Elemental Analysis of V, Mo, Cr, Mn, Al, Ni, and Cu in Steel Alloy with Femtosecond Laser Ablation Spark-Induced Breakdown Spectroscopy
Abstract
:1. Introduction
2. Experiment
2.1. Experimental Setup
2.2. Sample Preparation
3. Results and Discussion
3.1. Observation of Plasma Emission Enhancement
3.2. The Effect of Discharge Voltage on Spectral Intensity
3.3. The Effect of Discharge Capacitance on Spectral Intensity
3.4. The Effect of Laser Single-Pulse Energy on Spectral Intensity
3.5. Quantitative Analysis and Limits of Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Russo, R.E.; Mao, X.L.; Yoo, J.; Gonzalez, J.J. Laser Ablation. In Laser-Induced Breakdown Spectroscopy, 1st ed.; Singh, J.P., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 49–82. [Google Scholar]
- Miziolek, A.W.; Palleschi, V.; Schechter, I. Laser Induced Breakdown Spectroscopy; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Cremers, D.A.; Radziemski, L.J. Handbook of Laser-Induced Breakdown Spectroscopy; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Singh, J.P.; Thakur, S.N. Laser-Induced Breakdown Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Killinger, D.K.; Allen, S.D.; Waterbury, R.D.; Stefano, C.E.; Dottery, L. Enhancement of Nd: YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse. Opt. Express. 2007, 15, 12905–12915. [Google Scholar] [CrossRef] [PubMed]
- Lednev, V.N.; Sdvizhenskii, P.A.; Stavertiy, A.Y.; Grishin, M.Y.; Tretyakov, R.S.; Asyutin, R.D.; Pershin, S.M. Online and in situ laser-induced breakdown spectroscopy for laser welding monitoring. Spectrochim. Acta Part B At. Spectrosc. 2021, 175, 106032. [Google Scholar] [CrossRef]
- Lorenzetti, G.; Legnaioli, S.; Grifoni, E.; Pagnotta, S.; Palleschi, V. Laser-based continuous monitoring and resolution of steel grades in sequence casting machines. Spectrochim. Acta Part B At. Spectrosc. 2015, 112, 1–5. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, T.; Hou, Z.; Zhou, W.; Lu, J.; Ding, H.; Zeng, X. Laser-induced breakdown spectroscopy in China. Front. Phys. 2014, 9, 419–438. [Google Scholar] [CrossRef]
- Kautz, E.J.; Devaraj, A.; Senor, D.J.; Harilal, S.S. Hydrogen isotopic analysis of nuclear reactor materials using ultrafast laser-induced breakdown spectroscopy. Opt. Express 2021, 29, 4936–4946. [Google Scholar] [CrossRef] [PubMed]
- Sirven, J.B.; Dewalle, P.; Quere, C.; Fauvet, V.; Tabarant, M.; Motellier, S.; Golanski, L.; Guiot, A.; Amdaoud, M.; Clavaguera, S.; et al. Assessment of exposure to airborne carbon nanotubes by laser-induced breakdown spectroscopy analysis of filter samples. J. Anal. At. Spectrom. 2017, 32, 1868–1877. [Google Scholar] [CrossRef]
- Li, Y.; Gu, Y.; Zhang, Y.; Li, Y.D.; Lu, Y. Analytical study of seashell using laser-induced breakdown spectroscopy. Plasma Sci. Technol. 2017, 19, 25501. [Google Scholar]
- Melessanaki, K.; Mateo, M.; Ferrence, S.C.; Betancourt, P.P.; Anglos, D. The application of LIBS for the analysis of archaeological ceramic and metal artifacts. Appl. Surf. Sci. 2002, 197, 156–163. [Google Scholar] [CrossRef]
- Giakoumaki, A.; Melessanaki, K.; Anglos, D. Laser-induced breakdown spectroscopy (LIBS) in archaeological science-applications and prospects. Anal. Bioanal. Chem. 2007, 387, 749–760. [Google Scholar] [CrossRef]
- Moncayo, S.; Rosales, J.D.; Izquierdo-Hornillos, R.; Anzano, J.; Caceres, J.O. Classification of red wine based on its protected designation of origin (PDO) using Laser-induced Breakdown Spectroscopy (LIBS). Talanta 2016, 158, 185–191. [Google Scholar] [CrossRef]
- Yu, Y.; Guo, L.; Hao, Z.; Li, X.; Shen, M.; Zeng, Q.; Li, K.; Zeng, X.; Lu, Y.; Ren, Z. Accuracy improvement on polymer identification using laser-induced breakdown spectroscopy with adjusting spectral weightings. Opt. Express 2014, 22, 3895–3901. [Google Scholar] [CrossRef] [PubMed]
- Tzortzakis, S.; Anglos, D.; Gray, D. Ultraviolet laser filaments for remote laser-induced breakdown spectroscopy (LIBS) analysis: Applications in cultural heritage monitoring. Opt. Lett. 2006, 31, 1139–1141. [Google Scholar] [CrossRef] [PubMed]
- Lasheras, R.J.; Bello-Galvez, C.; Anzano, J.M. Quantitative analysis of oxide materials by laser-induced breakdown spectroscopy with argon as an internal standard. Spectrochim. Acta Part B At. Spectrosc. 2013, 82, 65–70. [Google Scholar] [CrossRef]
- Aguilera, J.A.; Aragon, C.; Madurga, V.; Manrique, J. Study of matrix effects in laser induced breakdown spectroscopy on metallic samples using plasma characterization by emission spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2009, 64, 993–998. [Google Scholar] [CrossRef]
- Anabitarte, F.; Cobo, A.; Lopez-Higuera, J.M. Laser-Induced Breakdown Spectroscopy: Fundamentals, Applications, and Challenges. ISRN Spectrosc. 2012, 2012, 1–12. [Google Scholar] [CrossRef]
- Legnaioli, S.; Campanella, B.; Poggialini, F.; Pagnotta, S.; Harith, M.A.; Abdel-Salam, Z.A.; Palleschi, V. Industrial applications of laser-induced breakdown spectroscopy: A review. Anal. Methods. 2020, 12, 1014–1029. [Google Scholar] [CrossRef]
- Luo, D.; Liu, Y.; Li, X.; Zhao, Z.; Wang, S.; Zhang, Y. Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy. Plasma Sci. Technol. 2018, 20, 75504. [Google Scholar] [CrossRef]
- Aragon, C.; Aguilera, J.A.; Penalba, F. Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd: YAG laser. Appl. Spectrosc. 1999, 53, 1259–1267. [Google Scholar] [CrossRef]
- Stipe, C.B.; Hensley, B.D.; Boersema, J.L.; Buckley, S.G. Laser-induced breakdown spectroscopy of steel: A comparison of univariate and multivariate calibration methods. Appl. Spectrosc. 2010, 64, 154–160. [Google Scholar] [CrossRef]
- Sturm, V.; Vrenegor, J.; Noll, R.; Hemmerlin, M. Bulk analysis of steel samples with surface scale layers by enhanced laser ablation and LIBS analysis of C, P, S, Al, Cr, Cu, Mn and Mo. J. Anal. At. Spectrom. 2004, 19, 451–456. [Google Scholar] [CrossRef]
- Hao, Z.; Guo, L.; Li, C.; Shen, M.; Zou, X.; Li, X.; Lu, Y.; Zeng, X. Sensitivity improvement in the detection of V and Mn elements in steel using laser-induced breakdown spectroscopy with ring-magnet confinement. J. Anal. At. Spectrom. 2014, 29, 2309–2314. [Google Scholar] [CrossRef]
- Gurevich, E.L.; Hergenroder, R. Femtosecond laser-induced breakdown spectroscopy: Physics; applications; and perspectives. Appl. Spectrosc. 2007, 61, 233A–242A. [Google Scholar] [CrossRef] [PubMed]
- Labutin, T.A.; Lednev, V.N.; Ilyin, A.A.; Popov, A.M. Femtosecond laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 2016, 31, 90–118. [Google Scholar] [CrossRef]
- Lu, Y.; Zorba, V.; Mao, X.; Zheng, R.; Russo, R.E. UV fs-ns double-pulse laser induced breakdown spectroscopy for high spatial resolution chemical analysis. J. Anal. At. Spectrom. 2013, 28, 743–748. [Google Scholar] [CrossRef]
- Banerjee, S.P.; Chen, Z.; Fedosejevs, R. High resolution scanning microanalysis on material surfaces using UV femtosecond laser induced breakdown spectroscopy. Opt. Lasers Eng. 2015, 68, 1–6. [Google Scholar] [CrossRef]
- Hou, H.; Cheng, L.; Richardson, T.; Chen, G.; Doeff, M.; Zheng, R.; Russo, R.E.; Zorba, V. Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS). J. Anal. At. Spectrom. 2015, 30, 2295–2302. [Google Scholar] [CrossRef]
- Ahamer, C.M.; Riepl, K.M.; Huber, N.; Pedarnig, J.D. Femtosecond laser-induced breakdown spectroscopy: Elemental imaging of thin films with high spatial resolution. Spectrochim. Acta Part B At. Spectrosc. 2017, 136, 56–65. [Google Scholar] [CrossRef]
- Eland, K.L.; Stratis, D.N.; Gold, D.M.; Goode, S.R.; Angel, S.M. Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation. Appl. Spectrosc. 2001, 55, 286–291. [Google Scholar] [CrossRef]
- Nassef, O.A.; Elsayed-Ali, H.E. Spark discharge assisted laser induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2005, 60, 1564–1572. [Google Scholar] [CrossRef]
- Zhou, W.; Li, K.; Qian, H.; Ren, Z.; Yu, Y. Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy. Appl. Opt. 2012, 51, B42–B48. [Google Scholar] [CrossRef]
- Zhou, W.; Li, K.; Shen, Q.; Chen, Q.; Long, J. Optical emission enhancement using laser ablation combined with fast pulse discharge. Opt. Express. 2012, 18, 2573–2578. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Dong, B.; Chen, Y.; Li, R.; Wang, F.; Li, J.; Cai, Z. Analysis of magnesium and copper in aluminum alloys with high repetition rate laser-ablation spark-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2018, 141, 34–43. [Google Scholar] [CrossRef]
- Voigtman, E. Limits of detection and decision. Spectrochim. Acta Part B At. Spectrosc. 2008, 63, 154–165. [Google Scholar] [CrossRef]
Sample No. | V | Mo | Cr | Mn | Al | Ni | Cu |
---|---|---|---|---|---|---|---|
GBW(E)01249a | 0.002 | 0.005 | 0.034 | 0.858 | - | 0.009 | 0.036 |
GBW(E)010381a | - | 0.016 | 1.040 | 0.387 | 0.017 | 0.025 | 0.029 |
GBW(E)010383a | - | 0.175 | 1.510 | 0.443 | 0.872 | 0.025 | 0.029 |
GBW(E)010384a | 1.180 | 0.013 | 4.020 | 0.232 | - | 0.076 | 0.092 |
GBW(E)010459a | 1.520 | 3.080 | 4.210 | 0.284 | - | 0.146 | 0.114 |
GBW(E)010426 | 0.002 | - | 0.151 | 1.210 | - | 0.018 | 0.018 |
GBW(E)010460 | 4.050 | 1.080 | 4.100 | 0.184 | - | 0.068 | 0.059 |
GBW(E)010495 | 0.004 | - | 0.873 | 0.965 | - | 0.228 | 0.056 |
GBW(E)010499 | 0.096 | 0.006 | 0.126 | 1.160 | 0.032 | 0.017 | 0.056 |
GBW(E)010503 | 0.003 | - | 0.034 | 0.568 | 0.011 | 0.012 | 0.017 |
Element | Wavelength (nm) | Fs LIBS | Fs LA-SIBS | ||||
---|---|---|---|---|---|---|---|
σB | S | LOD/ppm | σB | S | LOD/ppm | ||
V I | 437.92 | 0.9 | 681.9 | 40.0 | 1.1 | 2891.5 | 10.9 |
Mo I | 379.82 | 1.9 | 1086.9 | 51.9 | 1.9 | 4616.1 | 12.6 |
Cr I | 425.43 | 0.7 | 1008.6 | 20.8 | 0.8 | 6036.6 | 4.0 |
Mn I | 403.08 | 2.1 | 1748.8 | 36.0 | 3.5 | 18,515.2 | 5.7 |
Al I | 394.40 | 2.0 | 1401.5 | 42.7 | 2.3 | 7946.7 | 8.7 |
Ni I | 352.45 | 2.2 | 1051.0 | 62.8 | 2.5 | 9550.3 | 7.9 |
CuI | 324.75 | 2.4 | 1996.1 | 36.1 | 3.0 | 28,973.9 | 3.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Yang, Q.; Ling, D.; Wei, D.; Wang, H. Elemental Analysis of V, Mo, Cr, Mn, Al, Ni, and Cu in Steel Alloy with Femtosecond Laser Ablation Spark-Induced Breakdown Spectroscopy. Chemosensors 2022, 10, 370. https://doi.org/10.3390/chemosensors10090370
He X, Yang Q, Ling D, Wei D, Wang H. Elemental Analysis of V, Mo, Cr, Mn, Al, Ni, and Cu in Steel Alloy with Femtosecond Laser Ablation Spark-Induced Breakdown Spectroscopy. Chemosensors. 2022; 10(9):370. https://doi.org/10.3390/chemosensors10090370
Chicago/Turabian StyleHe, Xiaoyong, Qi Yang, Dongxiong Ling, Dongshan Wei, and Hongcheng Wang. 2022. "Elemental Analysis of V, Mo, Cr, Mn, Al, Ni, and Cu in Steel Alloy with Femtosecond Laser Ablation Spark-Induced Breakdown Spectroscopy" Chemosensors 10, no. 9: 370. https://doi.org/10.3390/chemosensors10090370
APA StyleHe, X., Yang, Q., Ling, D., Wei, D., & Wang, H. (2022). Elemental Analysis of V, Mo, Cr, Mn, Al, Ni, and Cu in Steel Alloy with Femtosecond Laser Ablation Spark-Induced Breakdown Spectroscopy. Chemosensors, 10(9), 370. https://doi.org/10.3390/chemosensors10090370