Progress of Near-Infrared-Based Medical Imaging and Cancer Cell Suppressors
Abstract
:1. Introduction
2. NIR Instrumentation and Its Role in Cancer Diagnosis and Treatment
3. Diffuse Optical Tomography
3.1. Forward Problem and Inverse Solution
3.2. Near-Infrared Light Source Forms
4. Near-Infrared Photoimmunotherapy
5. Diffuse Optical Imaging Progress
5.1. Multi-Frequency NIR-DOT
5.2. NIR-DOT Incorporating Other Modalities
5.3. Deep-Learning-Based DOT Image Reconstruction
6. Near-Infrared Photoimmunotherapy Progress
6.1. NIR-PIT Principle and Instrumentation Progress
6.2. NIR-PIT Enhances Anticancer Host Immunity
6.3. CD29-Targeted NIR-PIT
6.4. Combined Photothermal-Immunotherapy
7. NIR Challenges
8. NIR Research Future Directions
8.1. Improved NIR_DOT
8.2. NIR-Based Cancer Suppression Instrumentations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amineh, R.K. Applications of Electromagnetic Waves: Present and Future. Electronics 2020, 9, 808. [Google Scholar] [CrossRef]
- Centeno, A.; Aid, S.R.; Xie, F. Infra-Red Plasmonic Sensors. Chemosensors 2018, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Erdoes, G.; Rummel, C.; Basciani, R.M.; Verma, R.; Carrel, T.; Banz, Y.; Eberle, B.; Schroth, G. Limitations of Current Near-Infrared Spectroscopy Configuration in Detecting Focal Cerebral Ischemia During Cardiac Surgery: An Observational Case-Series Study. Artif. Organs 2018, 42, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.; Andersson, J.Y. Infrared Detectors: Advances, Challenges and New Technologies. IOP Conf. Ser. Mater. Sci. Eng. 2013, 51, 012001. [Google Scholar] [CrossRef] [Green Version]
- Zahir, S.A.D.M.; Omar, A.F.; Jamlos, M.F.; Azmi, M.A.M.; Muncan, J. A Review of Visible and Near-Infrared (Vis-NIR) Spectroscopy Application in Plant Stress Detection. Sens. Actuators A Phys. 2022, 338, 113468. [Google Scholar] [CrossRef]
- Kenry; Duan, Y.; Liu, B. Recent Advances of Optical Imaging in the Second Near-Infrared Window. Adv. Mater. 2018, 30, 1802394. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Duan, H.; Pu, K. Nanotransducers for Near-Infrared Photoregulation in Biomedicine. Adv. Mater. 2019, 31, 1901607. [Google Scholar] [CrossRef]
- He, J.; Li, C.L.; Wilson, B.C.; Fisher, C.J.; Ghai, S.; Weersink, R.A. A Clinical Prototype Transrectal Diffuse Optical Tomography (TRDOT) System for in Vivo Monitoring of Photothermal Therapy (PTT) of Focal Prostate Cancer. IEEE Trans. Biomed. Eng. 2020, 67, 2119–2129. [Google Scholar] [CrossRef]
- Hayashi, R.; Yamashita, O.; Yamada, T.; Kawaguchi, H.; Higo, N. Diffuse Optical Tomography Using FNIRS Signals Measured from the Skull Surface of the Macaque Monkey. Cereb. Cortex Commun. 2022, 3, tgab064. [Google Scholar] [CrossRef]
- Mimura, T.; Okawa, S.; Kawaguchi, H.; Tanikawa, Y.; Hoshi, Y. Imaging the Human Thyroid Using Three-Dimensional Diffuse Optical Tomography: A Preliminary Study. Appl. Sci. 2021, 11, 1670. [Google Scholar] [CrossRef]
- Hoshi, Y.; Yamada, Y. Overview of Diffuse Optical Tomography and Its Clinical Applications. J. Biomed. Opt. 2016, 21, 091312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez-Martin, E.; Gonzalez-Mora, J.L. Diffuse Optical Tomography in the Human Brain: A Briefly Review from the Neurophysiology to Its Applications. Brain Sci. Adv. 2020, 6, 289–305. [Google Scholar] [CrossRef]
- Doulgerakis, M.; Eggebrecht, A.T.; Dehghani, H. High-Density Functional Diffuse Optical Tomography Based on Frequency-Domain Measurements Improves Image Quality and Spatial Resolution. Neurophotonics 2019, 6, 035007. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Zhang, T.; Yang, H.; Tang, J.; Carney, P.R.; Jiang, H. Fast Noninvasive Functional Diffuse Optical Tomography for Brain Imaging. J. Biophotonics 2018, 11, e201600267. [Google Scholar] [CrossRef] [PubMed]
- Wheelock, M.D.; Culver, J.P.; Eggebrecht, A.T. High-Density Diffuse Optical Tomography for Imaging Human Brain Function. Rev. Sci. Instrum. 2019, 90, 051101. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Sun, Q.; Li, Z.; Sun, Z.; Jia, K. Back-Propagation Neural Network-Based Reconstruction Algorithm for Diffuse Optical Tomography. J. Biomed. Opt. 2018, 24, 051407. [Google Scholar] [CrossRef]
- Wang, X.; Xuan, Z.; Zhu, X.; Sun, H.; Li, J.; Xie, Z. Near-Infrared Photoresponsive Drug Delivery Nanosystems for Cancer Photo-Chemotherapy. J. Nanobiotechnology 2020, 18, 108. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Sevick-Muraca, E.M. A Review of Performance of Near-Infrared Fluorescence Imaging Devices Used in Clinical Studies. Br. J. Radiol. 2015, 88, 20140547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Wang, D.; Tang, B.Z. NIR-II AIEgens: A Win–Win Integration towards Bioapplications. Angew. Chemie-Int. Ed. 2021, 60, 7476–7487. [Google Scholar] [CrossRef]
- Dai, H.; Wang, X.; Shao, J.; Wang, W.; Mou, X.; Dong, X. NIR-II Organic Nanotheranostics for Precision Oncotherapy. Small 2021, 17, 2102646. [Google Scholar] [CrossRef]
- Lei, Z.; Zhang, F. Molecular Engineering of NIR-II Fluorophores for Improved Biomedical Detection. Angew. Chemie-Int. Ed. 2021, 60, 16294–16308. [Google Scholar] [CrossRef] [PubMed]
- Furusawa, A.; Okada, R.; Inagaki, F.; Wakiyama, H.; Kato, T.; Furumoto, H.; Fukushima, H.; Okuyama, S.; Choyke, P.L.; Kobayashi, H. CD29 Targeted Near-Infrared Photoimmunotherapy (NIR-PIT) in the Treatment of a Pigmented Melanoma Model. Oncoimmunology 2022, 11, 2019922. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Furusawa, A.; Rosenberg, A.; Choyke, P.L. Near-Infrared Photoimmunotherapy of Cancer: A New Approach That Kills Cancer Cells and Enhances Anti-Cancer Host Immunity. Int. Immunol. 2021, 33, 7–15. [Google Scholar] [CrossRef]
- Kato, T.; Wakiyama, H.; Furusawa, A.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy; a Review of Targets for Cancer Therapy. Cancers 2021, 13, 2535. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Choyke, P.L. Near-Infrared Photoimmunotherapy of Cancer. Acc. Chem. Res. 2019, 52, 2332–2339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruoka, Y.; Wakiyama, H.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy for Cancers: A Translational Perspective. EBioMedicine 2021, 70, 103501. [Google Scholar] [CrossRef]
- Tang, L.; Li, J.; Zhao, Q.; Pan, T.; Zhong, H.; Wang, W. Advanced and Innovative Nano-Systems for Anticancer Targeted Drug Delivery. Pharmaceutics 2021, 13, 1151. [Google Scholar] [CrossRef] [PubMed]
- Moramkar, N.; Bhatt, P. Insight into Chitosan Derived Nanotherapeutics for Anticancer Drug Delivery and Imaging. Eur. Polym. J. 2021, 154, 110540. [Google Scholar] [CrossRef]
- Scutigliani, E.M.; Liang, Y.; Crezee, H.; Kanaar, R.; Krawczyk, P.M. Modulating the Heat Stress Response to Improve Hyperthermia-Based Anticancer Treatments. Cancers 2021, 13, 1243. [Google Scholar] [CrossRef] [PubMed]
- Anani, T.; Rahmati, S.; Sultana, N.; David, A.E. MRI-Traceable Theranostic Nanoparticles for Targeted Cancer Treatment. Theranostics 2020, 11, 579–601. [Google Scholar] [CrossRef] [PubMed]
- Bahman, F.; Pittalà, V.; Haider, M.; Greish, K. Enhanced Anticancer Activity of Nanoformulation of Dasatinib against Triple-Negative Breast Cancer. J. Pers. Med. 2021, 11, 559. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Lu, G.; Nie, W.; Huang, L.L.; Zhang, Y.; Fan, W.; Wu, G.; Liu, H.; Xie, H.Y. Self-Activatable Photo-Extracellular Vesicle for Synergistic Trimodal Anticancer Therapy. Adv. Mater. 2021, 33, 2005562. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, R.; Xiao, D.; Shi, S.; Peng, S.; Wu, S.; Wu, P.; Lin, Y. Polypeptide Uploaded Efficient Nanophotosensitizers to Overcome Photodynamic Resistance for Enhanced Anticancer Therapy. Chem. Eng. J. 2021, 403, 126344. [Google Scholar] [CrossRef]
- Mouratidis, P.X.E.; Costa, M.; Rivens, I.; Repasky, E.E.; Ter Haar, G. Pulsed Focused Ultrasound Can Improve the Anti-Cancer Effects of Immune Checkpoint Inhibitors in Murine Pancreatic Cancer. J. R. Soc. Interface 2021, 18, 20210266. [Google Scholar] [CrossRef]
- Fishell, A.K.; Arbeláez, A.M.; Valdés, C.P.; Burns-Yocum, T.M.; Sherafati, A.; Richter, E.J.; Torres, M.; Eggebrecht, A.T.; Smyser, C.D.; Culver, J.P. Portable, Field-Based Neuroimaging Using High-Density Diffuse Optical Tomography. Neuroimage 2020, 215, 116541. [Google Scholar] [CrossRef]
- Applegate, M.B.; Karrobi, K.; Angelo, J.P.; Austin, W.M.; Tabassum, S.M.; Aguénounon, E.; Tilbury, K.; Saager, R.B.; Gioux, S.; Roblyer, D.M. OpenSFDI: An Open-Source Guide for Constructing a Spatial Frequency Domain Imaging System. J. Biomed. Opt. 2020, 25, 016002. [Google Scholar] [CrossRef]
- Burley, T.A.; Mączyńska, J.; Shah, A.; Szopa, W.; Harrington, K.J.; Boult, J.K.R.; Mrozek-Wilczkiewicz, A.; Vinci, M.; Bamber, J.C.; Kaspera, W.; et al. Near-Infrared Photoimmunotherapy Targeting EGFR-Shedding New Light on Glioblastoma Treatment. Int. J. Cancer 2018, 142, 2363–2374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherafati, A.; Snyder, A.Z.; Eggebrecht, A.T.; Bergonzi, K.M.; Burns-Yocum, T.M.; Lugar, H.M.; Ferradal, S.L.; Robichaux-Viehoever, A.; Smyser, C.D.; Palanca, B.J.; et al. Global Motion Detection and Censoring in High-Density Diffuse Optical Tomography. Hum. Brain Mapp. 2020, 41, 4093–4112. [Google Scholar] [CrossRef]
- Angelo, J.P.; Chen, S.-J.K.; Ochoa, M.; Sunar, U.; Gioux, S.; Intes, X. Review of Structured Light in Diffuse Optical Imaging. J. Biomed. Opt. 2018, 24, 071602. [Google Scholar] [CrossRef] [Green Version]
- Qi, H.; Zhao, F.Z.; Ren, Y.T.; Qiao, Y.B.; Wei, L.Y.; Islam, M.A.; Ruan, L.M. Experimental Research on Noninvasive Reconstruction of Optical Parameter Fields Based on Transient Radiative Transfer Equation for Diagnosis Applications. J. Quant. Spectrosc. Radiat. Transf. 2019, 222–223, 1–11. [Google Scholar] [CrossRef]
- Chen, L.Y.; Yu, J.M.; Pan, M.C.; Sun, S.Y.; Chou, C.C.; Pan, M.C. Comparisons of Diffuse Optical Imaging between Direct-Current and Amplitude-Modulation Instrumentations. Opt. Quantum Electron. 2016, 48, 139. [Google Scholar] [CrossRef]
- Cochran, J.M.; Busch, D.R.; Lin, L.; Minkoff, D.L.; Schweiger, M.; Arridge, S.; Yodh, A.G. Hybrid Time-Domain and Continuous-Wave Diffuse Optical Tomography Instrument with Concurrent, Clinical Magnetic Resonance Imaging for Breast Cancer Imaging. J. Biomed. Opt. 2019, 24, 051409. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.M.; Pan, M.C.; Chen, L.Y.; Pan, M.C.; Hsu, Y.F. Phantom Verification for a Ring-Scanning and Prone Diffuse Optical Imaging System. Opt. Commun. 2017, 405, 177–184. [Google Scholar] [CrossRef]
- Oshina, I.; Spigulis, J. Beer–Lambert Law for Optical Tissue Diagnostics: Current State of the Art and the Main Limitations. J. Biomed. Opt. 2021, 26, 100901. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.W.; Zhang, P.P.; Zhou, X.X.; Wang, Z.X.; Xu, Z.Q.; Mao, W.; Li, W.X.; Huo, Z.Y.; Guo, W.S.; Yun, F. Quantitative Monitoring of Leaf Area Index in Wheat of Different Plant Types by Integrating NDVI and Beer-Lambert Law. Sci. Rep. 2020, 10, 929. [Google Scholar] [CrossRef] [Green Version]
- Mallet, A.; Tsenkova, R.; Muncan, J.; Charnier, C.; Latrille, É.; Bendoula, R.; Steyer, J.P.; Roger, J.M. Relating Near-Infrared Light Path-Length Modifications to the Water Content of Scattering Media in Near-Infrared Spectroscopy: Toward a New Bouguer-Beer-Lambert Law. Anal. Chem. 2021, 93, 6817–6823. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Jiang, J.; Di Costanzo Mata, A.; Kalyanov, A.; Ripoll, J.; Lindner, S.; Charbon, E.; Zhang, C.; Rudin, M.; Wolf, M. Multimodal Imaging Combining Time-Domain near-Infrared Optical Tomography and Continuous-Wave Fluorescence Molecular Tomography. Opt. Express 2020, 28, 9860. [Google Scholar] [CrossRef] [Green Version]
- Lighter, D.; Hughes, J.; Styles, I.; Filer, A.; Dehghani, H. Multispectral, Non-Contact Diffuse Optical Tomography of Healthy Human Finger Joints. Biomed. Opt. Express 2018, 9, 1445. [Google Scholar] [CrossRef]
- Pera, V.; Karrobi, K.; Tabassum, S.; Teng, F.; Roblyer, D. Frequency Selection with Optical Property Uncertainty Estimates for Spatial Frequency Domain Imaging. Opt. InfoBase Conf. Pap. 2018, Part F91-T, 1349–1357. [Google Scholar] [CrossRef]
- Zhao, Y.; Applegate, M.B.; Istfan, R.; Pande, A.; Roblyer, D. Quantitative Real-Time Pulse Oximetry with Ultrafast Frequency-Domain Diffuse Optics and Deep Neural Network Processing. Biomed. Opt. Express 2018, 9, 5997. [Google Scholar] [CrossRef]
- Mozumder, M.; Tarvainen, T. Time-Domain Diffuse Optical Tomography Utilizing Truncated Fourier Series Approximation. J. Opt. Soc. Am. A 2020, 37, 182. [Google Scholar] [CrossRef]
- Mozumder, M.; Tarvainen, T. Evaluation of Temporal Moments and Fourier Transformed Data in Time-Domain Diffuse Optical Tomography. J. Opt. Soc. Am. A 2020, 37, 1845. [Google Scholar] [CrossRef]
- Dalla Mora, A.; Di Sieno, L.; Behera, A.; Taroni, P.; Contini, D.; Torricelli, A.; Pifferi, A. The SiPM Revolution in Time-Domain Diffuse Optics. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 978, 164411. [Google Scholar] [CrossRef]
- Mitsunaga, M.; Ogawa, M.; Kosaka, N.; Rosenblum, L.T.; Choyke, P.L.; Kobayashi, H. Cancer Cell–Selective in Vivo near Infrared Photoimmunotherapy Targeting Specific Membrane Molecules. Nat. Med. 2011, 17, 1685–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessel, D. Photodynamic Therapy: A Brief History. J. Clin. Med. 2019, 8, 1581. [Google Scholar] [CrossRef] [Green Version]
- Niu, N.; Zhou, H.; Liu, N.; Jiang, H.; Hussain, E.; Hu, Z.; Yu, C. A Smart Perylene Derived Photosensitizer for Lysosome-Targeted and Self-Assessed Photodynamic Therapy. Chem. Commun. 2019, 55, 1036–1039. [Google Scholar] [CrossRef] [PubMed]
- Hussain, E.; Zhou, H.; Yang, N.; Shahzad, S.A.; Yu, C. Synthesis of Regioisomerically Pure Piperidine Substituted Perylenebisimide NIR Dyes: A Comparative Study of Spectroscopic, Electrochemical and Crystalline Properties. Dye. Pigment. 2017, 147, 211–224. [Google Scholar] [CrossRef]
- Intes, X.; Chance, B. Multi-Frequency Diffuse Optical Tomography. J. Mod. Opt. 2005, 52, 2139–2159. [Google Scholar] [CrossRef]
- Chen, C.; Kavuri, V.C.; Wang, X.; Li, R.; Liu, H.; Huang, J. Multi-Frequency Diffuse Optical Tomography for Cancer Detection. In Proceedings of the 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), Brooklyn Bridge, NY, USA, 16–19 April 2015; pp. 67–70. [Google Scholar]
- Applegate, M.B.; Gómez, C.A.; Roblyer, D.M. Modulation Frequency Selection and Efficient Look-up Table Inversion for Frequency Domain Diffuse Optical Spectroscopy. J. Biomed. Opt. 2021, 26, 036007. [Google Scholar] [CrossRef]
- Hsu, Y.Y.; Gan, H.W.; Lee, B.T.; Hsu, Y.F.; Jiang, H.; Pan, M.C. Diffuse Optical Imaging through Simultaneous Multiple-Sinusoids Driving Light Sources. Opt. InfoBase Conf. Pap. 2020, 2020, 4–5. [Google Scholar] [CrossRef]
- Fan, W.; Eggebrecht, A.T. Effect of Modulation Frequency on Image Quality in Frequency Domain High-Density Diffuse Optical Tomography in Infant Head. Opt. InfoBase Conf. Pap. 2022, 8, 1–19. [Google Scholar] [CrossRef]
- Wang, H.; Xia, F.; Han, G.; Zhao, Z.; Chen, H.; Wang, J. Optical Parameters Detection with Multi-Frequency Modulation Based on NIR DPDW. Infrared Phys. Technol. 2019, 97, 135–141. [Google Scholar] [CrossRef]
- Eklund, M.; Jäderling, F.; Discacciati, A.; Bergman, M.; Annerstedt, M.; Aly, M.; Glaessgen, A.; Carlsson, S.; Grönberg, H.; Nordström, T. MRI-Targeted or Standard Biopsy in Prostate Cancer Screening. N. Engl. J. Med. 2021, 385, 908–920. [Google Scholar] [CrossRef]
- Ntziachristos, V.; Yodh, A.G.; Schnall, M.D.; Chance, B. MRI-Guided Diffuse Optical Spectroscopy of Malignant and Benign Breast Lesions. Neoplasia 2002, 4, 347–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vavadi, H.; Mostafa, A.; Zhou, F.; Uddin, K.M.S.; Althobaiti, M.; Xu, C.; Bansal, R.; Ademuyiwa, F.; Poplack, S.; Zhu, Q. Compact Ultrasound-Guided Diffuse Optical Tomography System for Breast Cancer Imaging. J. Biomed. Opt. 2018, 24, 021203. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Vavadi, H.; Merkulov, A.; Li, H.; Erfanzadeh, M.; Mostafa, A.; Gong, Y.; Salehi, H.; Tannenbaum, S.; Zhu, Q. Ultrasound-Guided Diffuse Optical Tomography for Predicting and Monitoring Neoadjuvant Chemotherapy of Breast Cancers. Ultrason. Imaging 2016, 38, 5–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarmanova, O.E.; Burikov, S.A.; Dolenko, S.A.; Isaev, I.V.; Laptinskiy, K.A.; Prabhakar, N.; Karaman, D.Ş.; Rosenholm, J.M.; Shenderova, O.A.; Dolenko, T.A. A Method for Optical Imaging and Monitoring of the Excretion of Fluorescent Nanocomposites from the Body Using Artificial Neural Networks. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 1371–1380. [Google Scholar] [CrossRef]
- Jolivot, R.; Vabres, P.; Marzani, F. Reconstruction of Hyperspectral Cutaneous Data from an Artificial Neural Network-Based Multispectral Imaging System. Comput. Med. Imaging Graph. 2011, 35, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zou, Y.; Li, S.; Zhu, Q. Auto Encoder Based Deep Learning Reconstruction for Diffuse Optical Tomography. Opt. InfoBase Conf. Pap. 2022, 3–4. [Google Scholar] [CrossRef]
- Balasubramaniam, G.M.; Wiesel, B.; Biton, N.; Kumar, R.; Kupferman, J.; Arnon, S. Tutorial on the Use of Deep Learning in Diffuse Optical Tomography. Electronics 2022, 11, 305. [Google Scholar] [CrossRef]
- Smith, J.T.; Ochoa, M.; Faulkner, D.; Haskins, G.; Intes, X. Deep Learning in Macroscopic Diffuse Optical Imaging. J. Biomed. Opt. 2022, 27, 020901. [Google Scholar] [CrossRef]
- Ben Yedder, H.; BenTaieb, A.; Shokoufi, M.; Zahiremami, A.; Golnaraghi, F.; Hamarneh, G. Deep Learning Based Image Reconstruction for Diffuse Optical Tomography. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Sweden, 2018; Volume 11074 LNCS, pp. 112–119. ISBN 9783030001285. [Google Scholar]
- Yao, B.; Li, W.; Pan, W.; Yang, Z.; Chen, D.; Li, J.; Qu, J. Image Reconstruction with a Deep Convolutional Neural Network in High-Density Super-Resolution Microscopy. Opt. Express 2020, 28, 15432. [Google Scholar] [CrossRef] [PubMed]
- Sabir, S.; Cho, S.; Kim, Y.; Pua, R.; Heo, D.; Kim, K.H.; Choi, Y.; Cho, S. Convolutional Neural Network-Based Approach to Estimate Bulk Optical Properties in Diffuse Optical Tomography. Appl. Opt. 2020, 59, 1461. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Wang, X.; Jiang, H. Convolutional Neural Network for Breast Cancer Diagnosis Using Diffuse Optical Tomography. Vis. Comput. Ind. Biomed. Art 2019, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Lv, Y.; Li, F.; Wang, S.; Lu, G.; Bao, W.; Wang, Y.; Tian, Z.; Wei, W.; Ma, G. Near-Infrared Light–Triggered Platelet Arsenal for Combined Photothermal-Immunotherapy against Cancer. Sci. Adv. 2021, 7, eabd7614. [Google Scholar] [CrossRef]
- Nagaya, T.; Nakamura, Y.; Sato, K.; Zhang, Y.F.; Ni, M.; Choyke, P.L.; Ho, M.; Kobayashi, H. Near Infrared Photoimmunotherapy with an Anti-Mesothelin Antibody. Oncotarget 2016, 7, 23361–23369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, K.; Nagaya, T.; Nakamura, Y.; Harada, T.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy Prevents Lung Cancer Metastases in a Murine Model. Oncotarget 2015, 6, 19747–19758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagaya, T.; Friedman, J.; Maruoka, Y.; Ogata, F.; Okuyama, S.; Clavijo, P.E.; Choyke, P.L.; Allen, C.; Kobayashi, H. Host Immunity Following Near-Infrared Photoimmunotherapy Is Enhanced with PD-1 Checkpoint Blockade to Eradicate Established Antigenic Tumors. Cancer Immunol. Res. 2019, 7, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Nagaya, T.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy in the Treatment of Pleural Disseminated NSCLC: Preclinical Experience. Theranostics 2015, 5, 698–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagaya, T.; Sato, K.; Harada, T.; Nakamura, Y.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy Targeting EGFR Positive Triple Negative Breast Cancer: Optimizing the Conjugate-Light Regimen. PLoS ONE 2015, 10, e0136829. [Google Scholar] [CrossRef] [PubMed]
- Isobe, Y.; Sato, K.; Nishinaga, Y.; Takahashi, K.; Taki, S.; Yasui, H.; Shimizu, M.; Endo, R.; Koike, C.; Kuramoto, N.; et al. Near Infrared Photoimmunotherapy Targeting DLL3 for Small Cell Lung Cancer. EBioMedicine 2020, 52, 102632. [Google Scholar] [CrossRef]
- Nagaya, T.; Nakamura, Y.; Okuyama, S.; Ogata, F.; Maruoka, Y.; Choyke, P.L.; Kobayashi, H. Near-Infrared Photoimmunotherapy Targeting Prostate Cancer with Prostate-Specific Membrane Antigen (PSMA) Antibody. Mol. Cancer Res. 2017, 15, 1153–1162. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, M.; Tomita, Y.; Nakamura, Y.; Lee, M.J.; Lee, S.; Tomita, S.; Nagaya, T.; Sato, K.; Yamauchi, T.; Iwai, H.; et al. Immunogenic Cancer Cell Death Selectively Induced by near Infrared Photoimmunotherapy Initiates Host Tumor Immunity. Oncotarget 2017, 8, 10425–10436. [Google Scholar] [CrossRef] [Green Version]
- Shirasu, N.; Yamada, H.; Shibaguchi, H.; Kuroki, M.; Kuroki, M. Potent and Specific Antitumor Effect of CEA-Targeted Photoimmunotherapy. Int. J. Cancer 2014, 135, 2697–2710. [Google Scholar] [CrossRef]
- Sano, K.; Nakajima, T.; Choyke, P.L.; Kobayashi, H. The Effect of Photoimmunotherapy Followed by Liposomal Daunorubicin in a Mixed Tumor Model: A Demonstration of the Super-Enhanced Permeability and Retention Effect after Photoimmunotherapy. Mol. Cancer Ther. 2014, 13, 426–432. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Choyke, P.L.; Kobayashi, H. Photoimmunotherapy of Gastric Cancer Peritoneal Carcinomatosis in a Mouse Model. PLoS ONE 2014, 9, e113276. [Google Scholar] [CrossRef]
- Hanaoka, H.; Nagaya, T.; Sato, K.; Nakamura, Y.; Watanabe, R.; Harada, T.; Gao, W.; Feng, M.; Phung, Y.; Kim, I.; et al. Glypican-3 Targeted Human Heavy Chain Antibody as a Drug Carrier for Hepatocellular Carcinoma Therapy. Mol. Pharm. 2015, 12, 2151–2157. [Google Scholar] [CrossRef]
- Sato, K.; Hanaoka, H.; Watanabe, R.; Nakajima, T.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy in the Treatment of Disseminated Peritoneal Ovarian Cancer. Mol. Cancer Ther. 2015, 14, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Jing, H.; Weidensteiner, C.; Reichardt, W.; Gaedicke, S.; Zhu, X.; Grosu, A.L.; Kobayashi, H.; Niedermann, G. Imaging and Selective Elimination of Glioblastoma Stem Cells with Theranostic Near-Infrared-Labeled CD133-Specific Antibodies. Theranostics 2016, 6, 862–874. [Google Scholar] [CrossRef] [Green Version]
- Nagaya, T.; Nakamura, Y.; Sato, K.; Harada, T.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy of B-Cell Lymphoma. Mol. Oncol. 2016, 10, 1404–1414. [Google Scholar] [CrossRef]
- Railkar, R.; Krane, L.S.; Li, Q.Q.; Sanford, T.; Siddiqui, M.R.; Haines, D.; Vourganti, S.; Brancato, S.J.; Choyke, P.L.; Kobayashi, H.; et al. Epidermal Growth Factor Receptor (EGFR)-Targeted Photoimmunotherapy (PIT) for the Treatment of EGFR-Expressing Bladder Cancer. Mol. Cancer Ther. 2017, 16, 2201–2214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagaya, T.; Nakamura, Y.; Sato, K.; Harada, T.; Choyke, P.L.; Hodge, J.W.; Schlom, J.; Kobayashi, H. Near Infrared Photoimmunotherapy with Avelumab, an Anti-Programmed Death-Ligand 1 (PD-L1) Antibody. Oncotarget 2017, 8, 8807–8817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagaya, T.; Nakamura, Y.; Okuyama, S.; Ogata, F.; Maruoka, Y.; Choyke, P.L.; Allen, C.; Kobayashi, H. Syngeneic Mouse Models of Oral Cancer Are Effectively Targeted by Anti–CD44-Based NIR-PIT. Mol. Cancer Res. 2017, 15, 1667–1677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqui, M.R.; Railkar, R.; Sanford, T.; Crooks, D.R.; Eckhaus, M.A.; Haines, D.; Choyke, P.L.; Kobayashi, H.; Agarwal, P.K. Targeting Epidermal Growth Factor Receptor (EGFR) and Human Epidermal Growth Factor Receptor 2 (HER2) Expressing Bladder Cancer Using Combination Photoimmunotherapy (PIT). Sci. Rep. 2019, 9, 2084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiss, B.; van den Berg, N.S.; Ertsey, R.; McKenna, K.; Mach, K.E.; Zhang, C.A.; Volkmer, J.-P.; Weissman, I.L.; Rosenthal, E.L.; Liao, J.C. CD47-Targeted Near-Infrared Photoimmunotherapy for Human Bladder Cancer. Clin. Cancer Res. 2019, 25, 3561–3571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lütje, S.; Heskamp, S.; Franssen, G.M.; Frielink, C.; Kip, A.; Hekman, M.; Fracasso, G.; Colombatti, M.; Herrmann, K.; Boerman, O.C.; et al. Development and Characterization of a Theranostic Multimodal Anti-PSMA Targeting Agent for Imaging, Surgical Guidance, and Targeted Photodynamic Therapy of PSMA-Expressing Tumors. Theranostics 2019, 9, 2924–2938. [Google Scholar] [CrossRef]
- Watanabe, S.; Noma, K.; Ohara, T.; Kashima, H.; Sato, H.; Kato, T.; Urano, S.; Katsube, R.; Hashimoto, Y.; Tazawa, H.; et al. Photoimmunotherapy for Cancer-Associated Fibroblasts Targeting Fibroblast Activation Protein in Human Esophageal Squamous Cell Carcinoma. Cancer Biol. Ther. 2019, 20, 1234–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, W.; Jiang, D.; Ehlerding, E.B.; Barnhart, T.E.; Yang, Y.; Engle, J.W.; Luo, Q.Y.; Huang, P.; Cai, W. CD146-Targeted Multimodal Image-Guided Photoimmunotherapy of Melanoma. Adv. Sci. 2019, 6, 1801237. [Google Scholar] [CrossRef] [PubMed]
- Nagaya, T.; Okuyama, S.; Ogata, F.; Maruoka, Y.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy Using a Fiber Optic Diffuser for Treating Peritoneal Gastric Cancer Dissemination. Gastric Cancer 2019, 22, 463–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, Y.A.; Okuyama, S.; Furusawa, A.; Nagaya, T.; Fujimura, D.; Okada, R.; Maruoka, Y.; Eclarinal, P.C.; Choyke, P.L.; Kobayashi, H. Near-Infrared Photoimmunotherapy through Bone. Cancer Sci. 2019, 110, 3689–3694. [Google Scholar] [CrossRef] [PubMed]
- Maruoka, Y.; Furusawa, A.; Okada, R.; Inagaki, F.; Fujimura, D.; Wakiyama, H.; Kato, T.; Nagaya, T.; Choyke, P.L.; Kobayashi, H. Combined CD44- And CD25-Targeted near-Infrared Photoimmunotherapy Selectively Kills Cancer and Regulatory T Cells in Syngeneic Mouse Cancer Models. Cancer Immunol. Res. 2020, 8, 345–355. [Google Scholar] [CrossRef]
- Katsube, R.; Noma, K.; Ohara, T.; Nishiwaki, N.; Kobayashi, T.; Komoto, S.; Sato, H.; Kashima, H.; Kato, T.; Kikuchi, S.; et al. Fibroblast Activation Protein Targeted near Infrared Photoimmunotherapy (NIR PIT) Overcomes Therapeutic Resistance in Human Esophageal Cancer. Sci. Rep. 2021, 11, 1693. [Google Scholar] [CrossRef] [PubMed]
- Okada, R.; Kato, T.; Furusawa, A.; Inagaki, F.; Wakiyama, H.; Choyke, P.L.; Kobayashi, H. Local Depletion of Immune Checkpoint Ligand CTLA4 Expressing Cells in Tumor Beds Enhances Antitumor Host Immunity. Adv. Ther. 2021, 4, 2000269. [Google Scholar] [CrossRef] [PubMed]
- Mu, W.; Chu, Q.; Liu, Y.; Zhang, N. A Review on Nano-Based Drug Delivery System for Cancer Chemoimmunotherapy. Nano-Micro Lett. 2020, 12, 142. [Google Scholar] [CrossRef]
- Kang, H.; Kang, M.W.; Kashiwagi, S.; Choi, H.S. NIR Fluorescence Imaging and Treatment for Cancer Immunotherapy. J. Immunother. Cancer 2022, 10, e004936. [Google Scholar] [CrossRef] [PubMed]
- Ayana, G.; Ryu, J. Ultrasound-Responsive Nanocarriers for Breast Cancer Chemotherapy. Micromachines 2022, 13, 1508. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Chen, G.; Li, Y.; Xu, W.; Gong, S. Quantum-Dot-Based Theranostic Micelles Conjugated with an Anti-EGFR Nanobody for Triple-Negative Breast Cancer Therapy. ACS Appl. Mater. Interfaces 2017, 9, 30297–30305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asha Krishnan, M.; Yadav, K.; Roach, P.; Chelvam, V. A Targeted Near-Infrared Nanoprobe for Deep-Tissue Penetration and Imaging of Prostate Cancer. Biomater. Sci. 2021, 9, 2295–2312. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Choe, S.W. Acoustic Stimulation by Shunt-Diode Pre-Linearizer Using Very High Frequency Piezoelectric Transducer for Cancer Therapeutics. Sensors 2019, 19, 357. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.; Seo, J.; Heo, G.; Choe, S. An Alternative Approach to Detecting Cancer Cells by Multi-Directional Fluorescence Detection System Using Cost-Effective LED and Photodiode. Sensors 2019, 19, 2301. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Ryu, J.M.; Choe, S. woon A Novel Therapeutic Instrument Using an Ultrasound-Light-Emitting Diode with an Adjustable Telephoto Lens for Suppression of Tumor Cell Proliferation. Meas. J. Int. Meas. Confed. 2019, 147, 106865. [Google Scholar] [CrossRef]
- Choi, H.; Choe, S.W.; Ryu, J.M. A Macro Lens-Based Optical System Design for Phototherapeutic Instrumentation. Sensors 2019, 19, 5427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mudeng, V.; Nisa, W.; Sukmananda Suprapto, S. Computational Image Reconstruction for Multi-Frequency Diffuse Optical Tomography. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 3527–3538. [Google Scholar] [CrossRef]
Paper | Year | Application | Setup |
---|---|---|---|
Shirasu et al. [86] | 2014 | Carcinoembryonic antigen-expressing tumor | IRDye700DX |
Sano et al. [87] | 2014 | Epidermal growth factor receptor (EGFR)-positive A431 cells | Monoclonal antibody (mAb)-photosensitizer (IR700 fluorescence dye) |
Kazuhide et al. [88] | 2014 | HER2-expressing, GFP-expressing, gastric cancer cell line (N87-GFP) | Photosensitizer, IR-700, conjugated to trastuzumab (tra-IR700) |
Nagaya et al. [82] | 2015 | Breast cancer | Cetuximab (cet)-IR700 |
Hanaoka et al. [89] | 2015 | Hepatocellular carcinoma | IR700-conjugated antibodies |
Sato et al. [90] | 2015 | Ovarian cancer | IRDye-700DX |
Sato et al. [81] | 2015 | Lung carcinoma | IRDye-700DX |
Jing et al. [91] | 2016 | Brain tumors | Monoclonal antibody (mAb)-phototoxic phthalocyanine dye IR700 conjugates |
Nagaya et al. [78] | 2016 | Mesothelin-expressing tumors | hYP218-IR700 |
Nagaya et al. [92] | 2016 | B-cell lymphoma | Monoclonal antibody (mAb), rituximab-IR700 |
Railkar et al. [93] | 2017 | Bladder cancer | IRDye 700Dx (IR700) |
Nagaya et al. [84] | 2017 | Prostate cancer | Monoclonal antibody (mAb), conjugated to the photo-absorber, IR700DX |
Nagaya et al. [94] | 2017 | Lung adenocarcinoma | Monoclonal antibody (mAb), avelumab, conjugated to the photo-absorber, IR700DX |
Nagaya et al. [95] | 2017 | Oral cancer | Monoclonal antibody (mAb), avelumab, conjugated to the photo-absorber, IR700DX |
Ogawa et al. [85] | 2017 | HER2 expression | Tra-IR700 or Cet- IR700 |
Burley et al. [37] | 2018 | Glioblastoma treatment EGFR | IR700DX |
Siddiqui et al. [96] | 2019 | Bladder cancer | Monoclonal antibodies (MAbs) conjugated to a photoabsorber (PA), IR Dye 700Dx |
Kiss et al. [97] | 2019 | Bladder cancer | anti-CD47-IR700 |
Lutje et al. [98] | 2019 | Prostate cancer | Anti-PSMA monoclonal antibody D2B was conjugated with IRDye700DX and DTPA |
Watanabe et al. [99] | 2019 | Human esophageal squamous carcinoma | Fibroblast activation protein (FAP)-IR700 |
Wei et al. [100] | 2019 | Melanoma | IR700-YY146 |
Nagaya et al. [101] | 2019 | Gastric cancer | Trastuzumab (tra)-IR700DX |
Nakamura et al. [102] | 2019 | Bone cancer | IRdye 700DX |
Nagaya et al. [80] | 2019 | Colon cancer | IR700-conjugated anti-CD44 anti-CD44 |
Isobe et al. [83] | 2020 | Lung cancer | Rova-IR700 |
Maruoka et al. [103] | 2020 | Colon cancer | Anti-CD44-IR700 |
Katsube et al. [104] | 2021 | Esophageal cancer | Fibroblast activation protein (FAP)-IR700 |
Okada et al. [105] | 2021 | Colon cancer | IR700 conjugated with anti-CTLA4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mudeng, V.; Ayana, G.; Zhang, S.-U.; Choe, S.-w. Progress of Near-Infrared-Based Medical Imaging and Cancer Cell Suppressors. Chemosensors 2022, 10, 471. https://doi.org/10.3390/chemosensors10110471
Mudeng V, Ayana G, Zhang S-U, Choe S-w. Progress of Near-Infrared-Based Medical Imaging and Cancer Cell Suppressors. Chemosensors. 2022; 10(11):471. https://doi.org/10.3390/chemosensors10110471
Chicago/Turabian StyleMudeng, Vicky, Gelan Ayana, Sung-Uk Zhang, and Se-woon Choe. 2022. "Progress of Near-Infrared-Based Medical Imaging and Cancer Cell Suppressors" Chemosensors 10, no. 11: 471. https://doi.org/10.3390/chemosensors10110471
APA StyleMudeng, V., Ayana, G., Zhang, S. -U., & Choe, S. -w. (2022). Progress of Near-Infrared-Based Medical Imaging and Cancer Cell Suppressors. Chemosensors, 10(11), 471. https://doi.org/10.3390/chemosensors10110471