Box–Behnken Design Optimizing Sugarcane Bagasse-Based Nitrogen-Doped Carbon Quantum Dots Preparation and Application in Ferric Ion Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of CQDs and N-CQDs
2.2.2. Single-Factor Experiments
2.2.3. Response Surface Methodology (RSM) Design
2.2.4. Characterization
2.2.5. Optical Properties
2.2.6. Fluorescence Quantum Yield and Lifetime
- (1)
- Absolute quantum yield and fluorescence lifetime
- (2)
- Relative quantum yield
2.2.7. Sensing of Fe3+ in Aqueous Solution
- (1)
- Titration of Fe3+ to N-CQD-13 and detection limit:
- (2)
- Selectivity
- (3)
- pH tolerance
- (4)
- Long-time storage of N-CQD-13 solution
3. Results and Discussion
3.1. Single-Factor Experimental Analysis
3.2. BBD and RSM Analysis
3.3. Characterizations
3.4. Optical Properties
3.5. Stability of N-CQD-13 in Aqueous Solution
3.6. Detection of Fe3+
3.7. Sensing Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, X.; Shen, Y.; Zhao, J.; Bao, X.; Qu, Y. Status and prospect of lignocellulosic bioethanol production in China. Bioresour. Technol. 2010, 101, 4814–4819. [Google Scholar] [CrossRef] [PubMed]
- Dantas, G.A.; Legey, L.F.L.; Mazzone, A. Energy from sugarcane bagasse in Brazil: An assessment of the productivity and cost of different technological routes. Renew. Sust. Energ. Rev. 2013, 21, 356–364. [Google Scholar] [CrossRef]
- Konde, K.S.; Nagarajan, S.; Kumar, V.; Patil, S.V.; Ranade, V.V. Sugarcane bagasse based biorefineries in India: Potential and challenges. Sustain. Energy Fuels 2021, 5, 52. [Google Scholar] [CrossRef]
- Boruah, A.; Saikia, M.; Das, T.; Goswamee, R.L.; Saikia, B.K. Blue-emitting Fluorescent Carbon Quantum Dots from Waste Biomass Sources and Their Application in Fluoride Ion Detection in Water. J. Photochem. Photobiol. B 2020, 209, 111940. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, A.A.; Dantas, P.V.F.; Santos, E.S.; Fernandes, F.A.N.; Macedo, G.R. Evaluation of composition, characterization and enzymatic hydrolysis of pretreated sugar cane bagasse. Braz. J. Chem. Eng. 2015, 32, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Su, X.; Feng, J.; Ma, S. Preparation of sugarcane bagasse biochar/nano-iron oxide composite and mechanism of its Cr (VI) adsorption in water. J. Clean. Prod. 2021, 320, 128723. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Mariano, M.; Rabelo, S.C.; Gouveia, R.F.; Lona, L.M.F. Isolation and surface modification of cellulose nanocrystals from sugarcane bagasse waste: From a micro- to a nano-scale view. Appl. Surf. Sci. 2018, 436, 1113–1122. [Google Scholar] [CrossRef]
- Long, S.Y.; Du, Q.S.; Wang, S.Q.; Tang, P.D.; Li, D.P.; Huang, R.B. Graphene two-dimensional crystal prepared from cellulose two-dimensional crystal hydrolysed from sustainable biomass sugarcane bagasse. J. Clean. Prod. 2019, 241, 118209. [Google Scholar] [CrossRef]
- Kang, C.; Huang, Y.; Yang, H.; Yan, X.F.; Chen, Z.P. A Review of Carbon Dots Produced from Biomass Wastes. Nanomaterials 2020, 10, 2316. [Google Scholar] [CrossRef]
- Luo, H.; Guo, Q.; Szilágyi, P.G.; Jorge, A.B.; Titirici, M.M. Carbon Dots in Solar-to-Hydrogen Conversion. Trends Chem. 2020, 2, 623–637. [Google Scholar] [CrossRef]
- Qian, Z.; Shan, X.; Chai, L.; Ma, J.; Chen, J.; Feng, H. Si-Doped Carbon Quantum Dots: A Facile and General Preparation Strategy, Bioimaging Application, and Multifunctional Sensor. ACS Appl. Mater. Interfaces 2014, 6, 6797–6805. [Google Scholar] [CrossRef]
- Liang, Z.; Kang, M.; Payne, G.F.; Wang, X.; Sun, R. Probing Energy and Electron Transfer Mechanisms in Fluorescence Quenching of Biomass Carbon Quantum Dots. ACS Appl. Mater. Interfaces 2016, 8, 17478–17488. [Google Scholar] [CrossRef]
- Hou, J.T.; Zhang, M.; Liu, Y.; Ma, X.; Duan, R.; Cao, X.; Yuan, F.; Liao, Y.X.; Wang, S.; Ren, W.X. Fluorescent detectors for hydroxyl radical and their applications in bioimaging: A review. Coordin. Chem. Rev. 2020, 421, 213457. [Google Scholar] [CrossRef]
- Hua, X.W.; Bao, Y.W.; Wu, F.G. Fluorescent Carbon Quantum Dots with Intrinsic Nucleolus-Targeting Capability for Nucleolus Imaging and Enhanced Cytosolic and Nuclear Drug Delivery. ACS Appl. Mater. Interfaces 2018, 10, 10664–10677. [Google Scholar] [CrossRef]
- Hagiwara, K.; Horikoshi, S.; Serpone, N. Photoluminescent Carbon Quantum Dots: Synthetic Approaches and Photophysical Properties. Chem. Eur. J. 2021, 27, 9466–9481. [Google Scholar] [CrossRef]
- Miao, X.; Qu, D.; Yang, D.; Nie, B.; Zhao, Y.; Fan, H.; Sun, Z. Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization. Adv. Mater. 2018, 30, 1704740. [Google Scholar] [CrossRef]
- Liu, J.M.; Lin, L.P.; Wang, X.X.; Lin, S.Q.; Cai, W.L.; Zhang, L.H.; Zheng, Z.Y. Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe. Analyst 2012, 137, 2637–2642. [Google Scholar] [CrossRef]
- Singh, A.; Mohapatra, P.K.; Kalyanasundaram, D.; Kumar, S. Self-functionalized ultrastable water suspension of luminescent carbon quantum dots. Mater. Chem. Phys. 2019, 225, 23–27. [Google Scholar] [CrossRef]
- Wareing, T.C.; Gentile, P.; Phan, A.N. Biomass-Based Carbon Dots: Current Development and Future Perspectives. ACS Nano 2021, 15, 15471–15501. [Google Scholar] [CrossRef]
- Qu, J.H.; Wei, Q.Y.; Sun, D.W. Carbon dots: Principles and their applications in food quality and safety detection. Crit. Rev. Food Sci. 2018, 58, 2466–2475. [Google Scholar] [CrossRef]
- Naik, V.M.; Bhosale, S.V.; Kolekar, G.B. A brief review on the synthesis, characterisation and analytical applications of nitrogen doped carbon dots. Anal. Methods 2022, 14, 877–891. [Google Scholar] [CrossRef]
- Denis, P.A.; Faccio, R.; Mombru, A.W. Is It Possible to Dope Single-Walled Carbon Nanotubes and Graphene with Sulfur? Chem. Phys. Chem. 2009, 10, 715. [Google Scholar] [CrossRef] [PubMed]
- Atchudan, R.; Edison, T.N.J.I.; Perumal, S.; Muthuchamy, N.; Lee, Y.R. Hydrophilic nitrogen-doped carbon dots from biowaste using dwarf banana peel for environmental and biological applications. Fuel 2020, 275, 117821. [Google Scholar] [CrossRef]
- Krishnaiah, P.; Atchudan, R.; Perumal, S.; Salama, E.S.; Lee, Y.R.; Jeon, B.H. Utilization of waste biomass of Poa pratensis for green synthesis of n-doped carbon dots and its application in detection of Mn2+ and Fe3+. Chemosphere 2022, 286, 131764. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Min, T.; Miao, L.; Liu, S.; Li, J.; Yu, H.; Teng, C.; Huang, Z.; Liu, H.; Shao, Q.; et al. Biomass-Derived Nitrogen-doped Carbon Quantum Qots: Highly Selective Fluorescent Probe for Detecting Fe3+ Ions and Tetracyclines. J. Colloid Interf. Sci. 2019, 539, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Shejale, K.P.; Jaiswal, A.; Kumar, A.; Saxena, S.; Shukla, S. Nitrogen doped carbon quantum dots as Co-active materials for highly efficient dye sensitized solar cells. Carbon 2021, 183, 169–175. [Google Scholar] [CrossRef]
- Park, Y.; Kim, Y.; Chang, H.; Won, S.; Kim, H.; Kwon, W. Biocompatible nitrogen-doped carbon dots: Synthesis, characterization, and application. J. Mater. Chem. B 2020, 8, 8935. [Google Scholar] [CrossRef]
- Kang, S.; Jeong, Y.K.; Ryu, J.H.; Son, Y.; Kim, W.R.; Lee, B.; Jung, K.H.; Kim, K.M. Pulsed laser ablation based synthetic route for nitrogen-doped graphene quantum dots using graphite flakes. Appl. Surf. Sci. 2020, 506, 144998. [Google Scholar] [CrossRef]
- Dey, S.; Govindaraj, A.; Biswas, K.; Rao, C.N.R. Luminescence properties of boron and nitrogen doped graphene quantum dots prepared from arc-discharge-generated doped graphene samples. Chem. Phys. Lett. 2014, 595–596, 203–208. [Google Scholar] [CrossRef]
- Feng, J.; Wang, W.J.; Hai, X.; Yu, Y.L.; Wang, J.H. Green preparation of nitrogen-doped carbon dots derived from silkworm chrysalis for cell imaging. J. Mater. Chem. B 2016, 4, 387. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, W. Nitrogen-doped carbon quantum dots: Facile synthesis and application as a “turn-off” fluorescent probe for detection of Hg2+ ions. Biosens. Bioelectron. 2014, 55, 83–90. [Google Scholar] [CrossRef]
- Liu, Y.; Li, W.; Wu, P.; Liu, S. Preparation and Applications of Carbon Quantum Dots Prepared via Hydrothermal Carbonization Method. Prog. Chem. 2018, 30, 349–364. [Google Scholar]
- Mohapatra, S.; Bera, M.K.; Das, R.K. Rapid “turn-on” detection of atrazine using highly luminescent N-doped carbon quantum dot. Sens. Actuator B Chem. 2018, 263, 459–468. [Google Scholar] [CrossRef]
- Atchudan, R.; Kishore, S.C.; Edison, T.N.J.I.; Perumal, S.; Vinodh, R.; Sundramoorthy, A.K.; Babu, R.S.; Alagan, M.; Lee, Y.R. Highly Fluorescent Carbon Dots as a Potential Fluorescence Probe for Selective Sensing of Ferric Ions in Aqueous Solution. Chemosensors 2021, 9, 301. [Google Scholar] [CrossRef]
- Li, Z.; Hou, J.T.; Wang, S.; Zhu, L.; He, X.; Shen, J. Recent advances of luminescent sensors for iron and copper: Platforms, mechanisms, and bio-applications. Coordin. Chem. Rev. 2022, 469, 214695. [Google Scholar] [CrossRef]
- Xie, X.; Hua, X.; Wang, Z.; Yang, X.; Huang, H. Real-Time Imaging Redox Status in Biothiols and Ferric Metabolism of Cancer Cells in Ferroptosis Based on Switched Fluorescence Response of Gold Carbon Dots. Anal. Chem. 2020, 92, 11420–11428. [Google Scholar] [CrossRef]
- Luan, F.; Burgos, W.D. Sequential Extraction Method for Determination of Fe(II/III) and U(IV/VI) in Suspensions of Iron-Bearing Phyllosilicates and Uranium. Environ. Sci. Technol. 2012, 46, 11995–12002. [Google Scholar] [CrossRef]
- Wallace, K.J.; Johnson, A.D.G.; Jones, W.S.; Manandhar, E. Chemodosimeters and chemoreactands for sensing ferric ions. Supramol. Chem. 2018, 30, 353–383. [Google Scholar] [CrossRef]
- Omer, K.M.; Tofiq, D.I.; Hassan, A.Q. Solvothermal synthesis of phosphorus and nitrogen doped carbon quantum dots as a fluorescent probe for iron(III). Microchim. Acta 2018, 185, 466. [Google Scholar] [CrossRef]
- Lesani, P.; Singh, G.; Viray, C.M.; Ramaswamy, Y.; Zhu, D.M.; Kingshott, P.; Lu, Z.; Zreiqat, H. Two-Photon Dual-Emissive Carbon Dot-Based Probe: Deep-Tissue Imaging and Ultrasensitive Sensing of Intracellular Ferric Ions. ACS Appl. Mater. Interfaces 2020, 12, 18395–18406. [Google Scholar] [CrossRef]
- Li, R.; Gao, M.; Zhang, J.; Li, Z.; Chen, J.; Liu, P.; Wu, D. An ionic liquid promoted microwave-hydrothermal route towards highly photoluminescent carbon dots for sensitive and selective detection of iron(III). RSC Adv. 2015, 5, 24205–24209. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, Y.; Piao, Y.; Meng, L.Y. Development of nitrogen-doped carbon quantum dots as fluorescent probes for highly selective and sensitive detection of the heavy-ion Fe3+. Carbon Lett. 2021, 31, 821–829. [Google Scholar] [CrossRef]
- Xu, L.; Fan, H.; Huang, L.; Xia, J.; Huang, J.; Li, M.; Ding, H.; Huang, K.; Li, S. Eosinophilic nitrogen-doped carbon dots derived from tribute chrysanthemum for label-free detection of Fe3+ ions and hydrazine. J. Taiwan Inst. Chem. Eng. 2017, 78, 247–253. [Google Scholar] [CrossRef]
- Ahn, J.; Song, Y.; Kwon, J.E.; Lee, S.H.; Park, K.S.; Kim, S.; Woo, J.; Kim, H. Food waste-driven N-doped carbon dots: Applications for Fe3+ sensing and cell imaging. Mater. Sci. Eng. C 2019, 102, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Feng, Y.; Li, H.; Du, Z.; Teng, Q.; Wang, H. N-doped carbon quantum dots as fluorescent probes for highly selective and sensitive detection of Fe3+ ions. Particuology 2018, 41, 94–100. [Google Scholar] [CrossRef]
- Šafranko, S.; Stankovic, A.; Hajra, S.; Kim, H.J.; Strelec, I.; Dutour-Sikiric, M.; Weber, I.; Bosnar, M.H.; Grbcic, P.; Pavelic, S.K.; et al. Preparation of Multifunctional N-Doped Carbon Quantum Dots from Citrus clementina Peel: Investigating Targeted Pharmacological Activities and the Potential Application for Fe3+ Sensing. Pharmaceuticals 2021, 14, 857. [Google Scholar] [CrossRef]
- Santonocito, R.; Intravaia, M.; Caruso, I.M.; Pappalardo, A.; Sfrazzetto, G.T.; Tuccitto, N. Fluorescence sensing by carbon nanoparticles. Nanoscale Adv. 2022, 4, 1926–1948. [Google Scholar] [CrossRef]
- Jing, S.; Zhao, Y.; Sun, R.C.; Zhong, L.; Peng, X. Facile and High-yield Synthesis of Carbon Quantum Dots from Biomass-derived Carbons at Mild Condition. ACS Sustain. Chem. Eng. 2019, 7, 7833–7843. [Google Scholar] [CrossRef]
- Das, D.; Dutta, R.K. N-Doped Carbon Dots Synthesized from Ethylene Glycol and β-Alanine for Detection of Cr(VI) and 4-Nitrophenol via Photoluminescence Quenching. ACS Appl. Nano Mater. 2021, 4, 3444–3454. [Google Scholar] [CrossRef]
- Yetilmezsoy, K.; Demirel, S.; Vanderbei, R.J. Response surface modeling of Pb (II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experi-mental design. J. Hazard. Mater. 2009, 171, 551–562. [Google Scholar] [CrossRef]
- Prakash Maran, J.; Manikandan, S.; Thirugnanasambandham, K.; Vigna Nivetha, C.; Dinesh, R. Box–Behnken design based statistical modeling for ultrasound-assisted extraction of corn silk polysaccharide. Carbohyd. Polym. 2013, 92, 604–611. [Google Scholar] [CrossRef]
- Su, Q.; Deng, L.; Ye, Q.; He, Y.; Cui, X. KOH-Activated Geopolymer Microspheres Recycle Co(II) with Higher Adsorption Capacity than NaOH-Activated Ones. ACS Omega 2020, 5, 23898–23908. [Google Scholar] [CrossRef]
- Wei, X.; Xu, X.; Yang, X.; Li, J.; Liu, Z. Visible light degradation of reactive black-42 by novel Sr/Ag-TiO2@g-C3N4 photocatalyst: RSM optimization, reaction kinetics and pathways. Spectrochim. Acta A 2020, 228, 117870. [Google Scholar] [CrossRef]
- Tammina, S.K.; Yang, D.; Koppala, S.; Cheng, C.; Yang, Y. Highly photoluminescent N, P doped carbon quantum dots as a fluorescent sensor for the detection of dopamine and temperature. J. Photochem. Photobiol. B Biol. 2019, 194, 61–70. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Liu, X.; Liu, P.; Wang, Y.; An, T.; Yang, H.; Jing, D.; Zhao, H. Determination of Iodide via Direct Fluorescence Quenching at Nitrogen-Doped Carbon Quantum Dot Fluorophores. Environ. Sci. Technol. Lett. 2014, 1, 87–91. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Y.; Liang, M.; Xu, L.; Qi, S.; Chen, H.; Chen, X. Solid-Phase Synthesis of Highly Fluorescent Nitrogen-Doped Carbon Dots for Sensitive and Selective Probing Ferric Ions in Living Cells. Anal. Chem. 2014, 86, 9846–9852. [Google Scholar] [CrossRef]
- Wu, P.; Li, W.; Wu, Q.; Liu, Y.; Liu, S. Hydrothermal synthesis of nitrogen-doped carbon quantum dots from microcrystalline cellulose for the detection of Fe3+ ions in an acidic environment. RSC Adv. 2017, 7, 44144–44153. [Google Scholar] [CrossRef] [Green Version]
- Alam, A.M.; Park, B.Y.; Ghouri, Z.K.; Park, M.; Kim, H.Y. Synthesis of carbon quantum dots from cabbage with down- and up-conversion photoluminescence properties: Excellent imaging agent for biomedical applications. Green Chem. 2015, 17, 3791–3797. [Google Scholar] [CrossRef]
- Yang, Q.; Duan, J.; Yang, W.; Li, X.; Mo, J.; Yang, P.; Tang, Q. Nitrogen-doped carbon quantum dots from biomass via simple one-pot method and exploration of their application. Appl. Surf. Sci. 2018, 434, 1079–1085. [Google Scholar] [CrossRef]
- Yu, D.; Zhang, X.; Qi, Y.; Ding, S.; Cao, S.; Zhu, A.; Shi, G. Pb2+-modified graphene quantum dots as a fluorescent probe for biological aminothiols mediated by an inner filter effect. Sens. Actuat. B Chem. 2016, 235, 394–400. [Google Scholar] [CrossRef]
- Mendonça, A.; Rocha, A.C.; Duarte, A.C.; Santos, E.B.H. The inner filter effects and their correction in fluorescence spectra of salt marsh humic matter. Anal. Chim. Acta 2013, 788, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Xing, M.; Wu, Q. A universal facile synthesis of nitrogen and sulfur co-doped carbon dots from cellulose-based biowaste for fluorescent detection of Fe3+ ions and intracellular bioimaging. Mater. Sci. Eng. C Mater. 2019, 99, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Qi, N.; Li, K.; Cheng, D.; Wang, D.; Li, Y. Green fluorescent nanomaterials for rapid detection of chromium and iron ions: Wool keratin-based carbon quantum dots. RSC Adv. 2022, 12, 8108–8118. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, H.; Yang, Y.; Zhang, D.; Wu, M.; Pan, B.; Xing, B. Identifying structural characteristics of humic acid to static and dynamic fluorescence quenching of phenanthrene, 9-phenanthrol, and naphthalene. Water Res. 2017, 122, 337–344. [Google Scholar] [CrossRef]
- Wang, C.; Hu, T.; Wen, Z.; Zhou, J.; Wang, X.; Wu, Q.; Wang, C. Concentration-dependent color tunability of nitrogen-doped carbon dots and their application for iron(III) detection and multicolor bioimaging. J. Colloid Interfaces Sci. 2018, 521, 33–41. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Cao, J.; Zhu, J.; Fan, L.; Li, X. Sulfur-Doped Graphene Quantum Dots as a Novel Fluorescent Probe for Highly Selective and Sensitive Detection of Fe3+. Anal. Chem. 2014, 86, 10201–10207. [Google Scholar] [CrossRef]
No. | Carbon Source | Nitrogen Source | Linear Range (μM) | LOD of Fe3+ (μM) | Ref. |
---|---|---|---|---|---|
1 | dwarf banana peel | aqueous ammonia | 5–25 | 0.66 | [23] |
2 | Poa Pratensis | ethylenediamine | 5–25 | 1.4 | [24] |
3 | rice residue | glycine | 3.32–32.26 | 0.7462 | [25] |
4 | rice straw | - | 0–3 | 0.20 | [41] |
5 | Matrimony vine | polyetherimide | 5–60 | 2.22 | [42] |
6 | tribute chrysanthemum | - | 0–100 | 1 | [43] |
7 | hamburger sandwich leftover | - | 0–500 | 32 | [44] |
8 | biomass tar | ethylenediamine | 0.06–1400 | 0.06 | [45] |
9 | Citrus Clementina peel | arginine | 7–50 | 4.57 | [46] |
10 | Sugarcane bagasse | urea | 0–1000 | 0.44 | This work |
Factors | Levels | ||
---|---|---|---|
Temperature | Time | Urea Dosage | |
Temperature/°C | 180/200/220/240/260 | 220 | 220 |
Time/h | 4 | 2/4/6/8/10 | 4 |
Urea dosage/g | 0.2 | 0.2 | 0.2/0.4/0.6/0.8/1.0 |
Item | Factor | Level | ||
---|---|---|---|---|
−1 | 0 | +1 | ||
A | Temperature (°C) | 200 | 220 | 240 |
B | Time (h) | 2 | 4 | 6 |
C | Urea dosage (g) | 0.2 | 0.4 | 0.6 |
Run Order | Quantum Dot | Temperature (A, °C) | Time (B, h) | Urea Dosage (C, g) | Intensity (Y, a. u.) |
---|---|---|---|---|---|
1 | N-CQD-1 | 200 (−1) | 2 (−1) | 0.4 (0) | 99.1 |
2 | N-CQD-2 | 240 (1) | 2 (−1) | 0.4 (0) | 122.8 |
3 | N-CQD-3 | 200 (−1) | 6 (1) | 0.4 (0) | 117.4 |
4 | N-CQD-4 | 240 (1) | 6 (1) | 0.4 (0) | 119.1 |
5 | N-CQD-5 | 200 (−1) | 4 (0) | 0.2 (−1) | 109.3 |
6 | N-CQD-6 | 240 (1) | 4 (0) | 0.2 (−1) | 98.3 |
7 | N-CQD-7 | 200 (−1) | 4 (0) | 0.6 (1) | 90.3 |
8 | N-CQD-8 | 240 (1) | 4 (0) | 0.6 (1) | 121.0 |
9 | N-CQD-9 | 220 (0) | 2 (−1) | 0.2 (−1) | 103.9 |
10 | N-CQD-10 | 220 (0) | 6 (1) | 0.2 (−1) | 103.4 |
11 | N-CQD-11 | 220 (0) | 2 (−1) | 0.6 (1) | 105.2 |
12 | N-CQD-12 | 220 (0) | 6 (1) | 0.6 (1) | 117.1 |
13 | N-CQD-13 | 220 (0) | 4 (0) | 0.4 (0) | 167.7 |
14 | N-CQD-13 | 220 (0) | 4 (0) | 0.4 (0) | 159.9 |
15 | N-CQD-13 | 220 (0) | 4 (0) | 0.4 (0) | 164.1 |
16 | N-CQD-13 | 220 (0) | 4 (0) | 0.4 (0) | 163.2 |
17 | N-CQD-13 | 220 (0) | 4 (0) | 0.4 (0) | 161.0 |
Source | Sum of Squares | DF | Mean Square | F-Value | p-Value Prob > F | |
---|---|---|---|---|---|---|
Model | 11,596.21 | 9 | 1288.47 | 157.54 | <0.0001 | Significant |
A | 254.25 | 1 | 254.25 | 31.087 | 0.0008 | |
B | 84.50 | 1 | 84.50 | 10.33 | 0.015 | |
C | 43.71 | 1 | 43.71 | 5.34 | 0.054 | |
AB | 121.00 | 1 | 121.00 | 14.79 | 0.0063 | |
AC | 434.72 | 1 | 434.72 | 53.15 | 0.0002 | |
BC | 38.44 | 1 | 38.44 | 4.70 | 0.067 | |
A2 | 2769.66 | 1 | 2769.66 | 338.64 | <0.0001 | |
B2 | 2222.045 | 1 | 2222.045 | 271.69 | <0.0001 | |
C2 | 4542.98 | 1 | 4542.982 | 555.47 | <0.0001 | |
Residual | 57.25 | 7 | 8.178643 | |||
Lack of Fit | 21.30 | 3 | 7.1 | 0.79 | 0.5592 | Not Significant |
Pure Error | 35.95 | 4 | 8.99 | |||
Cor Total | 11653.46 | 16 | ||||
determination R-Squared | 0.9951 | |||||
Adj R-Squared | 0.9888 | |||||
C.V. % | 2.29% |
No. | Actual Intensity (a. u.) | Average of Actual Intensity (a. u.) | Predictive Intensity (a. u.) | Error (%) |
---|---|---|---|---|
1 | 164.2 | 162.5 | 163.7 | 0.73 |
2 | 161.3 | |||
3 | 161.9 |
Carbon Dot | λmax (nm) 1 | λex (nm) 1 | λem (nm) 1 | Stokes Shift (nm) | Absolute QY (%) | Relative QY (%) 2 |
---|---|---|---|---|---|---|
CQD | 268 | 338 | 428 | 90 | 0.53 | 2.56 |
N-CQD-13 | 268 | 330 | 417 | 85 | 1.69 | 12.2 |
λex (nm) | CQD | N-CQD-13 | ||
---|---|---|---|---|
λem (nm) | Intensity (a. u.) | λem (nm) | Intensity (a. u.) | |
300 | 386.0 | 21.32 | 409.0 | 156.90 |
320 | 424.6 | 24.09 | 417.0 | 164.09 |
340 | 437.8 | 25.90 | 417.6 | 143.20 |
360 | 437.8 | 13.58 | 431.0 | 106.40 |
380 | 464.0 | 6.88 | 437.2 | 72.37 |
400 | 495.0 | 3.31 | 463.4 | 29.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, S.; Guo, S.; Qin, Q.; Liao, Y.; Li, M.; Du, F. Box–Behnken Design Optimizing Sugarcane Bagasse-Based Nitrogen-Doped Carbon Quantum Dots Preparation and Application in Ferric Ion Detection. Chemosensors 2022, 10, 453. https://doi.org/10.3390/chemosensors10110453
Sun S, Guo S, Qin Q, Liao Y, Li M, Du F. Box–Behnken Design Optimizing Sugarcane Bagasse-Based Nitrogen-Doped Carbon Quantum Dots Preparation and Application in Ferric Ion Detection. Chemosensors. 2022; 10(11):453. https://doi.org/10.3390/chemosensors10110453
Chicago/Turabian StyleSun, Shouxiang, Shuai Guo, Qin Qin, Yexin Liao, Mei Li, and Fangkai Du. 2022. "Box–Behnken Design Optimizing Sugarcane Bagasse-Based Nitrogen-Doped Carbon Quantum Dots Preparation and Application in Ferric Ion Detection" Chemosensors 10, no. 11: 453. https://doi.org/10.3390/chemosensors10110453
APA StyleSun, S., Guo, S., Qin, Q., Liao, Y., Li, M., & Du, F. (2022). Box–Behnken Design Optimizing Sugarcane Bagasse-Based Nitrogen-Doped Carbon Quantum Dots Preparation and Application in Ferric Ion Detection. Chemosensors, 10(11), 453. https://doi.org/10.3390/chemosensors10110453