. Available online: https://www.boe.es/buscar/pdf/2021/BOE-A-2021-14318-consolidado.pdf (accessed on 15 October 2022).
- Sánchez, R.; Martín-Tornero, E.; Lozano, J.; Boselli, E.; Arroyo, P.; Meléndez, F.; Martín-Vertedor, D. E-Nose discrimination of abnormal fermentations in Spanish-Style Green Olives. Molecules 2021, 26, 5353. [Google Scholar] [CrossRef]
- Sánchez, R.; Boselli, E.; Fernández, A.; Arroyo, P.; Lozano, J.; Martín-Vertedor, D. Determination of the Masking Effect of the ‘Zapateria’ Defect in Flavoured Stuffed Olives Using E-Nose. Molecules 2022, 27, 4300. [Google Scholar] [CrossRef] [PubMed]
- Oates, M.J.; Fox, P.; Sanchez-Rodriguez, L.; Carbonell-Barrachina, Á.A.; Ruiz-Canales, A. DFT based classification of olive oil type using a sinusoidally heated, low cost electronic nose. Comput. Electron. Agric. 2018, 155, 348–358. [Google Scholar] [CrossRef]
- Kishimoto, N.; Kashiwagi, A. Prediction of Specific Odor Markers in Oil from Olive Fruit Infested with Olive Scale Using an Electronic Nose. In Proceedings of the IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), Fukuoka, Japan, 26–29 May 2019; pp. 1–3. [Google Scholar]
- Martínez, D.M.; Gámez, J.; Bellincontro, A.; Mencarelli, F.; Gómez, J. Fast tool based on electronic nose to predict olive fruit quality after harvest. Postharvest Biol. Technol. 2020, 160, 111058. [Google Scholar] [CrossRef]
- Modesti, M.; Taglieri, I.; Bianchi, A.; Tonacci, A.; Sansone, F.; Bellincontro, A.; Venturi, F.; Sanmartin, C. E-nose and Olfactory assessment: Teamwork or a challenge to the last data? The case of virgin olive oil stability and shelf life. Appl. Sci. 2021, 11, 8453. [Google Scholar] [CrossRef]
- Buratti, S.; Benedetti, S.; Cosio, S. An Electronic Nose to Evaluate Olive Oil Oxidation during Storage. Ital. J. Food Sci. 2005, 17, 203–210. [Google Scholar]
- Battimo, I.; Savarese, M.; Parisini, C.; Malagrinò, G.; Paduano, A.; Marco, E.D.; Sacchi, R. Rancidity Evaluation and Shelf-Life Monitoring of Virgin Olive Oil by Electronic-Nose. Ital. J. Food Sci. 2006, 18, 278–287. [Google Scholar]
- Marchal, P.C.; Sanmartin, C.; Martínez, S.S.; Ortega, J.G.; Mencarelli, F.; García, J.G. Prediction of Fruity Aroma Intensity and Defect Presence in Virgin Olive Oil Using an Electronic Nose. Sensors 2021, 21, 2298. [Google Scholar] [CrossRef]
- Martín-Tornero, E.; Fernández, A.; Durán-Merás, I.; Martín-Vertedor, D. Fluorescence Monitoring Oxidation of Extra Virgin Olive Oil Packed in Different Containers. Molecules 2022, 27, 7254. [Google Scholar] [CrossRef]
- López-López, A.; Cortés-Delgado, A.; de Castro, A.; Sánchez, A.H.; Montaño, A. Changes in volatile composition during the processing and storage of black ripe olives. Food Res. Int. 2019, 125, 108568. [Google Scholar] [CrossRef]
- Sánchez, R.; Fernández, A.; Martín-Tornero, E.; Meléndez, F.; Lozano, J.; Martín-Vertedor, D. Application of Digital Olfaction for Table Olive Industry. Sensors 2022, 22, 5702. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Geladi, P.; Kowalski, B. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Kontominas, M.G. Olive oil packaging: Recent developments. In Olives and Olive Oil as Functional Foods: Bioactivity, Chemistry and Processing, 1st ed.; Kiritsakis, P., Shahidi, F., Eds.; John Wiley & Sons: New York, NY, USA, 2017; pp. 279–294. [Google Scholar]
- Flori, L.; Donnini, S.; Calderone, V.; Zinnai, A.; Taglieri, I.; Venturi, F.; Testai, L. The nutraceutical value of olive oil and its bioactive constituents on the cardiovascular system. Focusing on main strategies to slow down its quality decay during production and storage. Nutrients 2019, 11, 1962. [Google Scholar] [PubMed] [Green Version]
- Kiritsakis, A.K. Flavor components of olive oil—A review. J. Am. Oil Chem. Soc. 1998, 75, 673–681. [Google Scholar] [CrossRef]
- Meneses, D.A.; Bejarano, A.; Juan, C. Vapor pressure data for ethyl-2-methylbutyrate, hexanal and (E)-2-hexenal at a pressure range of (25 to 190) kPa. J. Chem. Thermodyn. 2014, 74, 16–21. [Google Scholar] [CrossRef]
- Lobo-Prieto, A.; Tena, N.; Aparicio-Ruiz, R.; Morales, M.T.; García-González, D.L. Tracking sensory characteristics of virgin olive oils during storage: Interpretation of their changes from a multiparametric perspective. Molecules 2020, 25, 1686. [Google Scholar] [CrossRef] [Green Version]
- Benincasa, C.; Russo, A.; Romano, E.; Elsorady, M.E.; Perri, E.; Muzzalupo, I. Chemical and sensory analysis of some Egyptian virgin olive oils. J. Nutr. Food Sci. 2011, 5, 118. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, R.; Pérez-Nevado, F.; Martillanes, S.; Montero-Fernández, I.; Lozano, J.; Martín-Vertedor, D. Machine olfaction discrimination of Spanish-style green olives inoculated with spoilage mold species. Food Control 2023, 147, 109600. [Google Scholar] [CrossRef]
- Yu, H.; Seow, Y.X.; Ong, P.K.; Zhou, W. Effects of high-intensity ultrasound and oil type on the Maillard reaction of d-glucose and glycine in oil-in-water systems. NPJ Sci. Food 2018, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- McRae, J.F.; Mainland, J.D.; Jaeger, S.R.; Adipietro, K.A.; Matsunami, H.; Newcomb, R.D. Genetic variation in the odorant receptor OR2J3 is associated with the ability to detect the “grassy” smelling odor, cis-3-hexen-1-ol. Chem. Senses 2012, 37, 585–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lejková, N.Š.J.S.J.; Kolek, A.P.J.K.E.; Pangallo, Ľ.V.T.K.D. Characterization of May bryndza cheese from various regions in Slovakia based on microbiological, molecular and principal volatile odorants examination. J. Food Nutr. Res. 2015, 54, 239–251. [Google Scholar]
- Garcia-Oliveira, P.; Jimenez-Lopez, C.; Lourenço-Lopes, C.; Chamorro, F.; Pereira, A.G.; Carrera-Casais, A.; Fraga-Corral, M.; Carpena, M.; Simal-Gandara, J.; Prieto, M.A. Evolution of flavors in extra virgin olive oil shelf-life. Antioxidants 2021, 10, 368. [Google Scholar] [CrossRef] [PubMed]
- Conte, L.; Bendini, A.; Valli, E.; Lucci, P.; Moret, S.; Maquet, A.; Lacoste, F.; Brereton, P.; García-González, D.L.; Moreda, W.; et al. Olive oil quality and authenticity: A review of current EU legislation, standards, relevant methods of analyses, their drawbacks and recommendations for the future. Trends Food Sci. Technol. 2020, 105, 483–493. [Google Scholar] [CrossRef]
- Haaland, D.M.; Thomas, E.V. Partial least-squares methods for spectral analyses. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal. Chem. 1988, 60, 1193–1202. [Google Scholar] [CrossRef]
- Martín-Tornero, E.; Sánchez, R.; Lozano, J.; Martínez, M.; Arroyo, P.; Martín-Vertedor, D. Characterization of polyphenol and volatile fractions of Californian-style black olives and innovative application of E-nose for acrylamide determination. Foods 2021, 10, 2973. [Google Scholar] [CrossRef]
- Sánchez, R.; Martín-Tornero, E.; Lozano, J.; Fernández, A.; Arroyo, P.; Meléndez, F.; Martín-Vertedor, D. Electronic nose application for the discrimination of sterilization treatments applied to Californian-style black olive varieties. J. Sci. Food Agric. 2022, 102, 2232–2241. [Google Scholar] [CrossRef]
Container | Attributes | t0 | t1 | t2 | t3 | t4 | t5 | t6 |
---|---|---|---|---|---|---|---|---|
Dark crystal | Fruity | 5.6 ± 0.5aNS | 5.6 ± 0.4aNS | 5.2 ± 0.5aNS | 5.2 ± 0.3aNS | 4.1 ± 0.3bNS | 2.7 ± 0.3cB | 1.3 ± 0.4dC |
Defect | n.d. | n.d. | n.d. | n.d. | 2.0 ± 0.3c | 3.0 ± 0.3bA | 4.5 ± 0.3aA | |
Category | EVOO | EVOO | EVOO | EVOO | VOO | VOO | LOO | |
Green PET | Fruity | 4.7 ± 0.6aNS | 5.2 ± 0.3aNS | 5.4 ± 0.6aNS | 4.6 ± 0.5bNS | 4.3 ± 0.6bNS | 4.3 ± 0.6bA | 3.1 ± 0.5cB |
Defect | n.d. | n.d. | n.d. | n.d. | n.d. | 1.0 ± 0.3bB | 2.5 ± 0.3aB | |
Category | EVOO | EVOO | EVOO | EVOO | EVOO | VOO | VOO | |
Tinplate | Fruity | 5.2 ± 0.4aNS | 5.3 ± 0.3aNS | 5.1 ± 0.4aNS | 5.4 ± 0.5aNS | 4.2 ± 0.2bNS | 4.2 ± 0.4bA | 4.3 ± 0.3bA |
Defect | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |
Category | EVOO | EVOO | EVOO | EVOO | EVOO | EVOO | EVOO |
Groups | t0 | t1 | t2 | t3 | t4 | t5 | t6 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DC | PET | T | DC | PET | T | DC | PET | T | DC | PET | T | DC | PET | T | DC | PET | T | ||
Aldehydes | 33.2 | 20.8 | 30.3 | 32.6 | 20.9 | 30.2 | 29.5 | 16.7 | 22.2 | 28.0 | 25.4 | 16.7 | 20.9 | 25.4 | 22.4 | 21.7 | 25.1 | 22.5 | 19.7 |
Alcohols | 31.5 | 40.0 | 34.9 | 33.6 | 37.4 | 32.1 | 34.5 | 39.6 | 36.3 | 34.2 | 40.6 | 39.1 | 37.0 | 35.0 | 30.1 | 33.2 | 32.6 | 29.4 | 32.3 |
Hydrocarbons | 5.6 | 6.4 | 6.2 | 5.8 | 5.9 | 6.0 | 5.8 | 6.6 | 6.1 | 6.1 | 6.7 | 8.8 | 6.1 | 8.0 | 9.2 | 6.6 | 18.2 | 18.0 | 11.5 |
Ether | 3.1 | 2.7 | 2.6 | 2.5 | 3.5 | 2.5 | 2.7 | 3.6 | 3.4 | 2.9 | 2.5 | 3.0 | 2.6 | 2.6 | 4.0 | 3.8 | 2.4 | 3.1 | 3.4 |
Esters | 21.7 | 25.0 | 22.2 | 21.6 | 27.2 | 25.5 | 23.3 | 30.0 | 29.0 | 25.9 | 22.8 | 29.7 | 30.0 | 21.3 | 27.1 | 31.3 | 13.8 | 19.9 | 29.2 |
Carboxylic acids | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 5.6 | 4.2 | n.d. | 7.0 | 5.3 | 0.4 |
Ketones | 4.9 | 5.1 | 3.8 | 3.8 | 5.0 | 3.7 | 4.2 | 3.6 | 2.8 | 2.8 | 2.0 | 2.7 | 3.4 | 2.1 | 3.1 | 3.5 | 0.9 | 1.8 | 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Tornero, E.; Barea-Ramos, J.D.; Lozano, J.; Durán-Merás, I.; Martín-Vertedor, D. E-Nose Quality Evaluation of Extra Virgin Olive Oil Stored in Different Containers. Chemosensors 2023, 11, 85. https://doi.org/10.3390/chemosensors11020085
Martín-Tornero E, Barea-Ramos JD, Lozano J, Durán-Merás I, Martín-Vertedor D. E-Nose Quality Evaluation of Extra Virgin Olive Oil Stored in Different Containers. Chemosensors. 2023; 11(2):85. https://doi.org/10.3390/chemosensors11020085
Chicago/Turabian StyleMartín-Tornero, Elísabet, Juan Diego Barea-Ramos, Jesús Lozano, Isabel Durán-Merás, and Daniel Martín-Vertedor. 2023. "E-Nose Quality Evaluation of Extra Virgin Olive Oil Stored in Different Containers" Chemosensors 11, no. 2: 85. https://doi.org/10.3390/chemosensors11020085
APA StyleMartín-Tornero, E., Barea-Ramos, J. D., Lozano, J., Durán-Merás, I., & Martín-Vertedor, D. (2023). E-Nose Quality Evaluation of Extra Virgin Olive Oil Stored in Different Containers. Chemosensors, 11(2), 85. https://doi.org/10.3390/chemosensors11020085