Using Near-Infrared Spectroscopy and Stacked Regression for the Simultaneous Determination of Fresh Cattle and Poultry Manure Chemical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Equipment and Sample Analyses
2.3. Data Preprocessing
2.4. Individual Machine Learning and Stacked Regression Analyses
- (i)
- SVR is a technique in which a model learns a variable’s importance for characterizing the relationship between the input and output. It formulates an optimization problem to learn a regression function that uses the input predictor variables and map these to the output responses. The optimization is represented by using support vectors (i.e., a small set of training data samples) where the optimization solution depends on the number of support vectors instead on the dimension of the input data [26]. Linear (SVRLin), polynomial (SVRPoly), and radial (SVRRad)-basis kernels were utilized in this study. SVR for linear, polynomial, and radial-basis kernels was performed using the ‘kernlab’ package version 0.9.30 in R [27,28].
- (ii)
- LASSO regression aims to identify the variables and the corresponding regression coefficients leading to a statistical model that minimizes the errors of prediction. This is achieved by imposing a constraint on the model parameters, thus, shrinking the regression coefficients toward zero [29].
- (iii)
- (iv)
- ENET provides a bridge between LASSO and RIDGE, thereby improving the prediction accuracy by shrinking some of the regression coefficients to approximately zero as the strength of the penalty parameter increases [32,33]. LASSO, RIDGE, and ENET were conducted using the ‘glmnet’ package version 4.1.2 in R [34,35].
- (v)
- PLS is a data reduction technique that compresses a large number of measured collinear variables into a few orthogonal latent variables (i.e., principal components). The optimum number of latent variables to be used in the analysis is then determined by minimizing the root mean square error (RMSE) between the predicted and observed response variables [36]. PLS was fitted using the ‘mixOmics’ package version 6.17.26 in R [37]
- (vi)
- RF builds a predictor ensemble using a set of decision trees that grow in randomly selected subspaces of data [38]. The random sampling and ensemble strategies utilized in this method enable it to achieve predictions and better generalizations [39]. The ‘random forest’ package version 4.7.1.1 in R was used for RF analysis [40].
- (vii)
- RPART is a regression method often used for the prediction of binary outcomes that avoids the assumptions of linearity [41]. It builds classification or regression models of a very general structure using a two-step process; the resulting models can be represented as binary trees. RPART was performed using the ‘rpart’ package version 4.1.16 in R [42]. RPART was performed using the ‘rpart’ package in R [42].
- (viii)
- XGB is a highly effective and widely used machine learning technique that combines multiple decision trees to create a more powerful model [43,44]. It builds trees in a serial manner, where each tree tries to correct the mistake of the previous one. Each tree can provide good predictions and, in the process, more and more trees are added to iteratively improve the performance of the predictive model [44]. XGB was conducted using the ‘xgboost’ package version 1.5.1.1 in R [45].
- (ix)
- Stacked regression is an ensemble learning technique that collates the performance of the abovementioned individual machine learning techniques to optimize model performance [48]. The R package ‘stacks’ version 0.2.3 is part of the tidymodels ecosystem and was used for stacked regression. Individual statistical models (e.g., support vector regression, linear regression (LASSO, RIDGE, and ENET), etc.) were first defined and formed as candidate members (SVRLin1, SVRPoly1, SVRRad1, etc.) of the ensemble (Level 1 models) with each having different parameter values or model configurations in which all of them share the same resampling and repeated k-fold cross-validation. The Level 1 models were then stacked together (data stack) in a tibble format where the first column was the true outcome in the training set and the rest of the columns were the predictions for each candidate member of the ensemble. A regularized model (elastic net) was then fitted on each of the candidate members’ predictions to figure out how they can be combined to predict the true outcome (Level 2 modeling). In this stage, the stacking coefficients were determined with non-zero values retained and became members of the model stack, which were then trained on the full training set. The final model stack was then used to make the final and ultimate predictions on the test set, which was set aside previously, and the performance metrics were then determined (Figure 1).
2.5. Comparative Analysis of the Individual Machine Learning Techniques and Stacked Regression
3. Results
3.1. Signal Pretreatment and Descriptive Statistics of the Chemical Components of Poultry and Cattle Manure
3.2. Root Mean Square Error of Cross-Validation (RMSECV) and R2 Analyses of the Seven Chemical Components of Fresh Homogenized Samples in the Training Set
3.3. Root Mean Square Error of Prediction (RMSEP) and R2 Analyses of the Seven Chemical Components of Fresh Homogenized Samples in the Testing Set
3.4. Ratio of Performance to Deviation (RPD) Analyses of the Testing Test
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farooqi, Z.U.R.; Sabir, M.; Zeeshan, N.; Naveed, K.; Hussain, M.M. Enhancing Carbon Sequestration Using Organic Amendments and Agricultural Practices; IntechOpen: London, UK, 2018; ISBN 978-1-78923-765-8. [Google Scholar]
- Rahman, F.; Rahman, M.M.; Rahman, G.K.M.M.; Saleque, M.A.; Hossain, A.T.M.S.; Miah, M.G. Effect of Organic and Inorganic Fertilizers and Rice Straw on Carbon Sequestration and Soil Fertility under a Rice–Rice Cropping Pattern. Carbon Manag. 2016, 7, 41–53. [Google Scholar] [CrossRef]
- Bhunia, S.; Bhowmik, A.; Mallick, R.; Mukherjee, J. Agronomic Efficiency of Animal-Derived Organic Fertilizers and Their Effects on Biology and Fertility of Soil: A Review. Agronomy 2021, 11, 823. [Google Scholar] [CrossRef]
- Jiaying, M.; Tingting, C.; Jie, L.; Weimeng, F.; Baohua, F.; Guangyan, L.; Hubo, L.; Juncai, L.; Zhihai, W.; Longxing, T.; et al. Functions of Nitrogen, Phosphorus and Potassium in Energy Status and Their Influences on Rice Growth and Development. Rice Sci. 2022, 29, 166–178. [Google Scholar] [CrossRef]
- MacDonald, J.M.; Ribaudo, M.; Livingston, M.; Beckman, J.; Huang, W. Manure Use for Fertilizer and for Energy: Report to Congress. Available online: http://www.ers.usda.gov/publications/pub-details/?pubid=42740 (accessed on 23 August 2022).
- Khoshnevisan, B.; Duan, N.; Tsapekos, P.; Awasthi, M.K.; Liu, Z.; Mohammadi, A.; Angelidaki, I.; Tsang, D.C.W.; Zhang, Z.; Pan, J.; et al. A Critical Review on Livestock Manure Biorefinery Technologies: Sustainability, Challenges, and Future Perspectives. Renew. Sustain. Energy Rev. 2021, 135, 110033. [Google Scholar] [CrossRef]
- Pagliari, P.; Wilson, M.; He, Z. Animal Manure Production and Utilization: Impact of Modern Concentrated Animal Feeding Operations. In ASA Special Publications; Waldrip, H.M., Pagliari, P.H., He, Z., Eds.; American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America: Madison, WI, USA, 2020; pp. 1–14. ISBN 978-0-89118-371-6. [Google Scholar]
- Kacprzak, M.; Malińska, K.; Grosser, A.; Sobik-Szołtysek, J.; Wystalska, K.; Dróżdż, D.; Jasińska, A.; Meers, E. Cycles of Carbon, Nitrogen and Phosphorus in Poultry Manure Management Technologies—Environmental Aspects. Crit. Rev. Environ. Sci. Technol. 2022, 1–25. [Google Scholar] [CrossRef]
- Peters, J.; Combs, S.; Hoskins, B.; Jarman, J.; Kovar, J.; Watson, M.; Wolf, A.; Wolf, N. Recommended Methods of Manure Analysis; State of Wisconsin Department of Agriculture, Trade and Consumer Protection: Madison, WI, USA, 2003; p. 62.
- He, Z.; Pagliari, P.H.; Waldrip, H.M. Applied and Environmental Chemistry of Animal Manure: A Review. Pedosphere 2016, 26, 779–816. [Google Scholar] [CrossRef]
- Pagliari, P.H.; Laboski, C.A.M. Investigation of the Inorganic and Organic Phosphorus Forms in Animal Manure. J. Environ. Qual. 2012, 41, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Horf, M.; Vogel, S.; Drücker, H.; Gebbers, R.; Olfs, H.-W. Optical Spectrometry to Determine Nutrient Concentrations and Other Physicochemical Parameters in Liquid Organic Manures: A Review. Agronomy 2022, 12, 514. [Google Scholar] [CrossRef]
- Horf, M.; Gebbers, R.; Vogel, S.; Ostermann, M.; Piepel, M.-F.; Olfs, H.-W. Determination of Nutrients in Liquid Manures and Biogas Digestates by Portable Energy-Dispersive X-Ray Fluorescence Spectrometry. Sensors 2021, 21, 3892. [Google Scholar] [CrossRef]
- Feng, X.; Larson, R.A.; Digman, M.F. Evaluation of Near-Infrared Reflectance and Transflectance Sensing System for Predicting Manure Nutrients. Remote Sens. 2022, 14, 963. [Google Scholar] [CrossRef]
- Chen, L.; Xing, L.; Han, L. Review of the Application of Near-Infrared Spectroscopy Technology to Determine the Chemical Composition of Animal Manure. J. Environ. Qual. 2013, 42, 1015–1028. [Google Scholar] [CrossRef]
- Roggo, Y.; Chalus, P.; Maurer, L.; Lema-Martinez, C.; Edmond, A.; Jent, N. A Review of near Infrared Spectroscopy and Chemometrics in Pharmaceutical Technologies. J. Pharm. Biomed. Anal. 2007, 44, 683–700. [Google Scholar] [CrossRef]
- Kumaravelu, C.; Gopal, A. A Review on the Applications of Near-Infrared Spectrometer and Chemometrics for the Agro-Food Processing Industries. In Proceedings of the 2015 IEEE Technological Innovation in ICT for Agriculture and Rural Development (TIAR), Chennai, India, 10–12 July 2015; pp. 8–12. [Google Scholar]
- Huang, G.; Han, L.; Yang, Z.; Wang, X. Evaluation of the Nutrient Metal Content in Chinese Animal Manure Compost Using near Infrared Spectroscopy (NIRS). Bioresour. Technol. 2008, 99, 8164–8169. [Google Scholar] [CrossRef]
- Devianti, D.; Sufardi, S.; Mustaqimah, M.; Munawar, A.A. Near Infrared Technology in Agricultural Sustainability: Rapid Prediction of Nitrogen Content from Organic Fertilizer. Transdiscipl. J. Eng. Sci. 2022, 13, 1–12. [Google Scholar] [CrossRef]
- Devianti, D.; Yusmanizar, Y.; Syakur, S.; Munawar, A.A.; Yunus, Y. Organic Fertilizer from Agricultural Waste: Determination of Phosphorus Content Using near Infrared Reflectance. OP Conf. Ser. Earth Environ. Sci. 2021, 644, 012002. [Google Scholar] [CrossRef]
- Guindo, M.L.; Kabir, M.H.; Chen, R.; Liu, F. Particle Swarm Optimization and Multiple Stacked Generalizations to Detect Nitrogen and Organic-Matter in Organic-Fertilizer Using Vis-NIR. Sensors 2021, 21, 4882. [Google Scholar] [CrossRef] [PubMed]
- Gogé, F.; Thuriès, L.; Fouad, Y.; Damay, N.; Davrieux, F.; Moussard, G.; Roux, C.L.; Trupin-Maudemain, S.; Valé, M.; Morvan, T. Dataset of Chemical and Near-Infrared Spectroscopy Measurements of Fresh and Dried Poultry and Cattle Manure. Data Brief 2021, 34, 106647. [Google Scholar] [CrossRef] [PubMed]
- Silge, J.; Chow, F.; Kuhn, M.; Wickham, H. Rsample: General Resampling Infrastructure. 2022. Available online: https://rsample.tidymodels.org/ (accessed on 1 August 2022).
- Stevens, A.; Ramirez-Lopez, L. An Introduction to the Prospectr Package. 2022. Available online: https://github.com/l-ramirez-lopez/prospectr (accessed on 1 August 2022).
- Schmid, M.; Rath, D.; Diebold, U. Why and How Savitzky–Golay Filters Should Be Replaced. ACS Meas. Sci. Au 2022, 2, 185–196. [Google Scholar] [CrossRef]
- Zhang, F.; O’Donnell, L.J. Support Vector Regression. In Machine Learning; Elsevier: Amsterdam, The Netherlands, 2020; pp. 123–140. ISBN 978-0-12-815739-8. [Google Scholar]
- Karatzoglou, A.; Smola, A.; Hornik, K.; Australia (NICTA), N.I.; Maniscalco, M.A.; Teo, C.H. Kernlab: Kernel-Based Machine Learning Lab. 2022. Available online: https://CRAN.R-project.org/package=kernlab (accessed on 1 August 2022).
- Karatzoglou, A.; Smola, A.; Hornik, K.; Zeileis, A. Kernlab-an S4 Package for Kernel Methods in R. J. Stat. Softw. 2004, 11, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Ranstam, J.; Cook, J.A. LASSO Regression. Br. J. Surg. 2018, 105, 1348. [Google Scholar] [CrossRef]
- McDonald, G.C. Ridge Regression. WIREs Comput. Stat. 2009, 1, 93–100. [Google Scholar] [CrossRef]
- Arashi, M.; Saleh, A.K.M.E.; Kibria, B.M.G. Theory of Ridge Regression Estimation with Applications; John Wiley & Sons: Hoboken, NJ, USA, 2019; ISBN 978-1-118-64452-2. [Google Scholar]
- Jin, B.; Lorenz, D.A.; Schiffler, S. Elastic-Net Regularization: Error Estimates and Active Set Methods. Inverse Probl. 2009, 25, 115022. [Google Scholar] [CrossRef] [Green Version]
- Ciaburro, G. Regression Analysis with R: Design and Develop Statistical Nodes to Identify Unique Relationships within Data at Scale; Packt Publishing Ltd.: Birmingham, UK, 2018; ISBN 978-1-78862-270-7. [Google Scholar]
- Friedman, J.H.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Simon, N.; Friedman, J.H.; Hastie, T.; Tibshirani, R. Regularization Paths for Cox’s Proportional Hazards Model via Coordinate Descent. J. Stat. Softw. 2011, 39, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kassambara, A. Machine Learning Essentials: Practical Guide in R; 2018; ISBN 978-1-986406-85-7. Available online: https://books.google.com.hk/books?hl=zh-TW&lr=&id=745QDwAAQBAJ&oi=fnd&pg=PP2&dq=Machine+Learning+Essentials:+Practical+Guide+in+R+-+Alboukadel+Kassambara+-+Google+Books&ots=5EOsxRV1Mu&sig=CndMacT8zaX4mFhoM25OsMP3eEY&redir_esc=y#v=onepage&q=Machine%20Learning%20Essentials%3A%20Practical%20Guide%20in%20R%20-%20Alboukadel%20Kassambara%20-%20Google%20Books&f=false (accessed on 28 August 2022).
- Rohart, F.; Gautier, B.; Singh, A.; Lê Cao, K.-A. MixOmics: An R Package for ‘omics Feature Selection and Multiple Data Integration. PLOS Comput. Biol. 2017, 13, e1005752. [Google Scholar] [CrossRef] [Green Version]
- Biau, G. Analysis of a Random Forests Model. J. Mach. Learn. Res. 2012, 13, 33. [Google Scholar]
- Qi, Y. Random Forest for Bioinformatics. In Ensemble Machine Learning: Methods and Applications; Zhang, C., Ma, Y., Eds.; Springer: Boston, MA, USA, 2012; pp. 307–323. ISBN 978-1-4419-9326-7. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. Forest 2001, 2, 18–22. [Google Scholar]
- Newman, T.B.; Mcculloch, C.E. Statistical Interpretation of Data. In Goldman’s Cecil Medicine; Elsevier: Amsterdam, The Netherlands, 2012; pp. e1–e6. ISBN 978-1-4377-1604-7. [Google Scholar]
- Therneau, T.; Atkinson, B.; Port, B.R. (Producer of the initial R.; maintainer 1999–2017) Rpart: Recursive Partitioning and Regression Trees. 2022. Available online: https://cran.r-project.org/web/packages/rpart/ (accessed on 1 August 2022).
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Association for Computing Machinery, New York, NY, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Müller, A.C.; Guido, S. Introduction to Machine Learning with Python: A Guide for Data Scientists; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2016; ISBN 978-1-4493-6989-7. [Google Scholar]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Zhou, T.; et al. Xgboost: Extreme Gradient Boosting. 2022. Available online: https://github.com/dmlc/xgboost (accessed on 1 August 2022).
- Kuhn, M.; Vaughan, D. Parsnip: A Common API to Modeling and Analysis Functions. 2022. Available online: https://parsnip.tidymodels.org/ (accessed on 1 August 2022).
- Kuhn, M.; Vaughan, D. Tidymodels. Available online: https://www.tidymodels.org/ (accessed on 1 August 2022).
- Couch, S.P.; Kuhn, M. Stacks: Stacked Ensemble Modeling with Tidy Data Principles. J. Open Source Softw. 2022, 7, 4471. [Google Scholar] [CrossRef]
- Faber, N.M. Estimating the Uncertainty in Estimates of Root Mean Square Error of Prediction: Application to Determining the Size of an Adequate Test Set in Multivariate Calibration. Chemom. Intell. Lab. Syst. 1999, 49, 79–89. [Google Scholar] [CrossRef]
- Payne, C.E.; Wolfrum, E.J. Rapid Analysis of Composition and Reactivity in Cellulosic Biomass Feedstocks with Near-Infrared Spectroscopy. Biotechnol. Biofuels 2015, 8, 43. [Google Scholar] [CrossRef] [Green Version]
- Free Critical F-Value Calculator—Free Statistics Calculators. Available online: https://www.danielsoper.com/statcalc/calculator.aspx?id=4 (accessed on 23 August 2022).
- Murphy, D.J.; O’Brien, B.; O’Donovan, M.; Condon, T.; Murphy, M.D. A near Infrared Spectroscopy Calibration for the Prediction of Fresh Grass Quality on Irish Pastures. Inf. Process. Agric. 2022, 9, 243–253. [Google Scholar] [CrossRef]
- Chang, C.-W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R., Jr. Near-Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef]
- Ette, E.I.; Williams, P.J. Pharmacometrics: The Science of Quantitative Pharmacology; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 978-1-118-67951-7. [Google Scholar]
- Levine, M. The Strengths and Limitations of ICP-OES Analysis. Available online: https://www.analyticalcannabis.com/articles/icp-oes-icp-chemistry-icp-oes-analysis-strengths-and-limitations-312835 (accessed on 28 August 2022).
- Nizio, K.D.; Harynuk, J.J. Analysis of Alkyl Phosphates in Petroleum Samples by Comprehensive Two-Dimensional Gas Chromatography with Nitrogen Phosphorus Detection and Post-Column Deans Switching. J. Chromatogr. A 2012, 1252, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Merson, S.; Evans, P. A High Accuracy Reference Method for the Determination of Minor Elements in Steel by ICP-OES. J. Anal. At. Spectrom. 2003, 18, 372–375. [Google Scholar] [CrossRef]
- Jantzi, S.C.; Motto-Ros, V.; Trichard, F.; Markushin, Y.; Melikechi, N.; De Giacomo, A. Sample Treatment and Preparation for Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2016, 115, 52–63. [Google Scholar] [CrossRef]
- Olesik, J. ICP-OES Capabilities, Developments, Limitations, and Any Potential Challengers? Spectroscopy 2020, 35, 18–21. [Google Scholar]
- Gogé, F.; Thuriès, L.; Fouad, Y.; Damay, N.; Davrieux, F.; Moussard, G.; Roux, C.L.; Trupin-Maudemain, S.; Valé, M.; Morvan, T. Performance of near Infrared Spectroscopy of a Solid Cattle and Poultry Manure Database Depends on the Sample Preparation and Regression Method Used. J. Near Infrared Spectrosc. 2021, 29, 226–235. [Google Scholar] [CrossRef]
- Xing, L.; Chen, L.J.; Han, L.J. Rapid Analysis of Layer Manure Using Near-Infrared Reflectance Spectroscopy. Poult. Sci. 2008, 87, 1281–1286. [Google Scholar] [CrossRef]
- Pirouz, D.M. An Overview of Partial Least Squares. SSRN Electron. J. 2006, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Trygg, J.; Wold, S. O2-PLS, a Two-Block (X-Y) Latent Variable Regression (LVR) Method with an Integral OSC Filter. J. Chemom. 2003, 17, 53–64. [Google Scholar] [CrossRef]
- Xia, Y. Chapter Eleven—Correlation and Association Analyses in Microbiome Study Integrating Multiomics in Health and Disease. In Progress in Molecular Biology and Translational Science; Sun, J., Ed.; The Microbiome in Health and Disease; Academic Press: Cambridge, MA, USA, 2020; Volume 171, pp. 309–491. [Google Scholar]
- Solomon, K.R.; Brock, T.C.M.; Zwart, D.D.; Dyer, S.D.; Posthuma, L.; Richards, S.; Sanderson, H.; Sibley, P.; van den Brink, P.J. Extrapolation Practice for Ecotoxicological Effect Characterization of Chemicals; CRC Press: Boca Raton, FL, USA, 2008; ISBN 978-1-4200-7392-8. [Google Scholar]
- Willaby, H.W.; Costa, D.S.J.; Burns, B.D.; MacCann, C.; Roberts, R.D. Testing Complex Models with Small Sample Sizes: A Historical Overview and Empirical Demonstration of What Partial Least Squares (PLS) Can Offer Differential Psychology. Pers. Individ. Differ. 2015, 84, 73–78. [Google Scholar] [CrossRef]
- Su, R.; Liu, X.; Xiao, G.; Wei, L. Meta-GDBP: A High-Level Stacked Regression Model to Improve Anticancer Drug Response Prediction. Brief. Bioinform. 2020, 21, 996–1005. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Meacham-Hensold, K.; Guan, K.; Bernacchi, C.J. Hyperspectral Leaf Reflectance as Proxy for Photosynthetic Capacities: An Ensemble Approach Based on Multiple Machine Learning Algorithms. Front. Plant Sci. 2019, 10, 730. [Google Scholar] [CrossRef]
- Zhang, K.; Zhu, D.; Li, J.; Gao, X.; Gao, F.; Lu, J. Learning Stacking Regression for No-Reference Super-Resolution Image Quality Assessment. Signal Process. 2021, 178, 107771. [Google Scholar] [CrossRef]
- Kessy, S.R.; Sherris, M.; Villegas, A.M.; Ziveyi, J. Mortality Forecasting Using Stacked Regression Ensembles. Scand. Actuar. J. 2021, 2022, 591–626. [Google Scholar] [CrossRef]
- Cheng, Q.; Xu, H.; Fei, S.; Li, Z.; Chen, Z. Estimation of Maize LAI Using Ensemble Learning and UAV Multispectral Imagery under Different Water and Fertilizer Treatments. Agriculture 2022, 12, 1267. [Google Scholar] [CrossRef]
- Seireg, H.R.; Omar, Y.M.K.; El-Samie, F.E.A.; El-Fishawy, A.S.; Elmahalawy, A. Ensemble Machine Learning Techniques Using Computer Simulation Data for Wild Blueberry Yield Prediction. IEEE Access 2022, 10, 64671–64687. [Google Scholar] [CrossRef]
- Anbananthen, K.S.M.; Subbiah, S.; Chelliah, D.; Sivakumar, P.; Somasundaram, V.; Velshankar, K.H.; Khan, M.K.A.A. An Intelligent Decision Support System for Crop Yield Prediction Using Hybrid Machine Learning Algorithms. F1000Research 2021, 10, 1143. [Google Scholar] [CrossRef]
Chemicals | n | Mean | Median | sd | Min | Max |
---|---|---|---|---|---|---|
DM | 332 | 37.285 | 27.885 | 20.063 | 11.255 | 82.480 |
NH4 | 332 | 0.262 | 0.095 | 0.276 | 0.001 | 1.086 |
N | 332 | 1.369 | 0.672 | 1.093 | 0.255 | 4.152 |
P2O5 | 158 | 0.477 | 0.224 | 0.585 | 0.091 | 3.020 |
CaO | 158 | 0.575 | 0.330 | 0.556 | 0.094 | 3.108 |
MgO | 158 | 0.227 | 0.156 | 0.186 | 0.062 | 1.054 |
K2O | 158 | 1.022 | 0.826 | 0.648 | 0.187 | 3.845 |
Chemicals | n | Mean | Median | sd | Min | Max |
---|---|---|---|---|---|---|
DM | 232 | 38.035 | 28.972 | 20.340 | 12.690 | 81.990 |
NH4 | 232 | 0.262 | 0.091 | 0.277 | 0.001 | 0.968 |
N | 232 | 1.384 | 0.675 | 1.092 | 0.311 | 4.152 |
P2O5 | 110 | 0.468 | 0.225 | 0.575 | 0.098 | 3.020 |
CaO | 110 | 0.563 | 0.329 | 0.556 | 0.094 | 3.108 |
MgO | 110 | 0.222 | 0.147 | 0.190 | 0.068 | 1.054 |
K2O | 110 | 1.013 | 0.862 | 0.642 | 0.187 | 3.845 |
Chemicals | n | Mean | Median | sd | Min | Max |
---|---|---|---|---|---|---|
DM | 100 | 35.546 | 27.240 | 19.396 | 11.255 | 82.480 |
NH4 | 100 | 0.262 | 0.105 | 0.276 | 0.001 | 1.086 |
N | 100 | 1.334 | 0.663 | 1.099 | 0.255 | 3.650 |
P2O5 | 48 | 0.497 | 0.211 | 0.612 | 0.091 | 2.437 |
CaO | 48 | 0.602 | 0.401 | 0.561 | 0.120 | 2.503 |
MgO | 48 | 0.237 | 0.176 | 0.179 | 0.062 | 0.705 |
K2O | 48 | 1.044 | 0.825 | 0.668 | 0.307 | 2.649 |
Algorithm | DM | NH4 | N | P2O5 | CaO | MgO | K2O | Average |
---|---|---|---|---|---|---|---|---|
SVRLin | 5.461 | 0.077 | 0.291 | 0.198 | 0.300 | 0.074 | 0.252 | 0.950 |
SVRPoly | 4.543 | 0.070 | 0.296 | 0.207 | 0.264 | 0.077 | 0.258 | 0.817 |
SVRRad | 4.656 | 0.066 | 0.254 | 0.176 | 0.232 | 0.079 | 0.269 | 0.819 |
LASSO | 5.930 | 0.087 | 0.315 | 0.218 | 0.313 | 0.090 | 0.283 | 1.034 |
RIDGE | 10.189 | 0.128 | 0.536 | 0.289 | 0.364 | 0.108 | 0.624 | 1.748 |
ENET | 5.928 | 0.087 | 0.315 | 0.218 | 0.312 | 0.089 | 0.284 | 1.033 |
PLS | 6.787 | 0.093 | 0.387 | 0.256 | 0.352 | 0.106 | 0.296 | 1.182 |
RF | 6.880 | 0.092 | 0.380 | 0.285 | 0.317 | 0.093 | 0.348 | 1.199 |
RPART | 9.338 | 0.126 | 0.540 | 0.373 | 0.365 | 0.112 | 0.446 | 1.614 |
XGB | 5.683 | 0.082 | 0.346 | 0.243 | 0.303 | 0.092 | 0.326 | 1.011 |
Algorithm | DM | NH4 | N | P2O5 | CaO | MgO | K2O | Average |
---|---|---|---|---|---|---|---|---|
SVRLin | 0.923 | 0.922 | 0.930 | 0.818 | 0.661 | 0.786 | 0.820 | 0.837 |
SVRPoly | 0.946 | 0.937 | 0.928 | 0.817 | 0.713 | 0.806 | 0.810 | 0.851 |
SVRRad | 0.945 | 0.943 | 0.946 | 0.849 | 0.779 | 0.817 | 0.783 | 0.866 |
LASSO | 0.910 | 0.900 | 0.918 | 0.796 | 0.652 | 0.743 | 0.776 | 0.814 |
RIDGE | 0.795 | 0.813 | 0.801 | 0.748 | 0.590 | 0.684 | 0.720 | 0.736 |
ENET | 0.910 | 0.901 | 0.918 | 0.797 | 0.653 | 0.748 | 0.775 | 0.815 |
PLS | 0.885 | 0.891 | 0.879 | 0.733 | 0.586 | 0.675 | 0.749 | 0.771 |
RF | 0.875 | 0.886 | 0.880 | 0.729 | 0.648 | 0.762 | 0.695 | 0.782 |
RPART | 0.775 | 0.789 | 0.757 | 0.584 | 0.529 | 0.645 | 0.509 | 0.656 |
XGB | 0.917 | 0.911 | 0.899 | 0.770 | 0.672 | 0.748 | 0.721 | 0.805 |
Algorithm | DM | NH4 | N | P2O5 | CaO | MgO | K2O | Average |
---|---|---|---|---|---|---|---|---|
SVRLin | 6.909 | 0.075 | 0.343 | 0.306 | 0.322 | 0.096 | 0.399 | 1.207 |
SVRPoly | 5.158 | 0.078 | 0.346 | 0.307 | 0.410 | 0.091 | 0.398 | 0.970 |
SVRRad | 5.005 | 0.091 | 0.252 | 0.275 | 0.373 | 0.078 | 0.374 | 0.921 |
LASSO | 7.154 | 0.082 | 0.368 | 0.317 | 0.335 | 0.091 | 0.412 | 1.251 |
RIDGE | 9.307 | 0.102 | 0.505 | 0.390 | 0.394 | 0.107 | 0.472 | 1.611 |
ENET | 7.103 | 0.083 | 0.370 | 0.317 | 0.335 | 0.090 | 0.412 | 1.244 |
PLS | 8.647 | 0.097 | 0.449 | 0.320 | 0.349 | 0.092 | 0.441 | 1.485 |
RF | 5.987 | 0.091 | 0.339 | 0.449 | 0.380 | 0.121 | 0.471 | 1.120 |
RPART | 11.284 | 0.130 | 0.566 | 0.507 | 0.377 | 0.145 | 0.466 | 1.925 |
XGB | 5.642 | 0.082 | 0.279 | 0.458 | 0.407 | 0.133 | 0.414 | 1.059 |
Stack Reg | 4.088 | 0.055 | 0.217 | 0.269 | 0.309 | 0.092 | 0.373 | 0.772 |
Algorithm | DM | NH4 | N | P2O5 | CaO | MgO | K2O | Average |
---|---|---|---|---|---|---|---|---|
SVRLin | 0.919 | 0.944 | 0.928 | 0.770 | 0.673 | 0.716 | 0.656 | 0.801 |
SVRPoly | 0.948 | 0.946 | 0.924 | 0.772 | 0.470 | 0.766 | 0.658 | 0.783 |
SVRRad | 0.950 | 0.896 | 0.951 | 0.852 | 0.564 | 0.837 | 0.689 | 0.820 |
LASSO | 0.892 | 0.924 | 0.900 | 0.781 | 0.649 | 0.761 | 0.624 | 0.790 |
RIDGE | 0.812 | 0.868 | 0.808 | 0.660 | 0.527 | 0.678 | 0.517 | 0.696 |
ENET | 0.894 | 0.923 | 0.899 | 0.781 | 0.648 | 0.771 | 0.624 | 0.792 |
PLS | 0.839 | 0.894 | 0.851 | 0.742 | 0.611 | 0.748 | 0.557 | 0.749 |
RF | 0.915 | 0.897 | 0.913 | 0.568 | 0.676 | 0.709 | 0.677 | 0.765 |
RPART | 0.683 | 0.787 | 0.752 | 0.351 | 0.594 | 0.433 | 0.539 | 0.591 |
XGB | 0.924 | 0.916 | 0.937 | 0.658 | 0.552 | 0.612 | 0.729 | 0.761 |
Stack Reg | 0.965 | 0.966 | 0.965 | 0.875 | 0.743 | 0.792 | 0.736 | 0.863 |
Algorithm | DM | NH4 | N | P2O5 | CaO | MgO | K2O | Average |
SVRLin | 2.807 | 3.545 | 3.202 | 2.000 | 1.745 | 1.855 | 1.674 | 2.404 |
SVRPoly | 3.761 | 3.545 | 3.175 | 1.993 | 1.370 | 1.965 | 1.676 | 2.498 |
SVRRad | 3.875 | 3.042 | 4.355 | 2.223 | 1.503 | 2.293 | 1.783 | 2.725 |
LASSO | 2.711 | 3.357 | 2.985 | 1.931 | 1.677 | 1.962 | 1.621 | 2.321 |
RIDGE | 2.084 | 2.704 | 2.175 | 1.570 | 1.423 | 1.664 | 1.415 | 1.862 |
ENET | 2.731 | 3.348 | 2.973 | 1.930 | 1.675 | 1.988 | 1.620 | 2.324 |
PLS | 2.243 | 2.841 | 2.450 | 1.913 | 1.609 | 1.938 | 1.514 | 2.073 |
RF | 3.240 | 3.054 | 3.241 | 1.363 | 1.475 | 1.478 | 1.417 | 2.181 |
RPART | 1.719 | 2.124 | 1.942 | 1.208 | 1.487 | 1.236 | 1.432 | 1.593 |
XGB | 3.438 | 3.357 | 3.943 | 1.336 | 1.380 | 1.347 | 1.612 | 2.345 |
Stack Reg | 4.745 | 5.002 | 5.062 | 2.274 | 1.814 | 1.938 | 1.788 | 3.232 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cobbinah, E.; Generalao, O.; Lageshetty, S.K.; Adrianto, I.; Singh, S.; Dumancas, G.G. Using Near-Infrared Spectroscopy and Stacked Regression for the Simultaneous Determination of Fresh Cattle and Poultry Manure Chemical Properties. Chemosensors 2022, 10, 410. https://doi.org/10.3390/chemosensors10100410
Cobbinah E, Generalao O, Lageshetty SK, Adrianto I, Singh S, Dumancas GG. Using Near-Infrared Spectroscopy and Stacked Regression for the Simultaneous Determination of Fresh Cattle and Poultry Manure Chemical Properties. Chemosensors. 2022; 10(10):410. https://doi.org/10.3390/chemosensors10100410
Chicago/Turabian StyleCobbinah, Elizabeth, Oliver Generalao, Sathish Kumar Lageshetty, Indra Adrianto, Seema Singh, and Gerard G. Dumancas. 2022. "Using Near-Infrared Spectroscopy and Stacked Regression for the Simultaneous Determination of Fresh Cattle and Poultry Manure Chemical Properties" Chemosensors 10, no. 10: 410. https://doi.org/10.3390/chemosensors10100410
APA StyleCobbinah, E., Generalao, O., Lageshetty, S. K., Adrianto, I., Singh, S., & Dumancas, G. G. (2022). Using Near-Infrared Spectroscopy and Stacked Regression for the Simultaneous Determination of Fresh Cattle and Poultry Manure Chemical Properties. Chemosensors, 10(10), 410. https://doi.org/10.3390/chemosensors10100410