ZnO and AZO Film Potentiometric pH Sensors Based on Flexible Printed Circuit Board
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Buffer Solution
2.3. Preparation of the Zinc Oxide and Aluminum-Doped Zinc Oxide Films
2.4. Preparation of the pH Sensors
2.5. Potentiometric Measurement System
3. Results and Discussion
3.1. pH Sensing Mechanism
3.2. Analysis of the Zinc Oxide and Aluminum-Doped Zinc Oxide Films
3.3. The Average Sensitivity and Linearity of the pH Sensors
3.4. The Drift Effects of the pH Sensors
3.5. The Repeatability of the pH Sensors
3.6. The Flexibility of the pH Sensors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Werner, J.; Belz, M.; Klein, K.-F.; Sun, T.; Grattan, K. Fiber optic sensor designs and luminescence-based methods for the detection of oxygen and pH measurement. Measurement 2021, 178, 109323. [Google Scholar] [CrossRef]
- Thakur, D.; Kumar, Y.; Kumar, A.; Singh, P.K. Applicability of wireless sensor networks in precision agriculture: A review. Wirel. Pers. Commun. 2019, 107, 471–512. [Google Scholar] [CrossRef]
- Cuartero, M.; Parrilla, M.; Crespo, G.A. Wearable potentiometric sensors for medical applications. Sensors 2019, 19, 363. [Google Scholar] [CrossRef] [Green Version]
- Das, S.C.; Pandey, R.R.; Devkota, T.; Chusuei, C.C. Raman spectroscopy as an assay to disentangle zinc oxide carbon nanotube composites for optimized uric acid detection. Chemosensors 2018, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Napi, M.L.M.; Sultan, S.M.; Ismail, R.; How, K.W.; Ahmad, M.K. Electrochemical-based biosensors on different zinc oxide nanostructures: A review. Materials 2019, 12, 2985. [Google Scholar] [CrossRef] [Green Version]
- Vinoth, V.; Subramaniyam, G.; Anandan, S.; Valdés, H.; Manidurai, P. Non-enzymatic glucose sensor and photocurrent performance of zinc oxide quantum dots supported multi-walled carbon nanotubes. Mater. Sci. Eng. B 2021, 265, 115036. [Google Scholar] [CrossRef]
- Palit, S.; Singh, K.; Lou, B.-S.; Her, J.-L.; Pang, S.-T.; Pan, T.-M. Ultrasensitive dopamine detection of indium-zinc oxide on PET flexible based extended-gate field-effect transistor. Sens. Actuators B Chem. 2020, 310, 127850. [Google Scholar] [CrossRef]
- Wang, Z.L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys. Condens. Matter 2004, 16, R829–R858. [Google Scholar] [CrossRef]
- Khan, S.; Stamate, E. Comparative study of aluminum-doped zinc oxide, gallium-doped zinc oxide and indium-doped tin oxide thin films deposited by radio frequency magnetron sputtering. Nanomaterials 2022, 12, 1539. [Google Scholar] [CrossRef]
- Ekem, N.; Korkmaz, S.; Pat, S.; Balbag, M.; Cetin, E.; Ozmumcu, M. Some physical properties of ZnO thin films prepared by RF sputtering technique. Int. J. Hydrog. Energy 2009, 34, 5218–5222. [Google Scholar] [CrossRef]
- Mazzaracchio, V.; Fiore, L.; Nappi, S.; Marrocco, G.; Arduini, F. Medium-distance affordable, flexible and wireless epidermal sensor for pH monitoring in sweat. Talanta 2021, 222, 121502. [Google Scholar] [CrossRef]
- Sağlam, Ö.; Dilgin, D.G.; Ertek, B.; Dilgin, Y. Differential pulse voltammetric determination of eugenol at a pencil graphite electrode. Mater. Sci. Eng. C 2016, 60, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Sha, R.; Komori, K.; Sushmee, B. Amperometric pH sensor based on graphene–polyaniline composite. IEEE Sens. J. 2017, 17, 16. [Google Scholar] [CrossRef]
- Jin, H.; Qin, Y.; Pan, S.; Alam, A.U.; Dong, S.; Ghosh, R.; Deen, M.J. Open-source low-cost wireless potentiometric instrument for pH determination experiments. J. Chem. Educ. 2018, 95, 326–330. [Google Scholar] [CrossRef] [Green Version]
- Walker, N.L.; Roshkolaeva, A.B.; Chapoval, A.I.; Dick, J.E. Recent advances in potentiometric biosensing. Curr. Opin. Electrochem. 2021, 28, 100735. [Google Scholar] [CrossRef]
- Kuo, P.-Y.; Chen, Y.-Y. A novel low unity-gain frequency and low power consumption instrumentation amplifier design for RuO2 uric acid biosensor measurement. IEEE Trans. Instrum. Meas. 2021, 70, 4003409. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, W.; Sun, C.; Zhang, H.; Pang, W.; Zhang, D.; Duan, X. On-chip surface modified nanostructured ZnO as functional pH sensors. Nanotechnology 2015, 26, 355202. [Google Scholar] [CrossRef]
- Qin, Y.; Alam, A.U.; Pan, S.; Howlader, M.M.; Ghosh, R.; Hu, N.-X.; Jin, H.; Dong, S.; Chen, C.-H.; Deen, M.J. Integrated water quality monitoring system with pH, free chlorine, and temperature sensors. Sens. Actuators B Chem. 2018, 255, 781–790. [Google Scholar] [CrossRef]
- Singh, K.; Lou, B.-S.; Her, J.-L.; Pang, S.-T.; Pan, T.-M. Super nernstian pH response and enzyme-free detection of glucose using sol-gel derived RuOx on PET flexible-based extended-gate field-effect transistor. Sens. Actuators B Chem. 2019, 298, 126837. [Google Scholar] [CrossRef]
- Pan, T.-M.; Lin, C.-H.; Pang, S.-T. Structural properties and sensing performance of TaOx/Ta stacked sensing films for extended-gate field-effect transistor pH sensors. J. Alloys Compd. 2022, 903, 163955. [Google Scholar] [CrossRef]
- Manjakkal, L.; Dervin, S.; Dahiya, R. Flexible potentiometric pH sensors for wearable systems. RSC Adv. 2020, 10, 8594–8617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmody, W.R. Easily prepared wide range buffer series. J. Chem. Educ. 1961, 38, 559. [Google Scholar] [CrossRef]
- Pat, S.; Mohammadigharehbagh, R.; Özen, S.; Şenay, V.; Yudar, H.H.; Korkmaz, Ş. The Al doping effect on the surface, optical, electrical and nanomechanical properties of the ZnO and AZO thin films prepared by RF sputtering technique. Vacuum 2017, 141, 210–215. [Google Scholar] [CrossRef]
- Yang, C.; Xu, W.; Nan, Y.; Wang, Y.; Hu, Y.; Gao, C.; Chen, X. Fabrication and characterization of a high performance polyimide ultrafiltration membrane for dye removal. J. Colloid Interface Sci. 2020, 562, 589–597. [Google Scholar] [CrossRef]
- Kim, B.-K.; Lee, S.-J.; Kim, J.-Y.; Ji, K.-Y.; Yoon, Y.-J.; Kim, M.-Y.; Park, S.-H.; Yoo, J.-S. Origin of surface defects in PCB final finishes by the electroless nickel immersion gold process. J. Electron. Mater. 2008, 37, 527–534. [Google Scholar] [CrossRef]
- LT1167 Datasheet. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/1167fc.pdf (accessed on 26 June 2022).
- Al-Hilli, S.; Willander, M. The pH response and sensing mechanism of n-type ZnO/electrolyte interfaces. Sensors 2009, 9, 7445–7480. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Senapati, S.; Kumar, S.; Kumar, J.; Panda, S. Functionalized vertically aligned ZnO nanorods for application in electrolyte-insulator-semiconductor based pH sensors and label-free immuno-sensors. J. Phys. Conf. Ser. 2016, 704, 12013. [Google Scholar] [CrossRef]
- Das, J.; Pradhan, S.; Sahu, D.; Mishra, D.; Sarangi, S.; Nayak, B.; Verma, S.; Roul, B. Micro-Raman and XPS studies of pure ZnO ceramics. Phys. B Condens. Matter 2010, 405, 2492–2497. [Google Scholar] [CrossRef]
- Meng, F.; Ge, F.; Chen, Y.; Xu, G.; Huang, F. Local structural changes induced by ion bombardment in magnetron sputtered ZnO: Al films: Raman, XPS, and XAS study. Surf. Coat. Technol. 2019, 365, 2–9. [Google Scholar] [CrossRef]
- Challali, F.; Mendil, D.; Touam, T.; Chauveau, T.; Bockelée, V.; Sanchez, A.G.; Chelouche, A.; Besland, M.-P. Effect of RF sputtering power and vacuum annealing on the properties of AZO thin films prepared from ceramic target in confocal configuration. Mater. Sci. Semicond. Process. 2020, 118, 105217. [Google Scholar] [CrossRef]
- Nayak, P.K.; Wang, Z.; Anjum, D.H.; Hedhili, M.N.; Alshareef, H.N. Highly stable thin film transistors using multilayer channel structure. Appl. Phys. Lett. 2015, 106, 103505. [Google Scholar] [CrossRef] [Green Version]
- Sinha, S.; Pal, T.; Sharma, P.; Kharbanda, D.; Khanna, P.K.; Tanwar, A.; Sharma, R.; Mukhiya, R. Fabrication, characterization, and modeling of aluminum oxide-gate ion-sensitive field-effect transistor-based pH sensor. J. Electron. Mater. 2021, 50, 7085–7097. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.-L.; Tsai, S.-C.; Kao, M.-C. The pH sensitivity and characteristics of AZO nanorods based on the extended-gate field-effect transistor. J. Comput. Theor. Nanosci. 2015, 12, 825–831. [Google Scholar] [CrossRef]
- Tsai, Y.-T.; Chang, S.-J.; Ji, L.-W.; Hsiao, Y.-J.; Tang, I.-T. Fast detection and flexible microfluidic pH sensors based on Al-doped ZnO nanosheets with a novel morphology. ACS Omega 2019, 4, 19847–19855. [Google Scholar] [CrossRef] [Green Version]
- Young, S.-J.; Lai, L.-T.; Tang, W.-L. Improving the performance of pH sensors with one-dimensional ZnO nanostructures. IEEE Sens. J. 2019, 19, 10972–10976. [Google Scholar] [CrossRef]
- Young, S.-J.; Chu, Y.-J.; Chen, Y.-L. Enhancing pH sensors performance of ZnO nanorods with Au nanoparticles adsorption. IEEE Sens. J. 2021, 21, 13068–13073. [Google Scholar]
- Chou, J.-C.; Yan, S.-J.; Liao, Y.-H.; Lai, C.-H.; Chen, J.-S.; Chen, H.-Y.; Tseng, T.-W.; Wu, T.-Y. Characterization of flexible arrayed pH sensor based on nickel oxide films. IEEE Sens. J. 2017, 18, 605–612. [Google Scholar] [CrossRef]
- Kao, C.-H.; Liu, Y.-W.; Kuo, C.-C.; Chan, S.-M.; Wang, D.-Y.; Lin, Y.-H.; Lee, M.-L.; Chen, H. Comparison of ZnO, Al2O3, AlZnO, and Al2O3-doped ZnO sensing membrane applied in electrolyte-insulator-semiconductor structures. Membranes 2022, 12, 168. [Google Scholar] [CrossRef]
- Jafari, B.; Muthuvel, M.; Botte, G.G. Nickel-based electrochemical sensor with a wide detection range for measuring hydroxyl ions and pH sensing. J. Electroanal. Chem. 2021, 895, 115547. [Google Scholar] [CrossRef]
pH Value | Solution “A” Volume (mL) | Solution “B” Volume (mL) |
---|---|---|
2 | 48.75 | 1.25 |
4 | 38.75 | 11.25 |
6 | 29.50 | 20.50 |
8 | 21.25 | 28.75 |
10 | 13.50 | 36.50 |
Film | ZnO | AZO |
---|---|---|
Gas flow (Ar:O2) | 9:1 (sccm) | 9:1 (sccm) |
Deposition time | 30 min | 50 min |
Deposition pressure | 3 mTorr | 3 mTorr |
Working power | 60 W | 60 W |
pH Value | 2 | 4 | 6 | 8 | 10 |
---|---|---|---|---|---|
Response voltage (mV) | 7.17 | 2.12 | 1.51 | 8.39 | 6.94 |
Sensing Layer | pH Range | Sensitivity (mV/pH) | Linearity | Ref. |
---|---|---|---|---|
ZnO film | 2−10 | 19.52 | N/A | This study |
AZO film | 2−10 | 30.31 | N/A | This study |
ZnO film (after APTES modification) | 2−10 | 26.70 | 0.998 | This study |
AZO film (after APTES modification) | 2−10 | 42.99 | 0.996 | This study |
AZO NRs | 7−12 | 28.04 | 0.974 | [34] 2015 |
AZO NSs | 2−12 | 49.62 | N/A | [35] 2019 |
ZnO film | 4−10 | 34.82 | 0.992 | [36] 2019 |
ZnO NRs | 4−10 | 24.67 | 0.986 | [37] 2021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.-H.; Chang, Y.-S.; Chan, C.-T. ZnO and AZO Film Potentiometric pH Sensors Based on Flexible Printed Circuit Board. Chemosensors 2022, 10, 293. https://doi.org/10.3390/chemosensors10080293
Yang P-H, Chang Y-S, Chan C-T. ZnO and AZO Film Potentiometric pH Sensors Based on Flexible Printed Circuit Board. Chemosensors. 2022; 10(8):293. https://doi.org/10.3390/chemosensors10080293
Chicago/Turabian StyleYang, Po-Hui, Ying-Sheng Chang, and Che-Tsung Chan. 2022. "ZnO and AZO Film Potentiometric pH Sensors Based on Flexible Printed Circuit Board" Chemosensors 10, no. 8: 293. https://doi.org/10.3390/chemosensors10080293
APA StyleYang, P. -H., Chang, Y. -S., & Chan, C. -T. (2022). ZnO and AZO Film Potentiometric pH Sensors Based on Flexible Printed Circuit Board. Chemosensors, 10(8), 293. https://doi.org/10.3390/chemosensors10080293