Biomonitoring and Assessment of Dumpsites Soil Using Phospholipid Fatty Acid Analysis (PLFA) Method—Evaluation of Possibilities and Limitations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Sampling
2.3. Phospholipid Fatty Acid Analysis (PLFA)
2.4. Statistical Analysis
3. Results
3.1. Main Parameters of the Soils Sampling Area
3.2. PLFA Analysis
3.3. Results of Principal Component Analysis (PCA)
3.4. Cluster Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malinowski, M.; Wolny-Koladka, K.; Jastrzebski, B. Characteristics of illegal dumping sites-case study: Watercourses. Infrastruktura i Ekologia Terenów Wiejskich 2015, 4, 1475–1484. [Google Scholar]
- Kumar, S.; Bhattacharyya, J.K.; Vaidya, A.N.; Chakrabarti, T.; Devotta, S.; Akolkar, A.B. Assessment of the status of municipal solid waste management in metro cities, state capitals, class I cities, and class II towns in India: An insight. Waste Manag. 2009, 29, 883–895. [Google Scholar] [CrossRef] [PubMed]
- Al-Delaimy, W.K.; Wood Larsen, C.; Pezzoli, K. Differences in health symptoms among residents living near illegal dump sites in Los Laureles Canyon, Tijuana, Mexico: A cross sectional survey. Int. J. Environ. Res. Public Health 2014, 11, 9532–9552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Sun, Q.; Chen, P.; Wei, X.; Wang, B. How microorganisms tell the truth of potentially toxic elements pollution in environment. J. Hazard. Mater. 2022, 431, 128456. [Google Scholar] [CrossRef] [PubMed]
- Szulc, J.; Okrasa, M.; Nowak, A.; Nizioł, J.; Ruman, T.; Kuberski, S. Assessment of Physicochemical, Microbiological and Toxicological Hazards at an Illegal Landfill in Central Poland. Int. J. Environ. Res. Public Health 2022, 19, 4826. [Google Scholar] [CrossRef]
- Blagodatskaya, E.; Kuzyakov, Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review. Biol. Fertil. Soils 2008, 45, 115–131. [Google Scholar] [CrossRef]
- Vázquez-Blanco, R.; Arias-Estévez, M.; Bååth, E.; Fernández-Calviño, D. Comparing the effect of Cu-based fungicides and pure Cu salts on microbial biomass, microbial community structure and bacterial community tolerance to Cu. J. Hazard. Mater. 2021, 409, 124960. [Google Scholar] [CrossRef]
- Szabó, P.; Jordan, G.Y.; Kocsis, T.; Posta, K.; Kardos, L.; Šajnc, R.; Alijagić, J. Iomonitoring and assessment of toxic element contamination in floodplain sediments and soils using fluorescein diacetate enzymatic activity (FDA) measurements. Evaluation of possibilities and limitations through the case study of the Drava River floodplain. Environ. Monit. Assess. 2022, 194, 1–19. [Google Scholar] [CrossRef]
- Kaur, A.; Chaudhary, A.; Kaur, A.; Choudhary, R.; Kaushik, R. Phospholipid fatty acid–a bioindicator of environment monitoring and assessment in soil ecosystem. Curr. Sci. 2005, 89, 1103–1112. [Google Scholar]
- Veum, K.S.; Acosta-Martinez, V.; Lehman, R.M.; Li, C.; Cano, A.; Nunes, M.R. PLFA and EL-FAME Indicators of Microbial Community Composition. In Soil Health Series: Volume 2 Laboratory Methods for Soil Health Analysis; Wiley: Hoboken, NJ, USA, 2021; pp. 251–288. [Google Scholar]
- Zhu, Y.; Guo, B.; Liu, C.; Lin, Y.; Fu, Q.; Li, N.; Li, H. Soil fertility, enzyme activity, and microbial community structure diversity among different soil textures under different land use types in coastal saline soil. J. Soils Sediments 2021, 21, 2240–2252. [Google Scholar] [CrossRef]
- Santás-Miguel, V.; Díaz-Raviña, M.; Martín, A.; García-Campos, E.; Barreiro, A.; Núñez-Delgado, A.; Fernández-Calviño, D. Soil enzymatic activities and microbial community structure in soils polluted with tetracycline antibiotics. Agronomy 2021, 11, 906. [Google Scholar] [CrossRef]
- Jung, Y.; Metreveli, G.; Park, C.B.; Baik, S.; Schaumann, G.E. Implications of pony lake fulvic acid for the aggregation and dissolution of oppositely charged surface-coated silver nanoparticles and their ecotoxicological effects on Daphnia magna. Environ. Sci. Technol. 2018, 52, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Dippold, M.A.; Kuzyakov, Y. Direct incorporation of fatty acids into microbial phospholipids in soils: Position-specific labeling tells the story. Geochim. Cosmochim. Acta 2016, 174, 211–221. [Google Scholar] [CrossRef]
- Guckert, J.B.; Ringelberg, D.B.; White, D.C.; Hanson, R.S.; Bratina, B.J. Membrane fatty acids as phenotypic markers in the polyphasic taxonomy of methylotrophs within the Proteobacteria. Microbiology 1991, 137, 2631–2641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore-Kucera, J.; Dick, R.P. PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas-fir chronosequence. Microb. Ecol. 2008, 55, 500–511. [Google Scholar] [CrossRef]
- Rajapaksha RM, C.P.; Tobor-Kapłon, M.A.; Baath, E. Metal toxicity affects fungal and bacterial activities in soil differently. Appl. Environ. Microbiol. 2004, 70, 2966–2973. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Scullion, J. Effects of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewage-sludge on soil micro-organisms and their activities. Appl. Soil Ecol. 2002, 20, 145–155. [Google Scholar] [CrossRef]
- Stefanowicz, A.M.; Stanek, M.; Nobis, M.; Zubek, S. Species-specific effects of plant invasions on activity, biomass, and composition of soil microbial communities. Biol. Fertil. Soils 2016, 52, 841–852. [Google Scholar] [CrossRef] [Green Version]
- Willers, C.; Jansen van Rensburg, P.J.; Claassens, S. Phospholipid fatty acid profiling of microbial communities–a review of interpretations and recent applications. J. Appl. Microbiol. 2015, 119, 1207–1218. [Google Scholar] [CrossRef]
- Bååth, E.; Anderson, T.H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem. 2003, 35, 955–963. [Google Scholar] [CrossRef]
- Chodak, M.; Gołębiewski, M.; Morawska-Płoskonka, J.; Kuduk, K.; Niklińska, M. Diversity of microorganisms from forest soils differently polluted with heavy metals. Appl. Soil Ecol. 2013, 64, 7–14. [Google Scholar] [CrossRef]
- Frostegård, Å.; Tunlid, A.; Bååth, E. Use and misuse of PLFA measurements in soils. Soil Biol. Biochem. 2011, 43, 1621–1625. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-total. In Methods of Soil Analysis Part 2, 2nd ed.; Page, A.L., Ed.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis Part 2; Page, A.L., Ed.; Chemical and Microbiological Properties; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1982; pp. 539–577. [Google Scholar]
- Sasser, M. Identification of bacteria by gas chromatography of cellular fatty acids. Newark 1990, DE: Microbial ID, 1990 Tech. Note #101. Available online: http://natasha.eng.usf.edu/gilbert/courses/Biotransport%20Phenomena/pdf/bacteria_gc_1.pdf (accessed on 1 September 2022).
- Ibekve, A.M.; Kennedy, A.C. Fatty acid methyl ester (FAME) profiles as a tool to investigate community structure of two agricultural soils. Plant Soil 1998, 206, 151–161. [Google Scholar] [CrossRef]
- Tunlid, A.; White, D.C. Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil. In Soil Biochemistry; CRC Press: Boca Raton, FL, USA, 2021; pp. 229–262. [Google Scholar]
- Frostegård, A.; Bååth, E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 1996, 22, 59–65. [Google Scholar] [CrossRef]
- Lee, A.K.; Chan, C.K.; Fang, M.; Lau, A.P. The 3-hydroxy fatty acids as biomarkers for quantification and characterization of endotoxins and Gram-negative bacteria in atmospheric aerosols in Hong Kong. Atmos. Environ. 2004, 38, 6307–6317. [Google Scholar] [CrossRef]
- Joner, E.J.; Eldhuset, T.D.; Lange, H.; Frostegård, Å. Changes in the microbial community in a forest soil amended with aluminium in situ. Plant Soil 2005, 275, 295–304. [Google Scholar] [CrossRef]
- Fanin, N.; Kardol, P.; Farrell, M.; Nilsson, M.C.; Gundale, M.J.; Wardle, D.A. The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils. Soil Biol. Biochem. 2019, 128, 111–114. [Google Scholar] [CrossRef]
- Lupwayi, N.Z.; Larney, F.J.; Blackshaw, R.E.; Kanashiro, D.A.; Pearson, D.C. Phospholipid fatty acid biomarkers show positive soil microbial community responses to conservation soil management of irrigated crop rotations. Soil Tillage Res. 2017, 168, 1–10. [Google Scholar] [CrossRef]
- Ringelberg, D.; Richmond, M.; Foley, K.; Reynolds, C. Utility of lipid biomarkers in support of bioremediation efforts at army sites. J. Microbiol. Method 2008, 74, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Carr, S.A.; Vogel, S.W.; Dunbar, R.B.; Brandes, J.; Spear, J.R.; Levy, R.; Naish, T.R.; Powell, R.D.; Wakeham, S.G.; Mandernack, K.W. Bacterial abundance and composition in marine sediments beneath the Ross Ice Shelf, Antarctica. Geobiology 2013, 11, 377–395. [Google Scholar] [CrossRef]
- Halász, J. Microbial Examination of Dump Sites. Ph.D. Thesis, University of Debrecen, Debrecen, Hungary, 2009; p. 125. [Google Scholar]
- Guckert, J.B.; Hood, M.A.; White, D. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: Increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Appl. Environ. Microbiol. 1986, 52, 794–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Béni, Á.; Lajtha, K.; Osorio, D.; Fekete, I. Field-flow fractionation and gel permeation methods for total soil fungal mass determination. Soil Sci. Annu. 2021, 72, 143901. [Google Scholar] [CrossRef]
- Fierer, N.; Schimel, J.P.; Holden, P.A. Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 2003, 35, 167–176. [Google Scholar] [CrossRef]
- Schutter, M.E.; Fuhrmann, J.J. Soil microbial community responses to fly ash amendment as revealed by analyses of whole soils and bacterial isolates. Soil Biol. Biochem. 2001, 33, 1947–1958. [Google Scholar] [CrossRef]
- Ansari, M.; Shekari, F.; Mohammadi, M.H.; Juhos, K.; Végvári, G.; Biró, B. Salt-tolerant plant growth-promoting bacteria enhanced salinity tolerance of salt-tolerant alfalfa (Medicago sativa L.) cultivars at high salinity. Acta Physiol. Plant. 2019, 41, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zykova, I.; Maksimuk, N.; Rebezov, M.; Kuznetsova, E.; Derkho, M.; Sereda, T.; Zaitseva, T. Interaction between heavy metals and microorganisms during wastewater treatment by activated sludge. J. Eng. Appl. Sci. 2019, 14, 2139–2145. [Google Scholar]
- Konopka, A.; Zakharova, T. Quantification of bacterial lead resistance via activity assays. J. Microbiol. Methods 1999, 37, 17–22. [Google Scholar] [CrossRef]
- Hinojosa, M.B.; Carreira, J.A.; García-Ruíz, R.; Dick, R.P. Microbial Response to Heavy Metal–Polluted Soils: Community Analysis from Phospholipid-Linked Fatty Acids and Ester-Linked Fatty Acids Extracts. J. Environ. Qual. 2005, 34, 1789–1800. [Google Scholar] [CrossRef]
- Parsons, C.; Lee, S.; Kathariou, S. Dissemination and conservation of cadmium and arsenic resistance determinants in Listeria and other Gram-positive bacteria. Mol. Microbiol. 2020, 113, 560–569. [Google Scholar] [CrossRef] [Green Version]
- Khan MZ, H.; Hasan, M.R.; Khan, M.; Aktar, S.; Fatema, K. Distribution of heavy metals in surface sediments of the Bay of Bengal Coast. J. Toxicol. 2017, 2017, 9235764. [Google Scholar] [CrossRef]
- Lechevalier, M.P.; Moss, C.W. Lipids in bacterial taxonomy-a taxonomist’s view. CRC Crit. Rev. Microbiol. 1977, 5, 109–210. [Google Scholar] [CrossRef] [PubMed]
- Cimermanova, M.; Pristas, P.; Piknova, M. Biodiversity of Actinomycetes from heavy metal contaminated technosols. Microorganisms 2021, 9, 1635. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.S.; Liu, K.; Liang, Y.Y.; Yu, J.P.; Hu, K.Q.; Yuan, L.H.; Shi, W.Q. An Azobenzene-Modified Photoresponsive Thorium–Organic Framework: Monitoring and Quantitative Analysis of Reversible trans–cis Photoisomerization. Inorg. Chem. 2021, 60, 8519–8529. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Lee, H.; Lee, S.; Kim, S.; Choi, K.H. Membrane fluidity-related adaptive response mechanisms of foodborne bacterial pathogens under environmental stresses. Food Res. Int. 2015, 72, 25–36. [Google Scholar] [CrossRef]
- Pietikäinen, J.; Hiukka, R.; Fritze, H. Does short-term heating of forest humus change its properties as a substrate for microbes? Soil Biol. Biochem. 2000, 32, 277–288. [Google Scholar] [CrossRef]
- Grebel, J.E.; Pignatello, J.J.; Mitch, W.A. Sorbic acid as a quantitative probe for the formation, scavenging and steady-state concentrations of the triplet-excited state of organic compounds. Water Res. 2011, 45, 6535–6544. [Google Scholar] [CrossRef]
- Melendez-Martinez, A.J.; Stinco, C.M.; Liu, C.; Wang, X.D. A simple HPLC method for the comprehensive analysis of cis/trans (Z/E) geometrical isomers of carotenoids for nutritional studies. Food Chem. 2013, 138, 1341–1350. [Google Scholar] [CrossRef]
- Sharma, A.; Bekir, M.; Lomadze, N.; Jung, S.H.; Pich, A.; Santer, S. Generation of Local Diffusioosmotic Flow by Light Responsive Microgels. Langmuir 2022, 38, 6343–6351. [Google Scholar] [CrossRef]
- George, F.; Figueiredo, P.; Toki, K.; Tatsuzawa, F.; Saito, N.; Brouillard, R. Influence of trans-cis isomerisation of coumaric acid substituents on colour variance and stabilisation in anthocyanins. Phytochemistry 2001, 57, 791–795. [Google Scholar] [CrossRef]
Parameter | Unit | Sampling | |||
---|---|---|---|---|---|
G | Bs | Bd | Co | ||
pH (KCL) | 4.33 | 4.81 | 4.52 | 5.22 | |
SOC | (g kg−1) | 25.8 ± 0.3 b | 54.2 ± 0.4 a | 32.4 ± 0.2 b | 19.6 ± 0.4 c |
Total N | (g kg−1) | 7.5 ± 0.3 a | 9.2 ± 0.4 a | 8.2 ± 0.2 a | 4.2 ± 0.1 b |
WHC | % | 22 ± 0.1 a | 25 ± 0.4 a | 24 ± 0.3 a | 24 ± 0.2 a |
CEC | % | 27 ± 0.2 b | 26 ± 0.3 b | 27 ± 0.2 b | 31 ± 0.3 a |
CaCO3 | % | 0.00 a | 0.00 a | 0.00 a | 0.00 a |
Total Cu | mg kg−1 | 47.9 ± 0.3 a | 43.2 ± 0.3 a | 34.8 ± 0.2 ab | 19.5 ± 0.3 b |
Total Zn | mg kg−1 | 234.8 ± 0.3 a | 237.5 ± 0.3 a | 228.2 ± 0.2 a | 23.2 ± 0.4 b |
Total Pb | mg kg−1 | 67.18 ± 0.3 a | 46.1 ± 0.2 b | 43.7 ± 0.4 b | 15.39 ± 0.5 c |
Total Cd | mg kg−1 | 2.6 ± 0.2 a | 3.2 ± 0.3 a | 1.8 ± 0.2 ab | 0 ± 0 b |
Sampling | Gram+ Biomarker Fatty Acids (mol %) | Gram− Biomarker Fatty Acids (mol %) | Actinomycetes Biomarker Fatty Acids (mol %) | Fungi Biomarker Fatty Acid (mol %) | ||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Co | 24.7352 a | 0.02 | 21.3526 c | 0.02 | 9.1203 b | 0.02 | 4.6113 b | 0.01 |
Bd | 53.3526 b | 0.02 | 14.2145 b | 0.02 | 4.2516 a | 0.01 | 1.9933 a | 0.03 |
Bs | 79.3526 c | 0.01 | 4.2516 a | 0.00 | 2.0516 a | 0.01 | 1.5481 a | 0.01 |
G | 70.1302 c | 0.01 | 6.3627 a | 0.02 | 3.2536 a | 0.01 | 1.7017 a | 0.02 |
Sampling | Fungal/Bacteria Ratio | Transz/Cisz Ratio 16:1ω7 | Transz/Cisz Ratio 18:1ω7 |
---|---|---|---|
Co | 0.0699 b | 1.6449 a | 0.5886 a |
Bd | 0.0270 a | 1.9235 a | 1.1044 b |
Bs | 0.0184 a | 2.4323 b | 1.1114 b |
G | 0.0209 a | 2.5601 b | 1.1254 b |
Principal Component | Eigenvalue | Total Variance (%) | Cumulativity (%) |
---|---|---|---|
1. (PCA1) | 10.927 | 60.686 | 60.686 |
2. (PCA2) | 3.436 | 19.091 | 79.777 |
3. (PCA3) | 2.533 | 14.074 | 93.851 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halász, J.; Kotroczó, Z.; Szabó, P.; Kocsis, T. Biomonitoring and Assessment of Dumpsites Soil Using Phospholipid Fatty Acid Analysis (PLFA) Method—Evaluation of Possibilities and Limitations. Chemosensors 2022, 10, 409. https://doi.org/10.3390/chemosensors10100409
Halász J, Kotroczó Z, Szabó P, Kocsis T. Biomonitoring and Assessment of Dumpsites Soil Using Phospholipid Fatty Acid Analysis (PLFA) Method—Evaluation of Possibilities and Limitations. Chemosensors. 2022; 10(10):409. https://doi.org/10.3390/chemosensors10100409
Chicago/Turabian StyleHalász, Judit, Zsolt Kotroczó, Péter Szabó, and Tamás Kocsis. 2022. "Biomonitoring and Assessment of Dumpsites Soil Using Phospholipid Fatty Acid Analysis (PLFA) Method—Evaluation of Possibilities and Limitations" Chemosensors 10, no. 10: 409. https://doi.org/10.3390/chemosensors10100409
APA StyleHalász, J., Kotroczó, Z., Szabó, P., & Kocsis, T. (2022). Biomonitoring and Assessment of Dumpsites Soil Using Phospholipid Fatty Acid Analysis (PLFA) Method—Evaluation of Possibilities and Limitations. Chemosensors, 10(10), 409. https://doi.org/10.3390/chemosensors10100409