Progress of Near-Infrared-Based Medical Imaging and Cancer Cell Suppressors
Abstract
1. Introduction
2. NIR Instrumentation and Its Role in Cancer Diagnosis and Treatment
3. Diffuse Optical Tomography
3.1. Forward Problem and Inverse Solution
3.2. Near-Infrared Light Source Forms
4. Near-Infrared Photoimmunotherapy
5. Diffuse Optical Imaging Progress
5.1. Multi-Frequency NIR-DOT
5.2. NIR-DOT Incorporating Other Modalities
5.3. Deep-Learning-Based DOT Image Reconstruction
6. Near-Infrared Photoimmunotherapy Progress
6.1. NIR-PIT Principle and Instrumentation Progress
6.2. NIR-PIT Enhances Anticancer Host Immunity
6.3. CD29-Targeted NIR-PIT
6.4. Combined Photothermal-Immunotherapy
7. NIR Challenges
8. NIR Research Future Directions
8.1. Improved NIR_DOT
8.2. NIR-Based Cancer Suppression Instrumentations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amineh, R.K. Applications of Electromagnetic Waves: Present and Future. Electronics 2020, 9, 808. [Google Scholar] [CrossRef]
- Centeno, A.; Aid, S.R.; Xie, F. Infra-Red Plasmonic Sensors. Chemosensors 2018, 6, 4. [Google Scholar] [CrossRef]
- Erdoes, G.; Rummel, C.; Basciani, R.M.; Verma, R.; Carrel, T.; Banz, Y.; Eberle, B.; Schroth, G. Limitations of Current Near-Infrared Spectroscopy Configuration in Detecting Focal Cerebral Ischemia During Cardiac Surgery: An Observational Case-Series Study. Artif. Organs 2018, 42, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.; Andersson, J.Y. Infrared Detectors: Advances, Challenges and New Technologies. IOP Conf. Ser. Mater. Sci. Eng. 2013, 51, 012001. [Google Scholar] [CrossRef]
- Zahir, S.A.D.M.; Omar, A.F.; Jamlos, M.F.; Azmi, M.A.M.; Muncan, J. A Review of Visible and Near-Infrared (Vis-NIR) Spectroscopy Application in Plant Stress Detection. Sens. Actuators A Phys. 2022, 338, 113468. [Google Scholar] [CrossRef]
- Kenry; Duan, Y.; Liu, B. Recent Advances of Optical Imaging in the Second Near-Infrared Window. Adv. Mater. 2018, 30, 1802394. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Duan, H.; Pu, K. Nanotransducers for Near-Infrared Photoregulation in Biomedicine. Adv. Mater. 2019, 31, 1901607. [Google Scholar] [CrossRef]
- He, J.; Li, C.L.; Wilson, B.C.; Fisher, C.J.; Ghai, S.; Weersink, R.A. A Clinical Prototype Transrectal Diffuse Optical Tomography (TRDOT) System for in Vivo Monitoring of Photothermal Therapy (PTT) of Focal Prostate Cancer. IEEE Trans. Biomed. Eng. 2020, 67, 2119–2129. [Google Scholar] [CrossRef]
- Hayashi, R.; Yamashita, O.; Yamada, T.; Kawaguchi, H.; Higo, N. Diffuse Optical Tomography Using FNIRS Signals Measured from the Skull Surface of the Macaque Monkey. Cereb. Cortex Commun. 2022, 3, tgab064. [Google Scholar] [CrossRef]
- Mimura, T.; Okawa, S.; Kawaguchi, H.; Tanikawa, Y.; Hoshi, Y. Imaging the Human Thyroid Using Three-Dimensional Diffuse Optical Tomography: A Preliminary Study. Appl. Sci. 2021, 11, 1670. [Google Scholar] [CrossRef]
- Hoshi, Y.; Yamada, Y. Overview of Diffuse Optical Tomography and Its Clinical Applications. J. Biomed. Opt. 2016, 21, 091312. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Martin, E.; Gonzalez-Mora, J.L. Diffuse Optical Tomography in the Human Brain: A Briefly Review from the Neurophysiology to Its Applications. Brain Sci. Adv. 2020, 6, 289–305. [Google Scholar] [CrossRef]
- Doulgerakis, M.; Eggebrecht, A.T.; Dehghani, H. High-Density Functional Diffuse Optical Tomography Based on Frequency-Domain Measurements Improves Image Quality and Spatial Resolution. Neurophotonics 2019, 6, 035007. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Zhang, T.; Yang, H.; Tang, J.; Carney, P.R.; Jiang, H. Fast Noninvasive Functional Diffuse Optical Tomography for Brain Imaging. J. Biophotonics 2018, 11, e201600267. [Google Scholar] [CrossRef] [PubMed]
- Wheelock, M.D.; Culver, J.P.; Eggebrecht, A.T. High-Density Diffuse Optical Tomography for Imaging Human Brain Function. Rev. Sci. Instrum. 2019, 90, 051101. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Sun, Q.; Li, Z.; Sun, Z.; Jia, K. Back-Propagation Neural Network-Based Reconstruction Algorithm for Diffuse Optical Tomography. J. Biomed. Opt. 2018, 24, 051407. [Google Scholar] [CrossRef]
- Wang, X.; Xuan, Z.; Zhu, X.; Sun, H.; Li, J.; Xie, Z. Near-Infrared Photoresponsive Drug Delivery Nanosystems for Cancer Photo-Chemotherapy. J. Nanobiotechnology 2020, 18, 108. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Sevick-Muraca, E.M. A Review of Performance of Near-Infrared Fluorescence Imaging Devices Used in Clinical Studies. Br. J. Radiol. 2015, 88, 20140547. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wang, D.; Tang, B.Z. NIR-II AIEgens: A Win–Win Integration towards Bioapplications. Angew. Chemie-Int. Ed. 2021, 60, 7476–7487. [Google Scholar] [CrossRef]
- Dai, H.; Wang, X.; Shao, J.; Wang, W.; Mou, X.; Dong, X. NIR-II Organic Nanotheranostics for Precision Oncotherapy. Small 2021, 17, 2102646. [Google Scholar] [CrossRef]
- Lei, Z.; Zhang, F. Molecular Engineering of NIR-II Fluorophores for Improved Biomedical Detection. Angew. Chemie-Int. Ed. 2021, 60, 16294–16308. [Google Scholar] [CrossRef] [PubMed]
- Furusawa, A.; Okada, R.; Inagaki, F.; Wakiyama, H.; Kato, T.; Furumoto, H.; Fukushima, H.; Okuyama, S.; Choyke, P.L.; Kobayashi, H. CD29 Targeted Near-Infrared Photoimmunotherapy (NIR-PIT) in the Treatment of a Pigmented Melanoma Model. Oncoimmunology 2022, 11, 2019922. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Furusawa, A.; Rosenberg, A.; Choyke, P.L. Near-Infrared Photoimmunotherapy of Cancer: A New Approach That Kills Cancer Cells and Enhances Anti-Cancer Host Immunity. Int. Immunol. 2021, 33, 7–15. [Google Scholar] [CrossRef]
- Kato, T.; Wakiyama, H.; Furusawa, A.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy; a Review of Targets for Cancer Therapy. Cancers 2021, 13, 2535. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Choyke, P.L. Near-Infrared Photoimmunotherapy of Cancer. Acc. Chem. Res. 2019, 52, 2332–2339. [Google Scholar] [CrossRef] [PubMed]
- Maruoka, Y.; Wakiyama, H.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy for Cancers: A Translational Perspective. EBioMedicine 2021, 70, 103501. [Google Scholar] [CrossRef]
- Tang, L.; Li, J.; Zhao, Q.; Pan, T.; Zhong, H.; Wang, W. Advanced and Innovative Nano-Systems for Anticancer Targeted Drug Delivery. Pharmaceutics 2021, 13, 1151. [Google Scholar] [CrossRef] [PubMed]
- Moramkar, N.; Bhatt, P. Insight into Chitosan Derived Nanotherapeutics for Anticancer Drug Delivery and Imaging. Eur. Polym. J. 2021, 154, 110540. [Google Scholar] [CrossRef]
- Scutigliani, E.M.; Liang, Y.; Crezee, H.; Kanaar, R.; Krawczyk, P.M. Modulating the Heat Stress Response to Improve Hyperthermia-Based Anticancer Treatments. Cancers 2021, 13, 1243. [Google Scholar] [CrossRef] [PubMed]
- Anani, T.; Rahmati, S.; Sultana, N.; David, A.E. MRI-Traceable Theranostic Nanoparticles for Targeted Cancer Treatment. Theranostics 2020, 11, 579–601. [Google Scholar] [CrossRef] [PubMed]
- Bahman, F.; Pittalà, V.; Haider, M.; Greish, K. Enhanced Anticancer Activity of Nanoformulation of Dasatinib against Triple-Negative Breast Cancer. J. Pers. Med. 2021, 11, 559. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Lu, G.; Nie, W.; Huang, L.L.; Zhang, Y.; Fan, W.; Wu, G.; Liu, H.; Xie, H.Y. Self-Activatable Photo-Extracellular Vesicle for Synergistic Trimodal Anticancer Therapy. Adv. Mater. 2021, 33, 2005562. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, R.; Xiao, D.; Shi, S.; Peng, S.; Wu, S.; Wu, P.; Lin, Y. Polypeptide Uploaded Efficient Nanophotosensitizers to Overcome Photodynamic Resistance for Enhanced Anticancer Therapy. Chem. Eng. J. 2021, 403, 126344. [Google Scholar] [CrossRef]
- Mouratidis, P.X.E.; Costa, M.; Rivens, I.; Repasky, E.E.; Ter Haar, G. Pulsed Focused Ultrasound Can Improve the Anti-Cancer Effects of Immune Checkpoint Inhibitors in Murine Pancreatic Cancer. J. R. Soc. Interface 2021, 18, 20210266. [Google Scholar] [CrossRef]
- Fishell, A.K.; Arbeláez, A.M.; Valdés, C.P.; Burns-Yocum, T.M.; Sherafati, A.; Richter, E.J.; Torres, M.; Eggebrecht, A.T.; Smyser, C.D.; Culver, J.P. Portable, Field-Based Neuroimaging Using High-Density Diffuse Optical Tomography. Neuroimage 2020, 215, 116541. [Google Scholar] [CrossRef]
- Applegate, M.B.; Karrobi, K.; Angelo, J.P.; Austin, W.M.; Tabassum, S.M.; Aguénounon, E.; Tilbury, K.; Saager, R.B.; Gioux, S.; Roblyer, D.M. OpenSFDI: An Open-Source Guide for Constructing a Spatial Frequency Domain Imaging System. J. Biomed. Opt. 2020, 25, 016002. [Google Scholar] [CrossRef]
- Burley, T.A.; Mączyńska, J.; Shah, A.; Szopa, W.; Harrington, K.J.; Boult, J.K.R.; Mrozek-Wilczkiewicz, A.; Vinci, M.; Bamber, J.C.; Kaspera, W.; et al. Near-Infrared Photoimmunotherapy Targeting EGFR-Shedding New Light on Glioblastoma Treatment. Int. J. Cancer 2018, 142, 2363–2374. [Google Scholar] [CrossRef] [PubMed]
- Sherafati, A.; Snyder, A.Z.; Eggebrecht, A.T.; Bergonzi, K.M.; Burns-Yocum, T.M.; Lugar, H.M.; Ferradal, S.L.; Robichaux-Viehoever, A.; Smyser, C.D.; Palanca, B.J.; et al. Global Motion Detection and Censoring in High-Density Diffuse Optical Tomography. Hum. Brain Mapp. 2020, 41, 4093–4112. [Google Scholar] [CrossRef]
- Angelo, J.P.; Chen, S.-J.K.; Ochoa, M.; Sunar, U.; Gioux, S.; Intes, X. Review of Structured Light in Diffuse Optical Imaging. J. Biomed. Opt. 2018, 24, 071602. [Google Scholar] [CrossRef]
- Qi, H.; Zhao, F.Z.; Ren, Y.T.; Qiao, Y.B.; Wei, L.Y.; Islam, M.A.; Ruan, L.M. Experimental Research on Noninvasive Reconstruction of Optical Parameter Fields Based on Transient Radiative Transfer Equation for Diagnosis Applications. J. Quant. Spectrosc. Radiat. Transf. 2019, 222–223, 1–11. [Google Scholar] [CrossRef]
- Chen, L.Y.; Yu, J.M.; Pan, M.C.; Sun, S.Y.; Chou, C.C.; Pan, M.C. Comparisons of Diffuse Optical Imaging between Direct-Current and Amplitude-Modulation Instrumentations. Opt. Quantum Electron. 2016, 48, 139. [Google Scholar] [CrossRef]
- Cochran, J.M.; Busch, D.R.; Lin, L.; Minkoff, D.L.; Schweiger, M.; Arridge, S.; Yodh, A.G. Hybrid Time-Domain and Continuous-Wave Diffuse Optical Tomography Instrument with Concurrent, Clinical Magnetic Resonance Imaging for Breast Cancer Imaging. J. Biomed. Opt. 2019, 24, 051409. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.M.; Pan, M.C.; Chen, L.Y.; Pan, M.C.; Hsu, Y.F. Phantom Verification for a Ring-Scanning and Prone Diffuse Optical Imaging System. Opt. Commun. 2017, 405, 177–184. [Google Scholar] [CrossRef]
- Oshina, I.; Spigulis, J. Beer–Lambert Law for Optical Tissue Diagnostics: Current State of the Art and the Main Limitations. J. Biomed. Opt. 2021, 26, 100901. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.W.; Zhang, P.P.; Zhou, X.X.; Wang, Z.X.; Xu, Z.Q.; Mao, W.; Li, W.X.; Huo, Z.Y.; Guo, W.S.; Yun, F. Quantitative Monitoring of Leaf Area Index in Wheat of Different Plant Types by Integrating NDVI and Beer-Lambert Law. Sci. Rep. 2020, 10, 929. [Google Scholar] [CrossRef]
- Mallet, A.; Tsenkova, R.; Muncan, J.; Charnier, C.; Latrille, É.; Bendoula, R.; Steyer, J.P.; Roger, J.M. Relating Near-Infrared Light Path-Length Modifications to the Water Content of Scattering Media in Near-Infrared Spectroscopy: Toward a New Bouguer-Beer-Lambert Law. Anal. Chem. 2021, 93, 6817–6823. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Jiang, J.; Di Costanzo Mata, A.; Kalyanov, A.; Ripoll, J.; Lindner, S.; Charbon, E.; Zhang, C.; Rudin, M.; Wolf, M. Multimodal Imaging Combining Time-Domain near-Infrared Optical Tomography and Continuous-Wave Fluorescence Molecular Tomography. Opt. Express 2020, 28, 9860. [Google Scholar] [CrossRef]
- Lighter, D.; Hughes, J.; Styles, I.; Filer, A.; Dehghani, H. Multispectral, Non-Contact Diffuse Optical Tomography of Healthy Human Finger Joints. Biomed. Opt. Express 2018, 9, 1445. [Google Scholar] [CrossRef]
- Pera, V.; Karrobi, K.; Tabassum, S.; Teng, F.; Roblyer, D. Frequency Selection with Optical Property Uncertainty Estimates for Spatial Frequency Domain Imaging. Opt. InfoBase Conf. Pap. 2018, Part F91-T, 1349–1357. [Google Scholar] [CrossRef]
- Zhao, Y.; Applegate, M.B.; Istfan, R.; Pande, A.; Roblyer, D. Quantitative Real-Time Pulse Oximetry with Ultrafast Frequency-Domain Diffuse Optics and Deep Neural Network Processing. Biomed. Opt. Express 2018, 9, 5997. [Google Scholar] [CrossRef]
- Mozumder, M.; Tarvainen, T. Time-Domain Diffuse Optical Tomography Utilizing Truncated Fourier Series Approximation. J. Opt. Soc. Am. A 2020, 37, 182. [Google Scholar] [CrossRef]
- Mozumder, M.; Tarvainen, T. Evaluation of Temporal Moments and Fourier Transformed Data in Time-Domain Diffuse Optical Tomography. J. Opt. Soc. Am. A 2020, 37, 1845. [Google Scholar] [CrossRef]
- Dalla Mora, A.; Di Sieno, L.; Behera, A.; Taroni, P.; Contini, D.; Torricelli, A.; Pifferi, A. The SiPM Revolution in Time-Domain Diffuse Optics. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 978, 164411. [Google Scholar] [CrossRef]
- Mitsunaga, M.; Ogawa, M.; Kosaka, N.; Rosenblum, L.T.; Choyke, P.L.; Kobayashi, H. Cancer Cell–Selective in Vivo near Infrared Photoimmunotherapy Targeting Specific Membrane Molecules. Nat. Med. 2011, 17, 1685–1691. [Google Scholar] [CrossRef] [PubMed]
- Kessel, D. Photodynamic Therapy: A Brief History. J. Clin. Med. 2019, 8, 1581. [Google Scholar] [CrossRef]
- Niu, N.; Zhou, H.; Liu, N.; Jiang, H.; Hussain, E.; Hu, Z.; Yu, C. A Smart Perylene Derived Photosensitizer for Lysosome-Targeted and Self-Assessed Photodynamic Therapy. Chem. Commun. 2019, 55, 1036–1039. [Google Scholar] [CrossRef] [PubMed]
- Hussain, E.; Zhou, H.; Yang, N.; Shahzad, S.A.; Yu, C. Synthesis of Regioisomerically Pure Piperidine Substituted Perylenebisimide NIR Dyes: A Comparative Study of Spectroscopic, Electrochemical and Crystalline Properties. Dye. Pigment. 2017, 147, 211–224. [Google Scholar] [CrossRef]
- Intes, X.; Chance, B. Multi-Frequency Diffuse Optical Tomography. J. Mod. Opt. 2005, 52, 2139–2159. [Google Scholar] [CrossRef]
- Chen, C.; Kavuri, V.C.; Wang, X.; Li, R.; Liu, H.; Huang, J. Multi-Frequency Diffuse Optical Tomography for Cancer Detection. In Proceedings of the 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), Brooklyn Bridge, NY, USA, 16–19 April 2015; pp. 67–70. [Google Scholar]
- Applegate, M.B.; Gómez, C.A.; Roblyer, D.M. Modulation Frequency Selection and Efficient Look-up Table Inversion for Frequency Domain Diffuse Optical Spectroscopy. J. Biomed. Opt. 2021, 26, 036007. [Google Scholar] [CrossRef]
- Hsu, Y.Y.; Gan, H.W.; Lee, B.T.; Hsu, Y.F.; Jiang, H.; Pan, M.C. Diffuse Optical Imaging through Simultaneous Multiple-Sinusoids Driving Light Sources. Opt. InfoBase Conf. Pap. 2020, 2020, 4–5. [Google Scholar] [CrossRef]
- Fan, W.; Eggebrecht, A.T. Effect of Modulation Frequency on Image Quality in Frequency Domain High-Density Diffuse Optical Tomography in Infant Head. Opt. InfoBase Conf. Pap. 2022, 8, 1–19. [Google Scholar] [CrossRef]
- Wang, H.; Xia, F.; Han, G.; Zhao, Z.; Chen, H.; Wang, J. Optical Parameters Detection with Multi-Frequency Modulation Based on NIR DPDW. Infrared Phys. Technol. 2019, 97, 135–141. [Google Scholar] [CrossRef]
- Eklund, M.; Jäderling, F.; Discacciati, A.; Bergman, M.; Annerstedt, M.; Aly, M.; Glaessgen, A.; Carlsson, S.; Grönberg, H.; Nordström, T. MRI-Targeted or Standard Biopsy in Prostate Cancer Screening. N. Engl. J. Med. 2021, 385, 908–920. [Google Scholar] [CrossRef]
- Ntziachristos, V.; Yodh, A.G.; Schnall, M.D.; Chance, B. MRI-Guided Diffuse Optical Spectroscopy of Malignant and Benign Breast Lesions. Neoplasia 2002, 4, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Vavadi, H.; Mostafa, A.; Zhou, F.; Uddin, K.M.S.; Althobaiti, M.; Xu, C.; Bansal, R.; Ademuyiwa, F.; Poplack, S.; Zhu, Q. Compact Ultrasound-Guided Diffuse Optical Tomography System for Breast Cancer Imaging. J. Biomed. Opt. 2018, 24, 021203. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Vavadi, H.; Merkulov, A.; Li, H.; Erfanzadeh, M.; Mostafa, A.; Gong, Y.; Salehi, H.; Tannenbaum, S.; Zhu, Q. Ultrasound-Guided Diffuse Optical Tomography for Predicting and Monitoring Neoadjuvant Chemotherapy of Breast Cancers. Ultrason. Imaging 2016, 38, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Sarmanova, O.E.; Burikov, S.A.; Dolenko, S.A.; Isaev, I.V.; Laptinskiy, K.A.; Prabhakar, N.; Karaman, D.Ş.; Rosenholm, J.M.; Shenderova, O.A.; Dolenko, T.A. A Method for Optical Imaging and Monitoring of the Excretion of Fluorescent Nanocomposites from the Body Using Artificial Neural Networks. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 1371–1380. [Google Scholar] [CrossRef]
- Jolivot, R.; Vabres, P.; Marzani, F. Reconstruction of Hyperspectral Cutaneous Data from an Artificial Neural Network-Based Multispectral Imaging System. Comput. Med. Imaging Graph. 2011, 35, 85–88. [Google Scholar] [CrossRef]
- Zhang, M.; Zou, Y.; Li, S.; Zhu, Q. Auto Encoder Based Deep Learning Reconstruction for Diffuse Optical Tomography. Opt. InfoBase Conf. Pap. 2022, 3–4. [Google Scholar] [CrossRef]
- Balasubramaniam, G.M.; Wiesel, B.; Biton, N.; Kumar, R.; Kupferman, J.; Arnon, S. Tutorial on the Use of Deep Learning in Diffuse Optical Tomography. Electronics 2022, 11, 305. [Google Scholar] [CrossRef]
- Smith, J.T.; Ochoa, M.; Faulkner, D.; Haskins, G.; Intes, X. Deep Learning in Macroscopic Diffuse Optical Imaging. J. Biomed. Opt. 2022, 27, 020901. [Google Scholar] [CrossRef]
- Ben Yedder, H.; BenTaieb, A.; Shokoufi, M.; Zahiremami, A.; Golnaraghi, F.; Hamarneh, G. Deep Learning Based Image Reconstruction for Diffuse Optical Tomography. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Sweden, 2018; Volume 11074 LNCS, pp. 112–119. ISBN 9783030001285. [Google Scholar]
- Yao, B.; Li, W.; Pan, W.; Yang, Z.; Chen, D.; Li, J.; Qu, J. Image Reconstruction with a Deep Convolutional Neural Network in High-Density Super-Resolution Microscopy. Opt. Express 2020, 28, 15432. [Google Scholar] [CrossRef] [PubMed]
- Sabir, S.; Cho, S.; Kim, Y.; Pua, R.; Heo, D.; Kim, K.H.; Choi, Y.; Cho, S. Convolutional Neural Network-Based Approach to Estimate Bulk Optical Properties in Diffuse Optical Tomography. Appl. Opt. 2020, 59, 1461. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Wang, X.; Jiang, H. Convolutional Neural Network for Breast Cancer Diagnosis Using Diffuse Optical Tomography. Vis. Comput. Ind. Biomed. Art 2019, 2, 1–6. [Google Scholar] [CrossRef]
- Lv, Y.; Li, F.; Wang, S.; Lu, G.; Bao, W.; Wang, Y.; Tian, Z.; Wei, W.; Ma, G. Near-Infrared Light–Triggered Platelet Arsenal for Combined Photothermal-Immunotherapy against Cancer. Sci. Adv. 2021, 7, eabd7614. [Google Scholar] [CrossRef]
- Nagaya, T.; Nakamura, Y.; Sato, K.; Zhang, Y.F.; Ni, M.; Choyke, P.L.; Ho, M.; Kobayashi, H. Near Infrared Photoimmunotherapy with an Anti-Mesothelin Antibody. Oncotarget 2016, 7, 23361–23369. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Nagaya, T.; Nakamura, Y.; Harada, T.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy Prevents Lung Cancer Metastases in a Murine Model. Oncotarget 2015, 6, 19747–19758. [Google Scholar] [CrossRef] [PubMed]
- Nagaya, T.; Friedman, J.; Maruoka, Y.; Ogata, F.; Okuyama, S.; Clavijo, P.E.; Choyke, P.L.; Allen, C.; Kobayashi, H. Host Immunity Following Near-Infrared Photoimmunotherapy Is Enhanced with PD-1 Checkpoint Blockade to Eradicate Established Antigenic Tumors. Cancer Immunol. Res. 2019, 7, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Nagaya, T.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy in the Treatment of Pleural Disseminated NSCLC: Preclinical Experience. Theranostics 2015, 5, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Nagaya, T.; Sato, K.; Harada, T.; Nakamura, Y.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy Targeting EGFR Positive Triple Negative Breast Cancer: Optimizing the Conjugate-Light Regimen. PLoS ONE 2015, 10, e0136829. [Google Scholar] [CrossRef] [PubMed]
- Isobe, Y.; Sato, K.; Nishinaga, Y.; Takahashi, K.; Taki, S.; Yasui, H.; Shimizu, M.; Endo, R.; Koike, C.; Kuramoto, N.; et al. Near Infrared Photoimmunotherapy Targeting DLL3 for Small Cell Lung Cancer. EBioMedicine 2020, 52, 102632. [Google Scholar] [CrossRef]
- Nagaya, T.; Nakamura, Y.; Okuyama, S.; Ogata, F.; Maruoka, Y.; Choyke, P.L.; Kobayashi, H. Near-Infrared Photoimmunotherapy Targeting Prostate Cancer with Prostate-Specific Membrane Antigen (PSMA) Antibody. Mol. Cancer Res. 2017, 15, 1153–1162. [Google Scholar] [CrossRef]
- Ogawa, M.; Tomita, Y.; Nakamura, Y.; Lee, M.J.; Lee, S.; Tomita, S.; Nagaya, T.; Sato, K.; Yamauchi, T.; Iwai, H.; et al. Immunogenic Cancer Cell Death Selectively Induced by near Infrared Photoimmunotherapy Initiates Host Tumor Immunity. Oncotarget 2017, 8, 10425–10436. [Google Scholar] [CrossRef]
- Shirasu, N.; Yamada, H.; Shibaguchi, H.; Kuroki, M.; Kuroki, M. Potent and Specific Antitumor Effect of CEA-Targeted Photoimmunotherapy. Int. J. Cancer 2014, 135, 2697–2710. [Google Scholar] [CrossRef]
- Sano, K.; Nakajima, T.; Choyke, P.L.; Kobayashi, H. The Effect of Photoimmunotherapy Followed by Liposomal Daunorubicin in a Mixed Tumor Model: A Demonstration of the Super-Enhanced Permeability and Retention Effect after Photoimmunotherapy. Mol. Cancer Ther. 2014, 13, 426–432. [Google Scholar] [CrossRef]
- Sato, K.; Choyke, P.L.; Kobayashi, H. Photoimmunotherapy of Gastric Cancer Peritoneal Carcinomatosis in a Mouse Model. PLoS ONE 2014, 9, e113276. [Google Scholar] [CrossRef]
- Hanaoka, H.; Nagaya, T.; Sato, K.; Nakamura, Y.; Watanabe, R.; Harada, T.; Gao, W.; Feng, M.; Phung, Y.; Kim, I.; et al. Glypican-3 Targeted Human Heavy Chain Antibody as a Drug Carrier for Hepatocellular Carcinoma Therapy. Mol. Pharm. 2015, 12, 2151–2157. [Google Scholar] [CrossRef]
- Sato, K.; Hanaoka, H.; Watanabe, R.; Nakajima, T.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy in the Treatment of Disseminated Peritoneal Ovarian Cancer. Mol. Cancer Ther. 2015, 14, 141–150. [Google Scholar] [CrossRef]
- Jing, H.; Weidensteiner, C.; Reichardt, W.; Gaedicke, S.; Zhu, X.; Grosu, A.L.; Kobayashi, H.; Niedermann, G. Imaging and Selective Elimination of Glioblastoma Stem Cells with Theranostic Near-Infrared-Labeled CD133-Specific Antibodies. Theranostics 2016, 6, 862–874. [Google Scholar] [CrossRef]
- Nagaya, T.; Nakamura, Y.; Sato, K.; Harada, T.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy of B-Cell Lymphoma. Mol. Oncol. 2016, 10, 1404–1414. [Google Scholar] [CrossRef]
- Railkar, R.; Krane, L.S.; Li, Q.Q.; Sanford, T.; Siddiqui, M.R.; Haines, D.; Vourganti, S.; Brancato, S.J.; Choyke, P.L.; Kobayashi, H.; et al. Epidermal Growth Factor Receptor (EGFR)-Targeted Photoimmunotherapy (PIT) for the Treatment of EGFR-Expressing Bladder Cancer. Mol. Cancer Ther. 2017, 16, 2201–2214. [Google Scholar] [CrossRef] [PubMed]
- Nagaya, T.; Nakamura, Y.; Sato, K.; Harada, T.; Choyke, P.L.; Hodge, J.W.; Schlom, J.; Kobayashi, H. Near Infrared Photoimmunotherapy with Avelumab, an Anti-Programmed Death-Ligand 1 (PD-L1) Antibody. Oncotarget 2017, 8, 8807–8817. [Google Scholar] [CrossRef] [PubMed]
- Nagaya, T.; Nakamura, Y.; Okuyama, S.; Ogata, F.; Maruoka, Y.; Choyke, P.L.; Allen, C.; Kobayashi, H. Syngeneic Mouse Models of Oral Cancer Are Effectively Targeted by Anti–CD44-Based NIR-PIT. Mol. Cancer Res. 2017, 15, 1667–1677. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.R.; Railkar, R.; Sanford, T.; Crooks, D.R.; Eckhaus, M.A.; Haines, D.; Choyke, P.L.; Kobayashi, H.; Agarwal, P.K. Targeting Epidermal Growth Factor Receptor (EGFR) and Human Epidermal Growth Factor Receptor 2 (HER2) Expressing Bladder Cancer Using Combination Photoimmunotherapy (PIT). Sci. Rep. 2019, 9, 2084. [Google Scholar] [CrossRef] [PubMed]
- Kiss, B.; van den Berg, N.S.; Ertsey, R.; McKenna, K.; Mach, K.E.; Zhang, C.A.; Volkmer, J.-P.; Weissman, I.L.; Rosenthal, E.L.; Liao, J.C. CD47-Targeted Near-Infrared Photoimmunotherapy for Human Bladder Cancer. Clin. Cancer Res. 2019, 25, 3561–3571. [Google Scholar] [CrossRef] [PubMed]
- Lütje, S.; Heskamp, S.; Franssen, G.M.; Frielink, C.; Kip, A.; Hekman, M.; Fracasso, G.; Colombatti, M.; Herrmann, K.; Boerman, O.C.; et al. Development and Characterization of a Theranostic Multimodal Anti-PSMA Targeting Agent for Imaging, Surgical Guidance, and Targeted Photodynamic Therapy of PSMA-Expressing Tumors. Theranostics 2019, 9, 2924–2938. [Google Scholar] [CrossRef]
- Watanabe, S.; Noma, K.; Ohara, T.; Kashima, H.; Sato, H.; Kato, T.; Urano, S.; Katsube, R.; Hashimoto, Y.; Tazawa, H.; et al. Photoimmunotherapy for Cancer-Associated Fibroblasts Targeting Fibroblast Activation Protein in Human Esophageal Squamous Cell Carcinoma. Cancer Biol. Ther. 2019, 20, 1234–1248. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Jiang, D.; Ehlerding, E.B.; Barnhart, T.E.; Yang, Y.; Engle, J.W.; Luo, Q.Y.; Huang, P.; Cai, W. CD146-Targeted Multimodal Image-Guided Photoimmunotherapy of Melanoma. Adv. Sci. 2019, 6, 1801237. [Google Scholar] [CrossRef] [PubMed]
- Nagaya, T.; Okuyama, S.; Ogata, F.; Maruoka, Y.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy Using a Fiber Optic Diffuser for Treating Peritoneal Gastric Cancer Dissemination. Gastric Cancer 2019, 22, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.A.; Okuyama, S.; Furusawa, A.; Nagaya, T.; Fujimura, D.; Okada, R.; Maruoka, Y.; Eclarinal, P.C.; Choyke, P.L.; Kobayashi, H. Near-Infrared Photoimmunotherapy through Bone. Cancer Sci. 2019, 110, 3689–3694. [Google Scholar] [CrossRef] [PubMed]
- Maruoka, Y.; Furusawa, A.; Okada, R.; Inagaki, F.; Fujimura, D.; Wakiyama, H.; Kato, T.; Nagaya, T.; Choyke, P.L.; Kobayashi, H. Combined CD44- And CD25-Targeted near-Infrared Photoimmunotherapy Selectively Kills Cancer and Regulatory T Cells in Syngeneic Mouse Cancer Models. Cancer Immunol. Res. 2020, 8, 345–355. [Google Scholar] [CrossRef]
- Katsube, R.; Noma, K.; Ohara, T.; Nishiwaki, N.; Kobayashi, T.; Komoto, S.; Sato, H.; Kashima, H.; Kato, T.; Kikuchi, S.; et al. Fibroblast Activation Protein Targeted near Infrared Photoimmunotherapy (NIR PIT) Overcomes Therapeutic Resistance in Human Esophageal Cancer. Sci. Rep. 2021, 11, 1693. [Google Scholar] [CrossRef] [PubMed]
- Okada, R.; Kato, T.; Furusawa, A.; Inagaki, F.; Wakiyama, H.; Choyke, P.L.; Kobayashi, H. Local Depletion of Immune Checkpoint Ligand CTLA4 Expressing Cells in Tumor Beds Enhances Antitumor Host Immunity. Adv. Ther. 2021, 4, 2000269. [Google Scholar] [CrossRef] [PubMed]
- Mu, W.; Chu, Q.; Liu, Y.; Zhang, N. A Review on Nano-Based Drug Delivery System for Cancer Chemoimmunotherapy. Nano-Micro Lett. 2020, 12, 142. [Google Scholar] [CrossRef]
- Kang, H.; Kang, M.W.; Kashiwagi, S.; Choi, H.S. NIR Fluorescence Imaging and Treatment for Cancer Immunotherapy. J. Immunother. Cancer 2022, 10, e004936. [Google Scholar] [CrossRef] [PubMed]
- Ayana, G.; Ryu, J. Ultrasound-Responsive Nanocarriers for Breast Cancer Chemotherapy. Micromachines 2022, 13, 1508. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Chen, G.; Li, Y.; Xu, W.; Gong, S. Quantum-Dot-Based Theranostic Micelles Conjugated with an Anti-EGFR Nanobody for Triple-Negative Breast Cancer Therapy. ACS Appl. Mater. Interfaces 2017, 9, 30297–30305. [Google Scholar] [CrossRef] [PubMed]
- Asha Krishnan, M.; Yadav, K.; Roach, P.; Chelvam, V. A Targeted Near-Infrared Nanoprobe for Deep-Tissue Penetration and Imaging of Prostate Cancer. Biomater. Sci. 2021, 9, 2295–2312. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Choe, S.W. Acoustic Stimulation by Shunt-Diode Pre-Linearizer Using Very High Frequency Piezoelectric Transducer for Cancer Therapeutics. Sensors 2019, 19, 357. [Google Scholar] [CrossRef]
- Cho, K.; Seo, J.; Heo, G.; Choe, S. An Alternative Approach to Detecting Cancer Cells by Multi-Directional Fluorescence Detection System Using Cost-Effective LED and Photodiode. Sensors 2019, 19, 2301. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Ryu, J.M.; Choe, S. woon A Novel Therapeutic Instrument Using an Ultrasound-Light-Emitting Diode with an Adjustable Telephoto Lens for Suppression of Tumor Cell Proliferation. Meas. J. Int. Meas. Confed. 2019, 147, 106865. [Google Scholar] [CrossRef]
- Choi, H.; Choe, S.W.; Ryu, J.M. A Macro Lens-Based Optical System Design for Phototherapeutic Instrumentation. Sensors 2019, 19, 5427. [Google Scholar] [CrossRef] [PubMed]
- Mudeng, V.; Nisa, W.; Sukmananda Suprapto, S. Computational Image Reconstruction for Multi-Frequency Diffuse Optical Tomography. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 3527–3538. [Google Scholar] [CrossRef]
Paper | Year | Application | Setup |
---|---|---|---|
Shirasu et al. [86] | 2014 | Carcinoembryonic antigen-expressing tumor | IRDye700DX |
Sano et al. [87] | 2014 | Epidermal growth factor receptor (EGFR)-positive A431 cells | Monoclonal antibody (mAb)-photosensitizer (IR700 fluorescence dye) |
Kazuhide et al. [88] | 2014 | HER2-expressing, GFP-expressing, gastric cancer cell line (N87-GFP) | Photosensitizer, IR-700, conjugated to trastuzumab (tra-IR700) |
Nagaya et al. [82] | 2015 | Breast cancer | Cetuximab (cet)-IR700 |
Hanaoka et al. [89] | 2015 | Hepatocellular carcinoma | IR700-conjugated antibodies |
Sato et al. [90] | 2015 | Ovarian cancer | IRDye-700DX |
Sato et al. [81] | 2015 | Lung carcinoma | IRDye-700DX |
Jing et al. [91] | 2016 | Brain tumors | Monoclonal antibody (mAb)-phototoxic phthalocyanine dye IR700 conjugates |
Nagaya et al. [78] | 2016 | Mesothelin-expressing tumors | hYP218-IR700 |
Nagaya et al. [92] | 2016 | B-cell lymphoma | Monoclonal antibody (mAb), rituximab-IR700 |
Railkar et al. [93] | 2017 | Bladder cancer | IRDye 700Dx (IR700) |
Nagaya et al. [84] | 2017 | Prostate cancer | Monoclonal antibody (mAb), conjugated to the photo-absorber, IR700DX |
Nagaya et al. [94] | 2017 | Lung adenocarcinoma | Monoclonal antibody (mAb), avelumab, conjugated to the photo-absorber, IR700DX |
Nagaya et al. [95] | 2017 | Oral cancer | Monoclonal antibody (mAb), avelumab, conjugated to the photo-absorber, IR700DX |
Ogawa et al. [85] | 2017 | HER2 expression | Tra-IR700 or Cet- IR700 |
Burley et al. [37] | 2018 | Glioblastoma treatment EGFR | IR700DX |
Siddiqui et al. [96] | 2019 | Bladder cancer | Monoclonal antibodies (MAbs) conjugated to a photoabsorber (PA), IR Dye 700Dx |
Kiss et al. [97] | 2019 | Bladder cancer | anti-CD47-IR700 |
Lutje et al. [98] | 2019 | Prostate cancer | Anti-PSMA monoclonal antibody D2B was conjugated with IRDye700DX and DTPA |
Watanabe et al. [99] | 2019 | Human esophageal squamous carcinoma | Fibroblast activation protein (FAP)-IR700 |
Wei et al. [100] | 2019 | Melanoma | IR700-YY146 |
Nagaya et al. [101] | 2019 | Gastric cancer | Trastuzumab (tra)-IR700DX |
Nakamura et al. [102] | 2019 | Bone cancer | IRdye 700DX |
Nagaya et al. [80] | 2019 | Colon cancer | IR700-conjugated anti-CD44 anti-CD44 |
Isobe et al. [83] | 2020 | Lung cancer | Rova-IR700 |
Maruoka et al. [103] | 2020 | Colon cancer | Anti-CD44-IR700 |
Katsube et al. [104] | 2021 | Esophageal cancer | Fibroblast activation protein (FAP)-IR700 |
Okada et al. [105] | 2021 | Colon cancer | IR700 conjugated with anti-CTLA4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mudeng, V.; Ayana, G.; Zhang, S.-U.; Choe, S.-w. Progress of Near-Infrared-Based Medical Imaging and Cancer Cell Suppressors. Chemosensors 2022, 10, 471. https://doi.org/10.3390/chemosensors10110471
Mudeng V, Ayana G, Zhang S-U, Choe S-w. Progress of Near-Infrared-Based Medical Imaging and Cancer Cell Suppressors. Chemosensors. 2022; 10(11):471. https://doi.org/10.3390/chemosensors10110471
Chicago/Turabian StyleMudeng, Vicky, Gelan Ayana, Sung-Uk Zhang, and Se-woon Choe. 2022. "Progress of Near-Infrared-Based Medical Imaging and Cancer Cell Suppressors" Chemosensors 10, no. 11: 471. https://doi.org/10.3390/chemosensors10110471
APA StyleMudeng, V., Ayana, G., Zhang, S.-U., & Choe, S.-w. (2022). Progress of Near-Infrared-Based Medical Imaging and Cancer Cell Suppressors. Chemosensors, 10(11), 471. https://doi.org/10.3390/chemosensors10110471