Conjugated Polymer Nanoparticles Based on Anthracene and Tetraphenylethene for Nitroaromatics Detection in Aqueous Phase
Abstract
:1. Introduction
2. Experimental
2.1. Reagents and Measurements
2.2. Synthesis
2.2.1. 9,10-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)anthracene (An-2B)
2.2.2. l-PAnTPE Nanoparticles
2.2.3. PAnTPE Nanoparticles
3. Results and Discussion
3.1. Synthesis and Characterization
3.2. Photophysical Properties
3.3. Nitroaromatics Detection
3.4. Quenching Mechanism
3.5. Paper Strips Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akhgari, F.; Fattahi, H.; Oskoei, Y.M. Recent advances in nanomaterial-based sensors for detection of trace nitroaromatic explosives. Sens. Actuators B-Chem. 2015, 221, 867–878. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Y.-Y.; Zhu, D.-F.; Xu, J.-Q.; He, Q.-G.; Cheng, J.-G. Recent advances in fluorescence sensor for the detection of peroxide explosives. Chin. Chem. Lett. 2016, 27, 1429–1436. [Google Scholar] [CrossRef]
- Dong, W.Y.; Fei, T.; Scherf, U. Conjugated polymers containing tetraphenylethylene in the backbones and side-chains for highly sensitive TNT detection. RSC Adv. 2018, 8, 5760–5767. [Google Scholar] [CrossRef]
- Nabeel, F.; Rasheed, T.; Mahmood, M.F.; Salah Ud-Din, K. Hyperbranched copolymer based photoluminescent vesicular probe conjugated with tetraphenylethene: Synthesis, aggregation-induced emission and explosive detection. J. Mol. Liq. 2020, 308, 113034. [Google Scholar] [CrossRef]
- Ma, J.; Lv, L.; Zou, G.; Zhang, Q. Fluorescent porous film modified polymer optical fiber via “click” chemistry: Stable dye dispersion and trace explosive detection. ACS Appl. Mater. Interfaces 2015, 7, 241–249. [Google Scholar] [CrossRef]
- Aamir, M.; Irum, S.; Siddiq, A.; Batool, H.M.; Ahmed, N.; Awais, M.H.; Ali, S. A novel method development and validation for determination of 2,4,6-trinitrotoluene and its metabolites on LC-MS/MS. Anal. Biochem. 2022, 638, 114496. [Google Scholar] [CrossRef] [PubMed]
- Shahraki, H.; Tabrizchi, M.; Farrokhpor, H. Detection of explosives using negative ion mobility spectrometry in air based on dopant-assisted thermal ionization. J. Hazard. Mater. 2018, 357, 1–9. [Google Scholar] [CrossRef]
- Rodriguez, J.L.; Almirall, J.R. Continuous vapor sampling of volatile organic compounds associated with explosives using capillary microextraction of volatiles (CMV) coupled to a portable GC-MS. Forensic Chem. 2021, 26, 100380. [Google Scholar] [CrossRef]
- Schachel, T.D.; Stork, A.; Schulte-Ladbeck, R.; Vielhaber, T.; Karst, U. Identification and differentiation of commercial and military explosives via high performance liquid chromatography—High resolution mass spectrometry (HPLC-HRMS), X-ray diffractometry (XRD) and X-ray fluorescence spectroscopy (XRF): Towards a forensic substance database on explosives. Forensic Sci. Int. 2020, 308, 110180. [Google Scholar]
- González-Méndez, R.; Reich, D.F.; Mullock, S.J.; Corlett, C.A.; Mayhew, C.A. Development and use of a thermal desorption unit and proton transfer reaction mass spectrometry for trace explosive detection: Determination of the instrumental limits of detection and an investigation of memory effects. Int. J. Mass Spectrom. 2015, 385, 13–18. [Google Scholar] [CrossRef]
- Giustina, G.D.; Sonato, A.; Gazzola, E.; Ruffato, G.; Brusa, S.; Romanato, F. SPR Enhanced molecular imprinted sol-gel film: A promising tool for gas-phase TNT detection. Mater. Lett. 2016, 162, 44–47. [Google Scholar] [CrossRef]
- Arman, A.; Şağlam, Ş.; Üzer, A.; Apak, R. Electrochemical determination of nitroaromatic explosives using glassy carbon/multi walled carbon nanotube/polyethyleneimine electrode coated with gold nanoparticles. Talanta 2022, 238, 122990. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Qian, H.; Weng, C.; Wang, X.; Xie, C.; Guo, K.; Zhang, S.; Xuan, S.; Guo, Z.; Luo., L.-B. A SERS stamp: Multiscale coupling effect of silver nanoparticles and highly ordered nano-micro hierarchical substrates for ultrasensitive explosive detection. Sens. Actuators B-Chem. 2020, 321, 128543. [Google Scholar] [CrossRef]
- Wu, J.; Fan, M.; Deng, G.; Gong, C.; Chen, K.; Luo, J.; Chiang, K.S.; Rao, Y.-J.; Gong, Y. Optofluidic laser explosive sensor with ultralow detection limit and large dynamic range using donor-acceptor-donor organic dye. Sens. Actuators B-Chem. 2019, 298, 126830. [Google Scholar] [CrossRef]
- Dong, W.; Fei, T.; Palma-Cando, A.; Scherf, U. Aggregation induced emission and amplified explosive detection of tetraphenylethylene substituted polycarbazoles. Polym. Chem. 2014, 5, 4048–4053. [Google Scholar] [CrossRef]
- Bogireddy, N.K.R.; Silva, R.C.; Valenzuela, M.A.; Agarwal, V. 4-Nitrophenol optical sensing with N doped oxidized carbon dots. J. Hazard. Mater. 2020, 386, 121643. [Google Scholar] [CrossRef]
- Patil, P.D.J.; Ingle, R.D.; Wagalgave, S.W.; Bhosale, R.S.; Bhosale, S.V.; Pawar, R.P.; Bhosale, S.V. A Naphthalimide-benzothiazole conjugate as colorimetric and fluorescent sensor for selective trinitrophenol detection. Chemosensors 2019, 7, 38. [Google Scholar] [CrossRef]
- Tümay, S.O.; Yeşilot, S. Small molecule based water-soluble fluorescence material for highly selective and ultra-sensitive detection of TNT: Design and spectrofluorimetric determination in real samples. Sens. Actuators B-Chem. 2021, 343, 130088. [Google Scholar] [CrossRef]
- Liu, J.L.; Zabetakis, D.; Acevedo-Vélez, G.; Goldman, E.R.; Anderson, G.P. Comparison of an antibody and its recombinant derivative for the detection of the small molecule explosive 2,4,6-trinitrotoluene. Anal. Chim. Acta 2013, 759, 100–104. [Google Scholar] [CrossRef]
- Kim, D.; Yoo, S. Aptamer-conjugated quantum dot optical biosensors: Strategies and applications. Chemosensors 2021, 9, 318. [Google Scholar] [CrossRef]
- Wu, K.; Hu, J.; Shi, S.; Li, J.; Cheng, X. A thermal stable pincer-MOF with high selective and sensitive nitro explosive TNP, metal ion Fe3+ and pH sensing in aqueous solution. Dyes Pigments 2020, 173, 107993. [Google Scholar] [CrossRef]
- Qiao, X.; Han, Y.; Tian, D.; Yang, Z.; Li, J.; Zhao., S. MOF matrix doped with rare earth ions to realize ratiometric fluorescent sensing of 2,4,6-trinitrophenol: Synthesis, characterization and performance. Sens. Actuators B-Chem. 2019, 286, 1–8. [Google Scholar] [CrossRef]
- Ji, G.; Zheng, T.; Gao, X.; Liu, Z. A highly selective turn-on luminescent logic gates probe based on post-synthetic MOF for aspartic acid detection. Sens. Actuators B-Chem. 2019, 284, 91–95. [Google Scholar] [CrossRef]
- Kumar, V.; Saini, S.K.; Choudhury, N.; Kumar, A.; Maiti, B.; De, P.; Kumar, M.; Satapathi, S. Highly sensitive detection of nitro compounds using a fluorescent copolymer-based FRET System. ACS Appl. Polym. Mater. 2021, 3, 4017–4026. [Google Scholar] [CrossRef]
- Kalva, N.; Tran, C.H.; Lee, M.W.; Augustine, R.; Lee, S.J.; Kim, L. Aggregation-induced emission-active hyperbranched polymers conjugated with tetraphenylethylene for nitroaromatic explosive detection. Dyes Pigments 2021, 194, 109617. [Google Scholar] [CrossRef]
- Mi, H.-Y.; Liu, J.-L.; Guan, M.-M.; Liu, Q.-W.; Zhang, Z.-Q.; Feng., G.-D. Fluorescence chemical sensor for determining trace levels of nitroaromatic explosives in water based on conjugated polymer with guanidinium side groups. Talanta 2018, 187, 314–320. [Google Scholar] [CrossRef]
- Malik, A.H.; Hussain, S.; Kalita, A.; Iyer, P.K. Conjugated polymer nanoparticles for the amplified detection of nitro-explosive picric acid on multiple platforms. ACS Appl. Polym. Mater. 2015, 7, 26968–26976. [Google Scholar] [CrossRef]
- Samukaite-Bubniene, U.; Mazetyte-Stasinskiene, R.; Chernyakova, K.; Karpicz, R.; Ramanavicius, A. Time-resolved fluorescence spectroscopy based evaluation of stability of glucose oxidase. Int. J. Biol. Macromol. 2022, 163, 676–682. [Google Scholar] [CrossRef]
- Meng, Y.; Zhang, N.; Li, J.; Xu, Y.; Yang, Q.; Yuan, Y.; Zhang, X.; Wu, J.; Zhao, L. The detection of selectivity and sensitivity towards TNP by a new Zn(II)-coordination polymer as luminescent sensor in aqueous solution. Spectrochim. Acta A 2022, 266, 120419. [Google Scholar] [CrossRef]
- Han, X.; Tong, J.; Ding, G.; Sun, C.; Wang, X.; Su, Z.; Sun, J.; Wen, L.-L.; Shan, G.-G. A low-dimensional N-rich coordination polymer as an effective fluorescence sensor for 2,4,6-trinitrophenol detection in an aqueous medium. New J. Chem. 2022, 46, 1551–1556. [Google Scholar] [CrossRef]
- Zhou, Q.; Swager, T.M. Fluorescent chemosensors based on energy migration in conjugated polymers: The molecular wire approach to increased sensitivity. J. Am. Chem. Soc. 1995, 117, 12593–12602. [Google Scholar] [CrossRef]
- Qu, Y.; Wu, Y.; Gao, Y.; Qu, S.; Yang, L.; Hua, J. Diketopyrrolopyrrole-based fluorescent conjugated polymer for application of sensing fluoride ion and bioimaging. Sens. Actuators B-Chem. 2014, 197, 13–19. [Google Scholar] [CrossRef]
- Ramanavicius, A.; Ryskevic, N.; Kausaite-Minkstimiene, A.; Jursenas, S.; Baniukevic, J.; Kirlyte, J. Immunosensor based on fluorescence quenching matrix of the conducting polymer polypyrrole. Anal. Bioanal. Chem. 2010, 398, 3105–3113. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.-S.; Wang, D.-H.; Cui, Y.-Z.; Tao, F.-R.; Wang, Y.-T.; Li, T.-D. A novel hydrophilic conjugated polymer containing hydroxyl groups: Syntheses and sensing performance for NACs in aqueous solution. Sens. Actuators B-Chem. 2017, 251, 851–857. [Google Scholar] [CrossRef]
- Yan, C.; Qin, W.; Li, Z.; Zhou, Y.; Cui, Y.; Liang, G. Quantitative and rapid detection of explosives using an efficient luminogen with aggregation-induced emission characteristics. Sens. Actuators B-Chem. 2020, 302, 127201. [Google Scholar] [CrossRef]
- Zhang, C.; Pan, G.; He, Y. Conjugated microporous organic polymer as fluorescent chemosensor for detection of Fe3+ and Fe2+ ions with high selectivity and sensitivity. Talanta 2022, 236, 122872. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, B.; Guo, X.; Dong, W. Polyfluorene based fluorescent sensor for sensitive and selective detection of picric acid. Mater. Lett. 2022, 306, 130860. [Google Scholar] [CrossRef]
- Liu, J.; Zhong, Y.; Lam, J.W.Y.; Lu, P.; Hong, Y.; Yu, Y.; Yue, Y.; Faisal, M.; Sung, H.H.Y.; Williams, I.D.; et al. Hyperbranched conjugated polysiloles: Synthesis, structure, aggregation-enhanced emission, multicolor fluorescent photopatterning, and superamplified detection of explosives. Macromolecules 2010, 43, 4921–4936. [Google Scholar] [CrossRef]
- Sengottuvelu, D.; Kachwal, V.; Raichure, P.; Raghav, T.; Laskar, L.R. Aggregation-induced enhanced emission (AIEE)-active conjugated mesoporous oligomers (CMOs) with improved quantum yield and low-cost detection of a trace amount of nitroaromatic explosives. ACS Appl. Mater. Interfaces 2020, 12, 31875–31886. [Google Scholar] [CrossRef]
- Wu, X.; Hang, H.; Li, H.; Chen, Y.; Tong, H.; Wang, L. Water-dispersible hyperbranched conjugated polymer nanoparticles with sulfonate terminal groups for amplified fluorescence sensing of trace TNT in aqueous solution. Mater. Chem. Front. 2007, 1, 1875–1880. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Pallavi, P.; Anil, A.G.; Patra, A. Fabrication of porous organic polymers in the form of powder, soluble in organic solvents and nanoparticles: A unique platform for gas adsorption and efficient chemosensing. Polym. Chem. 2015, 6, 3775–3780. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Ma, Z.; Duan, Q.; Fei, T. Crosslinked fluorescent conjugated polymer nanoparticles for high performance explosive sensing in aqueous media. Dyes Pigments 2018, 159, 128–134. [Google Scholar] [CrossRef]
- Liang, X.; Wen, L.; Mi, Y.; Guo, J.; Yu, B.; Tao, M.; Cao, Z.; Zhao, Z. Highly cross-linked polymeric nanoparticles with aggregation-induced emission for sensitive and recyclable explosive detection. Dyes Pigments 2021, 191, 109369. [Google Scholar] [CrossRef]
- Yao, J.; Zhuang, Z.; Yao, H.; Shi, R.; Chang, C.; Zhou, J.; Zhao, Z. Tetraphenylethene-based polymeric fluorescent probes for 2,4,6-trinitrophenol detection and specific lysosome labelling. Dyes Pigments 2020, 182, 108588. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, J.; Shan, G.-G.; Li, G.-F.; Sun, C.-Y.; Cui, D.-X.; Wang, X.-L.; Su, Z.-M. A tetraphenylethylene-based covalent organic polymer for highly selective and sensitive detection of Fe3+ and as a white light emitting diode. Chem. Commun. 2019, 55, 12328–12331. [Google Scholar] [CrossRef] [PubMed]
- Dong., J.; Zhang, K.; Li, X.; Qian, Y.; Zhu, H.; Yuan, D.; Xu, Q.-H.; Jiang, J.; Zhao, D. Ultrathin two-dimensional porous organic nanosheets with molecular rotors for chemical sensing. Nat. Commun. 2017, 8, 1142. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Yin, H.; Chen, Z.-Q.; Zhang, G.-F.; Xie, N.-H.; Li, C.; Gong, W.-L.; Tang, B.Z.; Zhu, M.-Q. Monodisperse AIE-active conjugated polymer nanoparticles via dispersion polymerization using Geminal cross-coupling of 1,1-dibromoolefins. Small 2016, 12, 6547–6552. [Google Scholar] [CrossRef] [PubMed]
- Dineshkumar, S.; Laskar, I.R. Study of the mechanoluminescence and ‘aggregation-induced emission enhancement’ properties of a new conjugated oligomer containing tetraphenylethylene in the backbone: Application in the selective and sensitive detection of explosive. Polym. Chem. 2018, 9, 5123–5132. [Google Scholar] [CrossRef]
- Li, B.; Hu, R.; Qin, A.; Tang, B.Z. Copper-based ionic liquid-catalyzed click polymerization of diazides and diynes toward functional polytriazoles for sensing applications. Polym. Chem. 2020, 11, 2006–2014. [Google Scholar] [CrossRef]
- Sun, R.; Feng, S.; Zhou, B.; Chen, Z.; Wang, D.; Liu, H. Flexible cyclosiloxane-linked fluorescent porous polymers for multifunctional chemical sensors. ACS Macro. Lett. 2020, 9, 43–48. [Google Scholar] [CrossRef]
- Kumer, V.; Maiti, B.; Chini, M.K.; De, P.; Satapathi, S. Multimodal fluorescent polymer sensor for highly sensitive detection of nitroaromatics. Sci. Rep. 2019, 9, 7269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanwar, A.S.; Adil, L.R.; Afroz, M.A.; Iyer, P.K. Inner filter effect and resonance energy transfer based attogram level detection of nitroexplosive picric acid using dual emitting cationic conjugated polyfluorene. ACS Sens. 2018, 3, 1451–1461. [Google Scholar] [CrossRef]
- Giri, D.; Patra, S.K. 1,2,3-Triazolyl functionalized thiophene, carbazole and fluorene based A-alt-B type π-conjugated copolymers for the sensitive and selective detection of aqueous and vapor phase nitroaromatics (NACs). J. Mater. Chem. C 2020, 8, 14469–14480. [Google Scholar] [CrossRef]
- Turhan, H.; Tukenmez, E.; Karagoz, B.; Bicak, N. Highly fluorescent sensing of nitroaromatic explosives in aqueous media using pyrene-linked pbema microspheres. Talanta 2018, 179, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Shan, H.; Zhang, Z.; Li, S.; Zhu, Q.; Si, Z.; Yang, S.; Yang, Z.; Cai, D.; Qin, P. Triazine-based covalent organic polymer as stable luminescent probe for highly selective detection of 2,4,6-trinitrophenol. Dyes Pigments 2021, 192, 109421. [Google Scholar] [CrossRef]
- Ye, D.-Y.; Dong, Z.-Y.; Pu, Y.-Q.; Huang, G.-W.; An, Y.; Lü, L.-W. Design two large conjugate triazolopyrimidine analogs and apply them to detect 2,4,6-trinitrophenol. Dyes Pigments 2020, 174, 108016. [Google Scholar] [CrossRef]
- Liu, G.; Abdurahman, A.; Zhang, Z.; Feng, Y.; Li, F.; Zhang, M. New three-component conjugated polymers and their application as super rapid-response fluorescent probe to DNT vapor. Sens. Actuators B-Chem. 2019, 296, 126592. [Google Scholar] [CrossRef]
- Guo, X.; Gao, B.; Cui, X.; Wang, J.; Dong, W.; Duan, Q.; Fei, T.; Su, Z. PL sensor for sensitive and selective detection of 2,4,6-trinitrophenol based on carbazole and tetraphenylsilane polymer. Dyes Pigments 2021, 191, 109379. [Google Scholar] [CrossRef]
- Shellaiah, M.; Awasthi, K.; Chandran, S.; Aazaad, B.; Sun, K.W.; Ohta, N.; Wu, S.-P.; Lin, M.-C. Methylammonium tin tribromide quantum dots for heavy metal ion detection and cellular imaging. ACS Appl. Nano Mater. 2022, 5, 2859–2874. [Google Scholar] [CrossRef]
Polymeric Material | Ksv/M−1 | LOD | References | Test Environment |
---|---|---|---|---|
l-PAnTPE | 1.8 × 104 | 663 nM | This work | Water |
PAnTPE | 4.0 × 104 | 439 nM | This work | Water |
P2 | 2.03 × 104 | - | [47] | THF-water |
oTPETP | 1.64 × 102 | 0.053 mM (12 ppm) | [48] | THF-water |
P1e2c | 1.72 × 104 | 510 nM | [49] | Water |
FPP-3 | 1.64 × 104 | 59 ppb | [50] | Methanol |
DCP | 1.6 × 104 | 3.7 μM | [51] | THF |
DVB-co-TPE-PBE | 2.65 × 104 | 5.43 μM (1.24 ppm) | [43] | THF-water |
PTPE | 1.72 × 107 | 5 nM | [44] | THF-water |
HPG-TPE | 2.27 × 104 | 40 ppb | [25] | THF-water |
PFBT | 2.18 × 105 | 0.19 nM | [52] | DMSO |
P2 | 6.40 × 104 | 525 nM (120 ppb) | [53] | CHCl3 |
PBEMA | 2.45 × 105 | 0.114 μM | [54] | Water |
TTRZ | 1.15 × 105 | 27 ppb | [55] | Methanol |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, T.; Guo, X.; Cui, Q.; Zhang, W.; Dong, W.; Fei, T. Conjugated Polymer Nanoparticles Based on Anthracene and Tetraphenylethene for Nitroaromatics Detection in Aqueous Phase. Chemosensors 2022, 10, 366. https://doi.org/10.3390/chemosensors10090366
Ouyang T, Guo X, Cui Q, Zhang W, Dong W, Fei T. Conjugated Polymer Nanoparticles Based on Anthracene and Tetraphenylethene for Nitroaromatics Detection in Aqueous Phase. Chemosensors. 2022; 10(9):366. https://doi.org/10.3390/chemosensors10090366
Chicago/Turabian StyleOuyang, Tianwen, Xue Guo, Qihao Cui, Wei Zhang, Wenyue Dong, and Teng Fei. 2022. "Conjugated Polymer Nanoparticles Based on Anthracene and Tetraphenylethene for Nitroaromatics Detection in Aqueous Phase" Chemosensors 10, no. 9: 366. https://doi.org/10.3390/chemosensors10090366
APA StyleOuyang, T., Guo, X., Cui, Q., Zhang, W., Dong, W., & Fei, T. (2022). Conjugated Polymer Nanoparticles Based on Anthracene and Tetraphenylethene for Nitroaromatics Detection in Aqueous Phase. Chemosensors, 10(9), 366. https://doi.org/10.3390/chemosensors10090366