Optofluidic Micromachined Platform for Refractive Index Measurement †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Method
- The centroid algorithm, where the position of the center of coherence zone in the fringe pattern was calculated using the following equation [32]:
- The envelope fitting, where the set of local maxima of interferometric signal is fitted by Gaussian curve with its four parameters—center, width, height, and offset. Among them, the parameter center, that defines is the only one of importance.
2.3. Design of the Optofluidic Platform
- DH is the hydraulic diameter of the pipe;
- Q is the volumetric flow rate (m3/s);
- A is the pipe cross-sectional area (m2);
- u is the mean velocity of the fluid (SI units: m/s);
- μ is the dynamic viscosity of the fluid (Pa·s);
- ν is the kinematic viscosity (m2/s); and
- ρ is the density of the fluid (kg/m3).
3. Experiment
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flores-Bravo, J.A.; Illarramendi, J.A.; Zubia, J.; Villatoro, J. Optical fiber interferometer for temperature-independent refractive index measuring over a broad range. Opt. Laser. Technol. 2021, 139, 106977. [Google Scholar] [CrossRef]
- Samanta, S.; Kalathimekkad, S.; Selvaraja, S.K. Fluid sensing strategies adopted in photonic devices: A review. Opt. Laser. Technol. 2021, 139, 106975. [Google Scholar] [CrossRef]
- Dong, J.T.; Cheng, C.H.; Wu, C.; Li, J.; Guan, B.O. Highly sensitive optofluidic refractive index sensor based on a seven-liquid-core Teflon-cladding fiber. Opt. Express 2020, 28, 26218–26227. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Zhao, Y.; Yang, Y.; Wang, Y.; He, X.; Yang, W.; Li, L. All-fiber Fabry–Perot interferometer for liquid refractive index measurement. J. Russ. Laser Res. 2019, 40, 370–374. [Google Scholar] [CrossRef]
- Yu, H.; Xiong, L.; Chen, Z.; Li, Q.; Yi, X.; Ding, Y.; Wang, F.; Lv, H.; Ding, Y. Ultracompact and high sensitive refractive index sensor based on Mach–Zehnder interferometer. Opt. Lasers Eng. 2014, 56, 50–53. [Google Scholar] [CrossRef]
- Rostamian, A.; Madadi-Kandjani, E.; Dalir, H.; Sorger, V.J.; Chen, R.T. Towards lab-on-chip ultrasensitive ethanol detection using photonic crystal waveguide operating in the mid-infrared. Nanophotonics 2021, 10, 1675–1682. [Google Scholar] [CrossRef]
- Mishra, A.K.; Mishra, S.K.; Gupta, B.D. SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region. Opt. Commun. 2021, 344, 86–91. [Google Scholar] [CrossRef]
- Wang, X.-M.; Zhao, C.-L.; Wang, Y.-R.; Jin, S. Aproposal of T-structure fiber-optic refractive index sensor based on surface plasmon resonance. Opt. Commun. 2016, 369, 189–193. [Google Scholar] [CrossRef]
- Liu, W.; Hu, C.; Zhou, L.; Yi, Z.; Liu, C.; Lv, J.; Yang, L.; Chu, P.K. A square-lattice D-shaped photonic crystal fiber sensor based on SPR to detect analytes with large refractive indexes. Phys. E 2022, 138, 115106. [Google Scholar] [CrossRef]
- Hu, T.; Zhao, Y.; Song, A. Fiber optic SPR sensor for refractive index and temperature measurement based on MMF-FBG-MMF structure. Sens. Actuators B 2016, 237, 521–525. [Google Scholar] [CrossRef]
- Qi, L.; Zhao, C.L.; Yuan, J.; Ye, M.; Wang, J.; Zhang, Z.; Jin, S. Highly reflective long period fiber grating sensor and its application in refractive index sensing. Sens. Actuators B 2014, 193, 185–189. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Zhang, T.; Zhang, W. Integrated FPI-FBG composite all-fiber sensor for simultaneous measurement of liquid refractive index and temperature. Opt. Lasers Eng. 2018, 11, 167–171. [Google Scholar] [CrossRef]
- Yebin, Z.; Gao, S.; Zhang, A.P. Optically heated long-period grating as temperature insensitive fiber-optic refractive index sensor. IEEE Photonics J. 2012, 4, 2340–2345. [Google Scholar] [CrossRef]
- Rao, Y.J.; Deng, M.; Duan, D.W.; Zhu, T. In-line Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber. Sens. Actuators A 2008, 148, 33–38. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Jiang, J.; Liu, K.; Zhang, P.; Wu, W.; Liu, T. High-accuracy hybrid fiber-optic Fabry-Perot sensor based on MEMS gas refractive-index and temperature sensing. Opt. Express 2019, 27, 4204–4215. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Y.; Liao, C.; Sun, B.; He, J.; Yin, G.; Liu, S.; Li, Z.; Wang, G.; Zhong, X.; et al. Intensity modulated refractive index sensor based on optical fiber Michelson interferometer. Sens. Actuators B 2015, 208, 315–319. [Google Scholar] [CrossRef]
- Zhu, T.; Wu, D.; Duan, D.W. In-line fiber optic interferometric sensors in single-mode fibers. Sensors 2012, 12, 10430–10449. [Google Scholar] [CrossRef] [Green Version]
- Ahsani, V.; Ahmed, F.; Jun, M.B.G.; Bardley, C. Tapered fiber-optic Mach-Zehnder interferometer for ultra-high sensitivity measurement of refractive index. Sensors 2019, 19, 1652. [Google Scholar] [CrossRef] [Green Version]
- Xi, F.; Zhao, Y.; Peng, Y. In-line microfiber MZI operating at two sides of the dispersion turning point for ultrasensitive RI and temperature measurement. Sens. Actuators A 2020, 301, 111754. [Google Scholar] [CrossRef]
- Yao, Q.; Meng, H.; Wang, W.; Xue, H.; Xiong, R.; Huang, B.; Tan, C.H.; Huang, X. Simultaneous measurement of refractive index and temperature based on a core-offset Mach-Zehnder interferometer combined with a fiber Bragg grating. Sens. Actuators A 2014, 209, 73–77. [Google Scholar] [CrossRef]
- Domínguez-Flores, C.E.; Valdés-Hernández, A.I.; Reyes, A.K.; David Monzón-Hernández, D.; Rodríguez-Quiroz, O.; Ochoa-Valiente, R. Ultra-long range refractive index fiber sensor. Front. Sens. 2022, 3, 855251. [Google Scholar] [CrossRef]
- Tang, J.; Qui, G.; Wang, J. Recent development of optofluidics for imaging and sensing applications. Chemosensors 2022, 10, 15. [Google Scholar] [CrossRef]
- Peng, F.; Du, J.; Du, J.; Wang, S.; Yan, W. Contrast Analysis of Polarization in Three-Beam Interference Lithography. Appl. Sci. 2021, 11, 4789. [Google Scholar] [CrossRef]
- Moutzouris, K.; Papamichael, M.; Betsis, S.C.; Stavrakas, I.; Hloupis, G.; Triantis, D. Refractive, dispersive and thermos-optic properties of twelve organic solvents in the visible and near-infrared. Appl. Phys. B 2014, 116, 617–622. [Google Scholar] [CrossRef]
- Djinovic, Z.; Kocsis, A.; Tomic, M. Fiber-optic Mach-Zehnder interferometer for refractive index measurement based on MEMS optofluidic platform. In Proceedings of the 7th International Conference on Sensors Engineering and Electronics Instrumentation Advances (SEIA’ 2021), Palma de Mallorca, Spain, 22–24 September 2021. [Google Scholar]
- Larkin, K. Efficient nonlinear algorithm for envelope detection in white light interferometry. J. Opt. Soc. Am. 1996, 13, 832–843. [Google Scholar] [CrossRef] [Green Version]
- Ai, C.; Novak, E.L. Centroid Approach for Estimating Modulation Peak in Broad-Bandwidth Interferometry. U.S. Patent 5633715A, 27 May 1997. [Google Scholar]
- Chim, S.; Kino, G. Three-dimensional image realization in interference microscopy. Appl. Opt. 1992, 31, 2550–2553. [Google Scholar] [CrossRef]
- Vo, Q.; Fang, F.; Zhang, X.; Gao, H. Surface recovery algorithm in white light interferometry based on combined white light phase shifting and fast Fourier transform algorithms. Appl. Opt. 2017, 56, 8174–8185. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, A. Fast White Light Interferometry Demodulation Algorithm for Low-Finesse Fabry–Pérot Sensors. IEEE Photon. Technol. Lett. 2015, 27, 817–820. [Google Scholar] [CrossRef]
- Sandoz, P. Wavelet transform as a processing tool in white-light interferometry. Opt. Lett. 1997, 22, 1065–1067. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Jiang, J.; Liu, K.; Wang, S.; Li, Y.; Liu, T. A Demodulation Method of Spatial Domain for Low-Coherence Interferometry with High Accuracy and Adaptability. IEEE Photonics J. 2020, 12, 1–11. [Google Scholar] [CrossRef]
- MATLAB. 9.7.0.1190202 (R2019b); The MathWorks Inc.: Natick, MA, USA, 2018. [Google Scholar]
- Kedenburg, S.; Vieweg, M.; Gissibl, T.; Giessen, H. Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Opt. Mater. Express 2012, 2, 1588–1611. [Google Scholar] [CrossRef]
- Li, X.; Liu, L.; Zhao, J.; Tan, J. Optical properties of sodium chloride solution within spectral range from 300 to 2500nm at room temperature. Appl. Spectrosc. 2015, 69, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Tomic, M.C.; Djinovic, Z.V.; Petricevic, S.J. Demodulation of quasi-quadrature interferometric signals for use in the totally implantable hearing aid. Biomed. Opt. Express 2017, 8, 3404–3409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djinović, Z.; Tomić, M.; Kocsis, A. Optofluidic Micromachined Platform for Refractive Index Measurement. Chemosensors 2022, 10, 197. https://doi.org/10.3390/chemosensors10050197
Djinović Z, Tomić M, Kocsis A. Optofluidic Micromachined Platform for Refractive Index Measurement. Chemosensors. 2022; 10(5):197. https://doi.org/10.3390/chemosensors10050197
Chicago/Turabian StyleDjinović, Zoran, Miloš Tomić, and Agnes Kocsis. 2022. "Optofluidic Micromachined Platform for Refractive Index Measurement" Chemosensors 10, no. 5: 197. https://doi.org/10.3390/chemosensors10050197
APA StyleDjinović, Z., Tomić, M., & Kocsis, A. (2022). Optofluidic Micromachined Platform for Refractive Index Measurement. Chemosensors, 10(5), 197. https://doi.org/10.3390/chemosensors10050197