Study on LIBS Standard Method via Key Parameter Monitoring and Backpropagation Neural Network
Abstract
:1. Introduction
2. System Setup and Methods
2.1. LIBS System Setup
2.2. Sample Preparation
2.3. KPBP Method
3. Experiments and Results
3.1. Neural Network Model Parameter Optimization
3.2. Soil Sample Spectral Standardization Experiments
3.2.1. The Results of GSS-8 Soil Sample KPBP Standardization
3.2.2. Evaluation of the Effectiveness of the KPBP Method
3.2.3. Evaluation of the Superiority of the KPBP Method
3.2.4. Evaluation of the Wide Applicability of the KPBP Method
3.3. KPBP Method Applied in Quantitative Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Fu, Y.; Hou, Z.; Deguchi, Y.; Wang, Z. From Big to Strong: Growth of the Asian Laser-Induced Breakdown Spectroscopy Community. Plasma Sci. Technol. 2019, 21, 030101. [Google Scholar] [CrossRef] [Green Version]
- Patriarca, M.; Barlow, N.; Cross, A.; Hill, S.; Robson, A.; Taylor, A.; Tyson, J. Atomic Spectrometry Update: Review of Advances in the Analysis of Clinical and Biological Materials, Foods and Beverages. J. Anal. At. Spectrom. 2021, 36, 452–511. [Google Scholar] [CrossRef]
- Gaudiuso, R.; Melikechi, N.; Abdel-Salam, Z.A.; Harith, M.A.; Palleschi, V.; Motto-Ros, V.; Busser, B. Laser-Induced Breakdown Spectroscopy for Human and Animal Health: A Review. Spectrochim. Acta Part B At. Spectrosc. 2019, 152, 123–148. [Google Scholar] [CrossRef]
- Botto, A.; Campanella, B.; Legnaioli, S.; Lezzerini, M.; Lorenzetti, G.; Pagnotta, S.; Poggialini, F.; Palleschi, V. Applications of Laser-Induced Breakdown Spectroscopy in Cultural Heritage and Archaeology: A Critical Review. J. Anal. At. Spectrom. 2019, 34, 81–103. [Google Scholar] [CrossRef]
- Musazzi, S.; Perini, U. Laser-Induced Breakdown Spectroscopy Theory and Applications; Springer: Berlin, Germany, 2014; ISBN 9783642450846. [Google Scholar]
- Noll, R. Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications; Springer: Berlin, Germany, 2012; pp. 75–78. [Google Scholar] [CrossRef]
- Portnov, A.; Rosenwaks, S.; Bar, I. Identification of Organic Compounds in Ambient Air via Characteristic Emission Following Laser Ablation. J. Lumin. 2003, 102–103, 408–413. [Google Scholar] [CrossRef]
- Portnov, A.; Rosenwaks, S.; Bar, I. Emission Following Laser-Induced Breakdown Spectroscopy of Organic Compounds in Ambient Air. Appl. Opt. 2003, 42, 2835. [Google Scholar] [CrossRef] [PubMed]
- Lucena, P.; Doña, A.; Tobaria, L.M.; Laserna, J.J. New Challenges and Insights in the Detection and Spectral Identification of Organic Explosives by Laser Induced Breakdown Spectroscopy. Spectrochim. Acta Part. B At. Spectrosc. 2011, 66, 12–20. [Google Scholar] [CrossRef]
- Liu, K.; Tian, D.; Li, C.; Li, Y.; Yang, G.; Ding, Y. A Review of Laser-Induced Breakdown Spectroscopy for Plastic Analysis. TrAC Trends Anal. Chem. 2019, 110, 327–334. [Google Scholar] [CrossRef]
- Villas-Boas, P.R.; Franco, M.A.; Martin-Neto, L.; Gollany, H.T.; Milori, D.M.B.P. Applications of Laser-Induced Breakdown Spectroscopy for Soil Analysis, Part I: Review of Fundamentals and Chemical and Physical Properties. Eur. J. Soil Sci. 2019, 71, 789–804. [Google Scholar] [CrossRef]
- Gehrels, G.E.; Valencia, V.A.; Ruiz, J. Enhanced Precision, Accuracy, Efficiency, and Spatial Resolution of U-Pb Ages by Laser Ablation-Multicollector-Inductively Coupled Plasma-Mass Spectrometry. Geochem. Geophys. Geosyst. 2008, 9, Q03017. [Google Scholar] [CrossRef]
- Villas-Boas, P.R.; Franco, M.A.; Martin-Neto, L.; Gollany, H.T.; Milori, D.M.B.P. Applications of Laser-Induced Breakdown Spectroscopy for Soil Characterization, Part II: Review of Elemental Analysis and Soil Classification. Eur. J. Soil Sci. 2019, 71, 805–818. [Google Scholar] [CrossRef]
- Wang, Z.; Afgan, M.S.; Gu, W.; Song, Y.; Wang, Y.; Hou, Z.; Song, W.; Li, Z. Recent Advances in Laser-Induced Breakdown Spectroscopy Quantification: From Fundamental Understanding to Data Processing. TrAC Trends Anal. Chem. 2021, 143, 116385. [Google Scholar] [CrossRef]
- Fu, Y.; Hou, Z.; Li, T.; Li, Z.; Wang, Z. Investigation of Intrinsic Origins of the Signal Uncertainty for Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2019, 155, 67–78. [Google Scholar] [CrossRef]
- Guezenoc, J.; Gallet-Budynek, A.; Bousquet, B. Critical Review and Advices on Spectral-Based Normalization Methods for LIBS Quantitative Analysis. Spectrochim. Acta Part B At. Spectrosc. 2019, 160, 105688. [Google Scholar] [CrossRef]
- Dell’Aglio, M.; Gaudiuso, R.; Senesi, G.S.; De Giacomo, A.; Zaccone, C.; Miano, T.M.; De Pascale, O. Monitoring of Cr, Cu, Pb, v and Zn in Polluted Soils by Laser Induced Breakdown Spectroscopy (LIBS). J. Environ. Monit. 2011, 13, 1422–1426. [Google Scholar] [CrossRef]
- Gornushkin, I.B.; Smith, B.W.; Potts, G.E.; Omenetto, N.; Winefordner, J.D. Some Considerations on the Correlation between Signal and Background in Laser-Induced Breakdown Spectroscopy Using Single-Shot Analysis. Anal. Chem. 1999, 71, 5447–5449. [Google Scholar] [CrossRef]
- Fabre, C.; Cousin, A.; Wiens, R.C.; Ollila, A.; Gasnault, O.; Maurice, S.; Sautter, V.; Forni, O.; Lasue, J.; Tokar, R.; et al. In Situ Calibration Using Univariate Analyses Based on the Onboard ChemCam Targets: First Prediction of Martian Rock and Soil Compositions. Spectrochim. Acta Part B At. Spectrosc. 2014, 99, 34–51. [Google Scholar] [CrossRef]
- Syvilay, D.; Wilkie-Chancellier, N.; Trichereau, B.; Texier, A.; Martinez, L.; Serfaty, S.; Detalle, V. Evaluation of the Standard Normal Variate Method for Laser-Induced Breakdown Spectroscopy Data Treatment Applied to the Discrimination of Painting Layers. Spectrochim. Acta Part B At. Spectrosc. 2015, 114, 38–45. [Google Scholar] [CrossRef]
- Ismaël, A.; Bousquet, B.; Michel-Le Pierrès, K.; Travaillé, G.; Canioni, L.; Roy, S. In Situ Semi-Quantitative Analysis of Polluted Soils by Laser-Induced Breakdown Spectroscopy (LIBS). Appl. Spectrosc. 2011, 65, 467–473. [Google Scholar] [CrossRef]
- Wang, R.; Ma, X.; Zhang, T.; Liu, Z.; Huo, L. Study on the Data Processing Method Applied to Improve Spectral Stability of Laser Induced Breakdown Spectroscopy in Soil Analysis. Opt. Spectrosc. Imaging 2019, 11337, 96–1.3. [Google Scholar] [CrossRef]
- Barnett, W.B.; Fassel, V.A.; Kniseley, R.N. Theoretical Principles of Internal Standardization in Analytical Emission Spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 1968, 23, 643–664. [Google Scholar] [CrossRef]
- Tognoni, E.; Cristoforetti, G. Signal and Noise in Laser Induced Breakdown Spectroscopy: An Introductory Review. Opt. Laser Technol. 2016, 79, 164–172. [Google Scholar] [CrossRef]
- Lazic, V.; Trujillo-Vazquez, A.; Sobral, H.; Márquez, C.; Palucci, A.; Ciaffi, M.; Pistilli, M. Corrections for Variable Plasma Parameters in Laser Induced Breakdown Spectroscopy: Application on Archeological Samples. Spectrochim. Acta Part B At. Spectrosc. 2016, 122, 103–113. [Google Scholar] [CrossRef]
- Feng, J.; Wang, Z.; Li, Z.; Ni, W. Study to Reduce Laser-Induced Breakdown Spectroscopy Measurement Uncertainty Using Plasma Characteristic Parameters. Spectrochim. Acta Part B At. Spectrosc. 2010, 65, 549–556. [Google Scholar] [CrossRef]
- Wang, Z.; Li, L.; West, L.; Li, Z.; Ni, W. A Spectrum Standardization Approach for Laser-Induced Breakdown Spectroscopy Measurements. Spectrochim. Acta Part B At. Spectrosc. 2012, 68, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Zorov, N.B.; Gorbatenko, A.A.; Labutin, T.A.; Popov, A.M. A Review of Normalization Techniques in Analytical Atomic Spectrometry with Laser Sampling: From Single to Multivariate Correction. Spectrochim. Acta Part B At. Spectrosc. 2010, 65, 642–657. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, L.; Yu, H.; Zeng, P.; Qi, L.; Xin, Y. An Image Auxiliary Method for Quantitative Analysis of Laser-Induced Breakdown Spectroscopy. Anal. Chem. 2018, 90, 4686–4694. [Google Scholar] [CrossRef]
- Kohonen, T. An Introduction to Neural Computing. Neural Netw. 1988, 1, 3–16. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, H.; Zhao, Y.; Chen, Y.; Ke, C.; Xu, T.; He, Y. A Brief Review of New Data Analysis Methods of Laser-Induced Breakdown Spectroscopy: Machine Learning. Appl. Spectrosc. Rev. 2022, 57, 89–111. [Google Scholar] [CrossRef]
- Li, L.N.; Liu, X.F.; Xu, W.M.; Wang, J.Y.; Shu, R. A Laser-Induced Breakdown Spectroscopy Multi-Component Quantitative Analytical Method Based on a Deep Convolutional Neural Network. Spectrochim. Acta Part B At. Spectrosc. 2020, 169, 105850. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, T.; Li, H. Applications of Laser-Induced Breakdown Spectroscopy (LIBS) Combined with Machine Learning in Geochemical and Environmental Resources Exploration. TrAC Trends Anal. Chem. 2020, 133, 116113. [Google Scholar] [CrossRef]
- Ewusi-Annan, E.; Delapp, D.M.; Wiens, R.C.; Melikechi, N. Automatic Preprocessing of Laser-Induced Breakdown Spectra Using Partial Least Squares Regression and Feed-Forward Artificial Neural Network: Applications to Earth and Mars Data. Spectrochim. Acta Part B At. Spectrosc. 2020, 171, 105930. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, C.; Gao, L.; Yue, Z.; Shabbir, S.; Xu, W.; Wu, M.; Yu, J. Determination of Minor Metal Elements in Steel Using Laser-Induced Breakdown Spectroscopy Combined with Machine Learning Algorithms. Spectrochim. Acta Part B At. Spectrosc. 2020, 166, 105802. [Google Scholar] [CrossRef]
- Chen, J.; Pisonero, J.; Chen, S.; Wang, X.; Fan, Q.; Duan, Y. Convolutional Neural Network as a Novel Classification Approach for Laser-Induced Breakdown Spectroscopy Applications in Lithological Recognition. Spectrochim. Acta Part B At. Spectrosc. 2020, 166, 105801. [Google Scholar] [CrossRef]
- Gaudiuso, R.; Ewusi-Annan, E.; Xia, W.; Melikechi, N. Diagnosis of Alzheimer’s Disease Using Laser-Induced Breakdown Spectroscopy and Machine Learning. Spectrochim. Acta Part B At. Spectrosc. 2020, 171, 105931. [Google Scholar] [CrossRef]
- Wang, R.; Ma, X.; Liu, Z.; Zhang, T.; Huo, L. Manufacturer and Authenticity Identification of Chinese Ejiao Based on Laser-Induced Breakdown Spectroscopy and Machine Learning Algorithms. In Proceedings of the 2020 International Conference on Intelligent Computing, Automation and Systems (ICICAS), Chongqing, China, 11–13 December 2020; pp. 207–213. [Google Scholar] [CrossRef]
- Li, L.N.; Liu, X.F.; Yang, F.; Xu, W.M.; Wang, J.Y.; Shu, R. A Review of Artificial Neural Network Based Chemometrics Applied in Laser-Induced Breakdown Spectroscopy Analysis. Spectrochim. Acta Part B At. Spectrosc. 2021, 180, 106183. [Google Scholar] [CrossRef]
- Chen, S.; Ma, X.; Zhao, H.; Lv, H. Research of Laser Induced Breakdown Spectroscopy for Detection of Trace Cd in Polluted Soil. In Proceedings of the OFS2012 22nd International Conference on Optical Fiber Sensors, Beijing, China, 14–19 October 2012; Volume 8421, pp. 1621–1624. [Google Scholar] [CrossRef]
- Sansonetti, J.E.; Martin, W.C. Handbook of Basic Atomic Spectroscopic Data. J. Phys. Chem. Ref. Data 2005, 34, 1559–2259. [Google Scholar] [CrossRef] [Green Version]
- Battiti, R. First- and Second-Order Methods for Learning: Between Steepest Descent and Newton’s Method. Neural Comput. 1992, 4, 141–166. [Google Scholar] [CrossRef]
- Møller, M.F. A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning. Neural Netw. 1993, 6, 525–533. [Google Scholar] [CrossRef]
- Riedmiller, M.; Braun, H. Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm. In Proceedings of the 1993 IEEE International Conference on Neural Networks, San Francisco, CA, USA, 28 March–1 April 1993; Volume 16, pp. 586–591. [Google Scholar]
- Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Wang, R.; Ma, X.; Yu, Q.; Song, Y.; Zhao, H.; Zhang, M.; Liao, Y. Methods of Data Processing for Trace Elements Analysis Using Laser Induced Breakdown Spectroscopy. Plasma Sci. Technol. 2015, 17, 944–947. [Google Scholar] [CrossRef]
- National Association of Testing Authorities, Australia (NATA). National Association of Testing Authorities Technical Note 17, Guidelines for the Validation and Verification of Quantitative and Qualitative Test Methods; NATA: Sydney, Australia, 2012; ISBN 9788890701870. [Google Scholar]
- Magnusson, B.; Örnemark, U. Eurachem Guide: The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics; Eurachem Method Validation Working Group: Gembloux, Belgium, 1999; ISBN 9789187461590. [Google Scholar]
Avg | RSD% | |
---|---|---|
Original Spectra | 46,050.85 | 14.10 |
A20 Averaging | 44215 | 8.50 |
Spectral Integral | 7.12 | 8.22 |
Fe 404.58 Internal Standard | 0.81 | 6.84 |
Standard Normal Variate | 0 | 1 (std) |
KPBP Method | 43,934.30 | 4.07 |
Sample | A0 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | MSE | R2/% | LOD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
True Content | 18.8 | 67.3 | 103.5 | 199.3 | 272.9 | 367.2 | 434.7 | 561.3 | 652.1 | 740.2 | 841.4 | - | - | - |
[OR] | −13.3 | 92.7 | 84.9 | 272.9 | 229.1 | 303.9 | 484.9 | 524.1 | 739.8 | 739.8 | 792.9 | 2483.4 | 97.651 | 64.98 |
[KPBP] | 23.9 | 65.5 | 118.7 | 156.2 | 241.5 | 401.6 | 450.5 | 597.9 | 645.1 | 740.2 | 809.2 | 632.5 | 99.382 | 40.37 |
Sample | G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | G9 | G10 |
---|---|---|---|---|---|---|---|---|---|---|
MSE | 564.0 | 576.9 | 411.9 | 458.6 | 442.4 | 465.5 | 526.7 | 633.0 | 545.8 | 553.2 |
R2/% | 99.428 | 99.458 | 99.576 | 99.552 | 99.544 | 99.529 | 99.462 | 99.380 | 99.445 | 99.436 |
LOD | 29.9 | 33.6 | 35.6 | 30.7 | 34.7 | 33.8 | 35.0 | 39.5 | 35.9 | 37.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Ma, X. Study on LIBS Standard Method via Key Parameter Monitoring and Backpropagation Neural Network. Chemosensors 2022, 10, 312. https://doi.org/10.3390/chemosensors10080312
Wang R, Ma X. Study on LIBS Standard Method via Key Parameter Monitoring and Backpropagation Neural Network. Chemosensors. 2022; 10(8):312. https://doi.org/10.3390/chemosensors10080312
Chicago/Turabian StyleWang, Rui, and Xiaohong Ma. 2022. "Study on LIBS Standard Method via Key Parameter Monitoring and Backpropagation Neural Network" Chemosensors 10, no. 8: 312. https://doi.org/10.3390/chemosensors10080312
APA StyleWang, R., & Ma, X. (2022). Study on LIBS Standard Method via Key Parameter Monitoring and Backpropagation Neural Network. Chemosensors, 10(8), 312. https://doi.org/10.3390/chemosensors10080312