Total Ion Chromatogram and Total Ion Mass Spectrum as Alternative Tools for Detection and Discrimination (A Review)
Abstract
:1. Introduction
1.1. Gas Chromatography
Advantages | Disadvantages |
---|---|
Fast separation (min) | Unsuitable for thermally labile samples |
A small amount of sample required (μL) | Difficult for large preparative samples |
Non-destructive (making it possible to be coupled with other techniques like mass spectrometry or ion mobility spectrometry) | Requires other techniques or detectors for component identification and quantification |
High accuracy and reliability |
1.2. Mass Spectrometry
1.3. Chemometric Analysis
2. Real Case Applications of TIC and TIMS
2.1. Agri-Food Industry
2.2. Environmental Analysis
2.3. Forensic Analysis
2.4. Medical Analysis
3. Conclusions and Perspectives of Future
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANNs | Artificial Neural Networks |
DFA | Discriminant Function Analysis |
FID | Flame Ionization Detector |
GC | Gas Chromatography |
HCA | Hierarchical Cluster Analysis |
HPLC | High-Performance Liquid Chromatography |
HS | Headspace |
ILS | Ignitable Liquids |
IMS | Ion Mobility Spectrometry |
IMSS | Ion Mobility Sum Spectrum |
IR | Infrared Detector |
LC | Liquid Chromatography |
LC-MS | Liquid Chromatography- Mass Spectrometry |
LDA | Linear Discriminant Analysis |
MS | Mass Spectrometry |
NMR | Nuclear Magnetic Resonance Spectroscopy |
PCA | Principal Components Analysis |
PDA | Photodiode-Array Detector |
PDO | Protected Designation of Origin |
PGI | Protected Geographical Indication |
PLS | Partial Least Squares Regression |
QDA | Quadratic Discriminant Analysis |
RF | Random Forests |
SIMCA | Soft Independent Modeling Class Analogy |
SPME | Solid Phase Micro-Extraction |
SVM | Support Vector Machines |
TCD | Thermal Conductivity Detector |
TIC | Total Ion Chromatogram |
TIMS | Total Ion Mass Spectrum |
TIS | Total Ion Spectrum |
TOF-MS | Time-of-flight Mass Spectrometry |
VOCs | Volatile organic compounds |
References
- Marriott, P.J. Chapter 8—Gas Chromatography. In Chromatography, 6th ed.; Heftmann, E., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 69, pp. 319–368. [Google Scholar]
- Santos, F.J.; Galceran, M.T. The Application of Gas Chromatography to Environmental Analysis. TrAC-Trends Anal. Chem. 2002, 21, 672–685. [Google Scholar] [CrossRef]
- Hussain, C.M.; Rawtani, D.; Pandey, G.; Tharmavaram, M. Chapter 9—Gas Chromatography in Forensic Science. In Handbook of Analytical Techniques for Forensic Samples, 1st ed.; Hussain, C.M., Rawtani, D., Pandey, G., Tharmavaram, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 1, pp. 149–167. ISBN 978-0-12-822300-0. [Google Scholar]
- Bhupatiraju, R.V.; Battula, S.R.; Rao, K.M.V.N.; Reddy, M.V. Assessment of Gas Chromatography Methodology Approach for the Trace Evaluation of Carcinogenic Impurity, Methyl Chloride, in Trimetazidine Dihydrochloride. Ann. Pharm. Fr. 2022, 1, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Kalauz, A.; Kapui, I. Determination of Potentially Genotoxic Impurities in Crotamiton Active Pharmaceutical Ingredient by Gas Chromatography. J. Pharm. Biomed. Anal. 2022, 210, 114544. [Google Scholar] [CrossRef]
- Feng, T.; Sun, M.; Song, S.; Zhuang, H.; Yao, L. 12—Gas Chromatography for Food Quality Evaluation. In Evaluation Technologies for Food Quality, 1st ed.; Zhong, J., Wang, X., Eds.; Woodhead Publishing: Cambridge, UK, 2019; Volume 1, pp. 219–265. ISBN 978-0-12-814217-2. [Google Scholar]
- Bartle, K.D.; Myers, P. History of Gas Chromatography. TrAC-Trends Anal. Chem. 2002, 21, 547–557. [Google Scholar] [CrossRef]
- Kolomnikov, I.G.; Efremov, A.M.; Tikhomirova, T.I.; Sorokina, N.M.; Zolotov, Y.A. Early Stages in the History of Gas Chromatography. J. Chromatogr. A 2018, 1537, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Sparkman, O.D.; Penton, Z.E.; Kitson, F.G. Gas Chromatography. In Gas Chromatography and Mass Spectrometry: A Practical Guide; Elsevier: Amsterdam, The Netherlands, 2021; Volume 1, pp. 15–83. ISBN 978-0-12-373628-4. [Google Scholar]
- Mametov, R.; Ratiu, I.-A.; Monedeiro, F.; Ligor, T.; Buszewski, B. Evolution and Evaluation of GC Columns. Crit. Rev. Anal. Chem. 2021, 51, 150–173. [Google Scholar] [CrossRef] [PubMed]
- Buchbauer, G.; Jirovetz, L.; Nikiforov, A. Use of GC-FID, GC-FTIR-MS, and Olfactory Characterisation in the Analysis of Essential Oils and Plant Extracts. In Plant Volatile Analysis, 1st ed.; Linskens, H.F., Jackson, J.F., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; Volume 1, pp. 97–117. ISBN 978-3-662-03331-9. [Google Scholar]
- Anthony, I.G.M.; Brantley, M.R.; Floyd, A.R.; Gaw, C.A.; Solouki, T. Improving Accuracy and Confidence of Chemical Identification by Gas Chromatography/Vacuum Ultraviolet Spectroscopy-Mass Spectrometry: Parallel Gas Chromatography, Vacuum Ultraviolet, and Mass Spectrometry Library Searches. Anal. Chem. 2018, 90, 12307–12313. [Google Scholar] [CrossRef]
- Aslani, S.; Armstrong, D.W. High Information Spectroscopic Detection Techniques for Gas Chromatography. J. Chromatogr. A 2022, 1676, 463255. [Google Scholar] [CrossRef]
- Buchalter, S.; Marginean, I.; Yohannan, J.; Lurie, I.S. Gas Chromatography with Tandem Cold Electron Ionization Mass Spectrometric Detection and Vacuum Ultraviolet Detection for the Comprehensive Analysis of Fentanyl Analogues. J. Chromatogr. A 2019, 1596, 183–193. [Google Scholar] [CrossRef]
- Aliaño-González, M.J.; Ferreiro-González, M.; Barbero, G.F.; Palma, M.; Barroso, C.G. Application of Headspace Gas Chromatography-Ion Mobility Spectrometry for the Determination of Ignitable Liquids from Fire Debris. Separations 2018, 5, 41. [Google Scholar] [CrossRef]
- Tsai, S.J.; Zhong, Y.S.; Weng, J.F.; Huang, H.H.; Hsieh, P.Y. Determination of Bile Acids in Pig Liver, Pig Kidney and Bovine Liver by Gas Chromatography-Chemical Ionization Tandem Mass Spectrometry with Total Ion Chromatograms and Extraction Ion Chromatograms. J. Chromatogr. A 2011, 1218, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Rankin, J.G.; Bondra, A.; Trader, C.; Heeren, A.; Harrington, P.d.B. Ignitable Liquid Identification Using Gas Chromatography/Mass Spectrometry Data by Projected Difference Resolution Mapping and Fuzzy Rule-Building Expert System Classification. Forensic Sci.Int. 2012, 220, 210–218. [Google Scholar] [CrossRef]
- Lerma-García, M.J.; Simó-Alfonso, E.F.; Méndez, A.; Lliberia, J.L.; Herrero-Martínez, J.M. Classification of Extra Virgin Olive Oils According to Their Genetic Variety Using Linear Discriminant Analysis of Sterol Profiles Established by Ultra-Performance Liquid Chromatography with Mass Spectrometry Detection. Food Res. Int. 2011, 44, 103–108. [Google Scholar] [CrossRef]
- Urban, P.L. Quantitative Mass Spectrometry: An Overview. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2016, 374, 20150382. [Google Scholar] [CrossRef] [Green Version]
- Awad, H.; Khamis, M.M.; El-Aneed, A. Mass Spectrometry, Review of the Basics: Ionization. Appl. Spectrosc. Rev. 2015, 50, 158–175. [Google Scholar] [CrossRef]
- Glish, G.L.; Vachet, R.W. The Basics of Mass Spectrometry in the Twenty-First Century. Nat. Rev. Drug Discov. 2003, 2, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Finehout, E.J.; Lee, K.H. An Introduction to Mass Spectrometry Applications in Biological Research. Biochem. Mol. Biol. Educ. 2004, 32, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, J. A Brief History of Mass Spectrometry. Anal. Chem. 2008, 80, 5678–5683. [Google Scholar] [CrossRef] [Green Version]
- Smoluch, M.; Silberring, J. A Brief History of Mass Spectrometry. In Mass Spectrometry, 1st ed.; Smoluch, M., Grasso, G., Suder, P., Silberring, J., Eds.; Wiley: New York, NY, USA, 2019; pp. 5–8. ISBN 978-1-119-37730-6. [Google Scholar]
- Shackleton, C. Clinical Steroid Mass Spectrometry: A 45-Year History Culminating in HPLC–MS/MS Becoming an Essential Tool for Patient Diagnosis. J. Steroid Biochem. Mol. Biol. 2010, 121, 481–490. [Google Scholar] [CrossRef]
- Hemmersbach, P. History of Mass Spectrometry at the Olympic Games. J. Mass Spectrom. 2008, 43, 839–853. [Google Scholar] [CrossRef]
- Bouziani, A.; Yahya, M. Mass Spectrometry Coupled with Chromatography toward Separation and Identification of Organic Mixtures, 1st ed.; Ferreira Mendes, K., Ed.; IntechOpen: London, UK, 2021; Volume 1, ISBN 978-1-83968-896-6. [Google Scholar]
- Böhme, D.K. Ion–Molecule Reactions in Mass Spectrometry. In Encyclopedia of Spectroscopy and Spectrometry, 1st ed.; Lindon, J.C., Tranter, G.E., Koppenaal, D.W., Eds.; Academic Press: Oxford, UK, 2017; Volume 1, pp. 338–346. ISBN 978-0-12-803224-4. [Google Scholar]
- De Hoffman, E.; Stroobant, V. Mass Spectrometry: Principles and Applications, 3rd ed.; Wiley, R., Ed.; Wiley: New York, NY, USA, 2007; Volume 1, ISBN 978-0-470-03310-4. [Google Scholar]
- Hoffmann, W.D.; Jackson, G.P. Forensic Mass Spectrometry. Annu. Rev. Anal. Chem. 2015, 8, 419–440. [Google Scholar] [CrossRef] [Green Version]
- Wagmann, L.; Gampfer, T.M.; Meyer, M.R. Recent Trends in Drugs of Abuse Metabolism Studies for Mass Spectrometry–Based Analytical Screening Procedures. Anal. Bioanal. Chem. 2021, 413, 5551–5559. [Google Scholar] [CrossRef]
- Loos, G.; Van Schepdael, A.; Cabooter, D. Quantitative Mass Spectrometry Methods for Pharmaceutical Analysis. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Che, F.-Y.; Deng, H.-T.; Ding, S.-J. Mass Spectrometry Applications in Biomedical Research. BioMed Res. Int. 2015, 2015, e827370. [Google Scholar] [CrossRef]
- Hocart, C.H. 9.10—Mass Spectrometry: An Essential Tool for Trace Identification and Quantification. In Comprehensive Natural Products II, 1st ed.; Liu, H.-W., Mander, L., Eds.; Elsevier: Oxford, UK, 2010; Volume 1, pp. 327–388. ISBN 978-0-08-045382-8. [Google Scholar]
- Smith, R.W. Mass Spectrometry. In Encyclopedia of Forensic Sciences, 2nd ed.; Siegel, J.A., Saukko, P.J., Houck, M.M., Eds.; Academic Press: Waltham, MA, USA, 2013; Volume 1, pp. 603–608. ISBN 978-0-12-382166-9. [Google Scholar]
- Barea-Sepúlveda, M.; Ferreiro-González, M.; Calle, J.L.P.; Barbero, G.F.; Ayuso, J.; Palma, M. Comparison of Different Processing Approaches by SVM and RF on HS-MS ENose and NIR Spectrometry Data for the Discrimination of Gasoline Samples. Microchem. J. 2022, 172, 106893. [Google Scholar] [CrossRef]
- Sigman, M.E.; Williams, M.R. Assessing Evidentiary Value in Fire Debris Analysis by Chemometric and Likelihood Ratio Approaches. Forensic Sci.Int. 2016, 264, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Martí, M.P.; Pino, J.; Boqué, R.; Busto, O.; Guasch, J. Determination of Ageing Time of Spirits in Oak Barrels Using a Headspace–Mass Spectrometry (HS-MS) Electronic Nose System and Multivariate Calibration. Anal. Bioanal. Chem. 2005, 382, 440–443. [Google Scholar] [CrossRef]
- Marsili, R.T. Shelf-Life Prediction of Processed Milk by Solid-Phase Microextraction, Mass Spectrometry, and Multivariate Analysis. J. Agric. Food Chem. 2000, 48, 3470–3475. [Google Scholar] [CrossRef]
- Sigman, M.E.; Williams, M.R.; Castelbuono, J.A.; Colca, J.G.; Clark, C.D. Ignitable Liquid Classification and Identification Using the Summed-Ion Mass Spectrum. Instrum. Sci. Technol. 2008, 36, 375–393. [Google Scholar] [CrossRef]
- Barnett, I.; Bailey, F.C.; Zhang, M. Detection and Classification of Ignitable Liquid Residues in the Presence of Matrix Interferences by Using Direct Analysis in Real Time Mass Spectrometry. J. Forensic Sci. 2019, 64, 1486–1494. [Google Scholar] [CrossRef]
- Pérez Pavón, J.L.; del Nogal Sánchez, M.; Pinto, C.G.; Fernández Laespada, M.E.; Cordero, B.M.; Peña, A.G. Strategies for Qualitative and Quantitative Analyses with Mass Spectrometry-Based Electronic Noses. TrAC-Trends Anal. Chem. 2006, 25, 257–266. [Google Scholar] [CrossRef]
- Calle, J.L.P.; Ferreiro-González, M.; Aliaño-González, M.J.; Barbero, G.F.; Palma, M. Characterization of Biodegraded Ignitable Liquids by Headspace–Ion Mobility Spectrometry. Sensors 2020, 20, 6005. [Google Scholar] [CrossRef] [PubMed]
- Ferreiro-González, M.; Barbero, G.F.; Palma, M.; Ayuso, J.; Álvarez, J.A.; Barroso, C.G. Characterization and Differentiation of Petroleum-Derived Products by E-Nose Fingerprints. Sensors 2017, 17, 2544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falatová, B.; Ferreiro-González, M.; Calle, J.L.P.; Álvarez, J.Á.; Palma, M. Discrimination of Ignitable Liquid Residues in Burned Petroleum-Derived Substrates by Using HS-MS ENose and Chemometrics. Sensors 2021, 21, 801. [Google Scholar] [CrossRef]
- Pérez Pavón, J.L.; Guerrero Peña, A.; García Pinto, C.; Moreno Cordero, B. Detection of Soil Pollution by Hydrocarbons Using Headspace–Mass Spectrometry and Identification of Compounds by Headspace–Fast Gas Chromatography–Mass Spectrometry. J. Chromatogr. A 2004, 1047, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Saevels, S.; Lammertyn, J.; Berna, A.Z.; Veraverbeke, E.A.; Di Natale, C.; Nicolaï, B.M. An Electronic Nose and a Mass Spectrometry-Based Electronic Nose for Assessing Apple Quality during Shelf Life. Postharvest Biol. Technol. 2004, 31, 9–19. [Google Scholar] [CrossRef]
- Peña, F.; Cárdenas, S.; Gallego, M.; Valcárcel, M. Direct Sampling of Orujo Oil for Determining Residual Hexane by Using a Chemsensor. J. Am. Oil Chem. Soc. 2003, 80, 613–618. [Google Scholar] [CrossRef]
- da Costa, N.L.; da Costa, M.S.; Barbosa, R. A Review on the Application of Chemometrics and Machine Learning Algorithms to Evaluate Beer Authentication. Food Anal. Methods 2021, 14, 136–155. [Google Scholar] [CrossRef]
- Esteki, M.; Simal-Gandara, J.; Shahsavari, Z.; Zandbaaf, S.; Dashtaki, E.; Vander Heyden, Y. A Review on the Application of Chromatographic Methods, Coupled to Chemometrics, for Food Authentication. Food Control 2018, 93, 165–182. [Google Scholar] [CrossRef]
- Ferreiro-González, M.; Aliaño-González, M.J.; Barbero, G.F.; Palma, M.; Barroso, C.G. Characterization of Petroleum-Based Products in Water Samples by HS-MS. Fuel 2018, 222, 506–512. [Google Scholar] [CrossRef]
- Ferreiro-González, M.; Barbero, G.F.; Ayuso, J.; Álvarez, J.A.; Palma, M.; Barroso, C.G. Validation of an HS-MS Method for Direct Determination and Classification of Ignitable Liquids. Microchem. J. 2017, 132, 358–364. [Google Scholar] [CrossRef]
- Sigman, M.E.; Williams, M.R. Chemometric Applications in Fire Debris Analysis. WIREs Forensic Sci. 2020, 2, e1368. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, J.; Wang, S.; Chen, Q.; Guo, T.; Zhang, L.; Jin, Y.; Su, H.; Tan, T. Emerging Frontier Technologies for Food Safety Analysis and Risk Assessment. J. Integr. Agric. 2015, 14, 2231–2242. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, H.; Chingin, K.; Xiong, J.; Fang, X.; Chen, H. Ambient Mass Spectrometry for Food Science and Industry. TrAC-Trends Anal. Chem. 2018, 107, 99–115. [Google Scholar] [CrossRef]
- Aiello, D.; De Luca, D.; Gionfriddo, E.; Naccarato, A.; Napoli, A.; Romano, E.; Russo, A.; Sindona, G.; Tagarelli, A. Multistage Mass Spectrometry in Quality, Safety and Origin of Foods. Eur. J. Mass Spectrom. 2011, 17, 1–31. [Google Scholar] [CrossRef]
- Moore, J.C.; Spink, J.; Lipp, M. Development and Application of a Database of Food Ingredient Fraud and Economically Motivated Adulteration from 1980 to 2010. J. Food Sci. 2012, 77, R118–R126. [Google Scholar] [CrossRef]
- Spink, J.; Moyer, D.C. Defining the Public Health Threat of Food Fraud. J. Food Sci. 2011, 76, R157–R163. [Google Scholar] [CrossRef]
- Black, C.; Chevallier, O.P.; Elliott, C.T. The Current and Potential Applications of Ambient Mass Spectrometry in Detecting Food Fraud. TrAC-Trends Anal. Chem. 2016, 82, 268–278. [Google Scholar] [CrossRef] [Green Version]
- Hrbek, V.; Vaclavik, L.; Elich, O.; Hajslova, J. Authentication of Milk and Milk-Based Foods by Direct Analysis in Real Time Ionization–High Resolution Mass Spectrometry (DART–HRMS) Technique: A Critical Assessment. Food Control 2014, 36, 138–145. [Google Scholar] [CrossRef]
- Gliszczyńska-Świgło, A.; Chmielewski, J. Electronic Nose as a Tool for Monitoring the Authenticity of Food. A Review. Food Anal. Methods 2017, 10, 1800–1816. [Google Scholar] [CrossRef]
- Quintanilla-Casas, B.; Torres-Cobos, B.; Guardiola, F.; Romero, A.; Tres, A.; Vichi, S. Geographical Authentication of Virgin Olive Oil by GC-MS Sesquiterpene Hydrocarbon Fingerprint: Scaling down to the Verification of PDO Compliance. Food Control 2022, 139, 109055. [Google Scholar] [CrossRef]
- Giannetti, V.; Mariani, M.B.; Marini, F.; Torrelli, P.; Biancolillo, A. Grappa and Italian Spirits: Multi-Platform Investigation Based on GC–MS, MIR and NIR Spectroscopies for the Authentication of the Geographical Indication. Microchem. J. 2020, 157, 104896. [Google Scholar] [CrossRef]
- Sun, R.; Xing, R.; Zhang, J.; Wei, L.; Ge, Y.; Deng, T.; Zhang, W.; Chen, Y. Authentication and Quality Evaluation of Not from Concentrate and from Concentrate Orange Juice by HS-SPME-GC-MS Coupled with Chemometrics. LWT 2022, 162, 113504. [Google Scholar] [CrossRef]
- Farag, M.A.; Hegazi, N.; Dokhalahy, E.; Khattab, A.R. Chemometrics Based GC-MS Aroma Profiling for Revealing Freshness, Origin and Roasting Indices in Saffron Spice and Its Adulteration. Food Chem. 2020, 331, 127358. [Google Scholar] [CrossRef] [PubMed]
- Ampuero, S.; Bogdanov, S.; Bosset, J.-O. Classification of Unifloral Honeys with an MS-Based Electronic Nose Using Different Sampling Modes: SHS, SPME and INDEX. Eur. Food Res. Technol. 2004, 218, 198–207. [Google Scholar] [CrossRef]
- Centonze, V.; Lippolis, V.; Cervellieri, S.; Damascelli, A.; Casiello, G.; Pascale, M.; Logrieco, A.F.; Longobardi, F. Discrimination of Geographical Origin of Oranges (Citrus sinensis L. Osbeck) by Mass Spectrometry-Based Electronic Nose and Characterization of Volatile Compounds. Food Chem. 2019, 277, 25–30. [Google Scholar] [CrossRef]
- Pillonel, L.; Ampuero, S.; Tabacchi, R.; Bosset, J. Analytical Methods for the Determination of the Geographic Origin of Emmental Cheese: Volatile Compounds by GC/MS-FID and Electronic Nose. Eur. Food Res. Technol. 2003, 216, 179–183. [Google Scholar] [CrossRef]
- Peña, F.; Cárdenas, S.; Gallego, M.; Valcárcel, M. Direct Olive Oil Authentication: Detection of Adulteration of Olive Oil with Hazelnut Oil by Direct Coupling of Headspace and Mass Spectrometry, and Multivariate Regression Techniques. J. Chromatogr. A 2005, 1074, 215–221. [Google Scholar] [CrossRef]
- Marcos Lorenzo, I.; Pérez Pavón, J.L.; Fernández Laespada, M.E.; García Pinto, C.; Moreno Cordero, B. Detection of Adulterants in Olive Oil by Headspace–Mass Spectrometry. J. Chromatogr. A 2002, 945, 221–230. [Google Scholar] [CrossRef]
- Cocchi, M.; Durante, C.; Marchetti, A.; Armanino, C.; Casale, M. Characterization and Discrimination of Different Aged ‘Aceto Balsamico Tradizionale Di Modena’ Products by Head Space Mass Spectrometry and Chemometrics. Anal. Chim. Acta 2007, 589, 96–104. [Google Scholar] [CrossRef]
- Aliaño-González, M.J.; Ferreiro-González, M.; Espada-Bellido, E.; Barbero, G.F.; Palma, M. Novel Method Based on Ion Mobility Spectroscopy for the Quantification of Adulterants in Honeys. Food Control 2020, 114, 107236. [Google Scholar] [CrossRef]
- Piotr Konieczka, P.; Aliaño-González, M.J.; Ferreiro-González, M.; Barbero, G.F.; Palma, M. Characterization of Arabica and Robusta Coffees by Ion Mobility Sum Spectrum. Sensors 2020, 20, 3123. [Google Scholar] [CrossRef] [PubMed]
- Pérez Pavón, J.L.; del Nogal Sánchez, M.; García Pinto, C.; Fernández Laespada, M.E.; Moreno Cordero, B. Calibration Transfer for Solving the Signal Instability in Quantitative Headspace-Mass Spectrometry. Anal. Chem. 2003, 75, 6361–6367. [Google Scholar] [CrossRef] [PubMed]
- Del Nogal Sánchez, M.; Pavón, J.L.P.; Laespada, M.E.F.; Pinto, C.G.; Cordero, B.M. Factors Affecting Signal Intensity in Headspace Mass Spectrometry for the Determination of Hydrocarbon Pollution in Beach Sands. Anal. Bioanal. Chem. 2005, 382, 372–380. [Google Scholar] [CrossRef]
- Pérez Pavón, J.L.; Del Nogal Sánchez, M.; García Pinto, C.; Fernández Laespada, M.E.; Moreno Cordero, B.; Guerrero Peña, A. A Method for the Detection of Hydrocarbon Pollution in Soils by Headspace Mass Spectrometry and Pattern Recognition Techniques. Anal. Chem. 2003, 75, 2034–2041. [Google Scholar] [CrossRef]
- Ismail, A.; Toriman, M.E.; Juahir, H.; Kassim, A.M.; Zain, S.M.; Ahmad, W.K.W.; Wong, K.F.; Retnam, A.; Zali, M.A.; Mokhtar, M.; et al. Chemometric Techniques in Oil Classification from Oil Spill Fingerprinting. Mar. Pollut. Bull. 2016, 111, 339–346. [Google Scholar] [CrossRef]
- Jaén-González, L.; Aliaño-González, M.J.; Ferreiro-González, M.; Barbero, G.F.; Palma, M. A Novel Method Based on Headspace-Ion Mobility Spectrometry for the Detection and Discrimination of Different Petroleum Derived Products in Seawater. Sensors 2021, 21, 2151. [Google Scholar] [CrossRef]
- Schmidt, H.; Baumbach, J.I.; Klockow, D. Detection of Perfluorocarbons Using Ion Mobility Spectrometry. Anal. Chim. Acta 2003, 484, 63–74. [Google Scholar] [CrossRef]
- Pozzi, R.; Bocchini, P.; Pinelli, F.; Galletti, G.C. Rapid Analysis of Tile Industry Gaseous Emissions by Ion Mobility Spectrometry and Comparison with Solid Phase Micro-Extraction/Gas Chromatography/Mass Spectrometry. J. Environ. Monit. 2006, 8, 1219–1226. [Google Scholar] [CrossRef]
- Dwivedi, P.; Matz, L.M.; Atkinson, D.A.; Herbert, H.; Hill, J. Electrospray Ionization-Ion Mobility Spectrometry: A Rapid Analytical Method for Aqueous Nitrate and Nitrite Analysis. Analyst 2004, 129, 139–144. [Google Scholar] [CrossRef]
- Hupp, A.M.; Marshall, L.J.; Campbell, D.I.; Smith, R.W.; McGuffin, V.L. Chemometric Analysis of Diesel Fuel for Forensic and Environmental Applications. Anal. Chim. Acta 2008, 606, 159–171. [Google Scholar] [CrossRef]
- Sandercock, P.M.L.; Du Pasquier, E. Chemical Fingerprinting of Unevaporated Automotive Gasoline Samples. Forensic Sci. Int. 2003, 134, 1–10. [Google Scholar] [CrossRef]
- Ferreiro-González, M.; Ayuso, J.; Álvarez, J.A.; Palma, M.; Barroso, C.G. New Headspace-Mass Spectrometry Method for the Discrimination of Commercial Gasoline Samples with Different Research Octane Numbers. Energy Fuels 2014, 28, 6249–6254. [Google Scholar] [CrossRef]
- Sigman, M.E.; Williams, M.R. Covariance Mapping in the Analysis of Ignitable Liquids by Gas Chromatography/Mass Spectrometry. Anal. Chem. 2006, 78, 1713–1718. [Google Scholar] [CrossRef] [PubMed]
- Aliaño-González, M.J.; Ferreiro-González, M.; Barbero, G.F.; Ayuso, J.; Álvarez, J.A.; Palma, M.; Barroso, C.G. An Electronic Nose Based Method for the Discrimination of Weathered Petroleum-Derived Products. Sensors 2018, 18, 2180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aliaño-González, M.J.; Ferreiro-González, M.; Barbero, G.F.; Ayuso, J.; Palma, M.; Barroso, C.G. Study of the Weathering Process of Gasoline by ENose. Sensors 2018, 18, 139. [Google Scholar] [CrossRef] [Green Version]
- Ferreiro-González, M.; Barbero, G.F.; Palma, M.; Ayuso, J.; Álvarez, J.A.; Barroso, C.G. Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose. Sensors 2016, 16, 695. [Google Scholar] [CrossRef] [Green Version]
- Aliaño-González, M.J.; Ferreiro-González, M.; Barbero, G.F.; Palma, M. Novel Method Based on Ion Mobility Spectrometry Sum Spectrum for the Characterization of Ignitable Liquids in Fire Debris. Talanta 2019, 199, 189–194. [Google Scholar] [CrossRef]
- Profumo, A.; Gorroni, A.; Guarnieri, S.A.; Mellerio, G.G.; Cucca, L.; Merli, D. GC-MS Qualitative Analysis of the Volatile, Semivolatile and Volatilizable Fractions of Soil Evidence for Forensic Application: A Chemical Fingerprinting. Talanta 2020, 219, 121304. [Google Scholar] [CrossRef]
- McDaniel, A.; Perry, L.; Liu, Q.; Shih, W.-C.; Yu, J. Toward the Identification of Marijuana Varieties by Headspace Chemical Forensics. Forensic Chem. 2018, 11, 23–31. [Google Scholar] [CrossRef]
- Kranenburg, R.F.; Peroni, D.; Affourtit, S.; Westerhuis, J.A.; Smilde, A.K.; van Asten, A.C. Revealing Hidden Information in GC–MS Spectra from Isomeric Drugs: Chemometrics Based Identification from 15 EV and 70 EV EI Mass Spectra. Forensic Chem. 2020, 18, 100225. [Google Scholar] [CrossRef]
- Capriotti, A.L.; Cannazza, G.; Catani, M.; Cavaliere, C.; Cavazzini, A.; Cerrato, A.; Citti, C.; Felletti, S.; Montone, C.M.; Piovesana, S.; et al. Recent Applications of Mass Spectrometry for the Characterization of Cannabis and Hemp Phytocannabinoids: From Targeted to Untargeted Analysis. J. Chromatogr. A 2021, 1655, 462492. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Lindon, J.C. Systems Biology: Metabonomics. Nature 2008, 455, 1054–1056. [Google Scholar] [CrossRef]
- Sánchez, C.; Santos, J.P.; Lozano, J. Use of Electronic Noses for Diagnosis of Digestive and Respiratory Diseases through the Breath. Biosensors 2019, 9, 35. [Google Scholar] [CrossRef] [Green Version]
- Behera, B.; Joshi, R.; Anil Vishnu, G.K.; Bhalerao, S.; Pandya, H.J. Electronic Nose: A Non-Invasive Technology for Breath Analysis of Diabetes and Lung Cancer Patients. J. Breath Res. 2019, 13, 024001. [Google Scholar] [CrossRef] [PubMed]
- Lubes, G.; Goodarzi, M. GC-MS Based Metabolomics Used for the Identification of Cancer Volatile Organic Compounds as Biomarkers. J. Pharm. Biomed. Anal. 2018, 147, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Saidi, T.; Zaim, O.; Moufid, M.; El Bari, N.; Ionescu, R.; Bouchikhi, B. Exhaled Breath Analysis Using Electronic Nose and Gas Chromatography–Mass Spectrometry for Non-Invasive Diagnosis of Chronic Kidney Disease, Diabetes Mellitus and Healthy Subjects. Sens. Actuator B Chem. 2018, 257, 178–188. [Google Scholar] [CrossRef]
- Pesesse, R.; Stefanuto, P.-H.; Schleich, F.; Louis, R.; Focant, J.-F. Multimodal Chemometric Approach for the Analysis of Human Exhaled Breath in Lung Cancer Patients by TD-GC × GC-TOFMS. J. Chromatogr. B 2019, 1114, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tang, H.; Wang, Y. Advances in Metabonomics on Infectious Diseases. Curr. Metab. 2013, 1, 318–334. [Google Scholar] [CrossRef]
- Wilson, A.D. Applications of Electronic-Nose Technologies for Noninvasive Early Detection of Plant, Animal and Human Diseases. Chemosensors 2018, 6, 45. [Google Scholar] [CrossRef]
- Lee, S.; Lim, S.; Choi, Y.-S.; Lee, M.; Kwon, H.W. Volatile Disease Markers of American Foulbrood-Infected Larvae in Apis Mellifera. J. Insect Physiol. 2020, 122, 104040. [Google Scholar] [CrossRef] [PubMed]
- Grassin-Delyle, S.; Roquencourt, C.; Moine, P.; Saffroy, G.; Carn, S.; Heming, N.; Fleuriet, J.; Salvator, H.; Naline, E.; Couderc, L.-J.; et al. Metabolomics of Exhaled Breath in Critically Ill COVID-19 Patients: A Pilot Study. eBioMedicine 2021, 63, 103154. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wu, M.; Wu, Q. Identification of Potential Metabolite Markers for Colon Cancer and Rectal Cancer Using Serum Metabolomics. J. Clin. Lab. Anal. 2020, 34, e23333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, A.D. Biomarker Metabolite Signatures Pave the Way for Electronic-Nose Applications in Early Clinical Disease Diagnoses. Curr. Metab. 2017, 5, 90–101. [Google Scholar] [CrossRef]
- Feizi, N.; Hashemi-Nasab, F.S.; Golpelichi, F.; Saburouh, N.; Parastar, H. Recent Trends in Application of Chemometric Methods for GC-MS and GC×GC-MS-Based Metabolomic Studies. TrAC-Trends Anal. Chem. 2021, 138, 116239. [Google Scholar] [CrossRef]
- Cho, S.W.; Ko, H.J.; Park, T.H. Identification of a Lung Cancer Biomarker Using a Cancer Cell Line and Screening of Olfactory Receptors for Biomarker Detection. Biotechnol. Bioproc. E 2021, 26, 55–62. [Google Scholar] [CrossRef]
- Stefanuto, P.-H.; Smolinska, A.; Focant, J.-F. Advanced Chemometric and Data Handling Tools for GC × GC-TOF-MS: Application of Chemometrics and Related Advanced Data Handling in Chemical Separations. TrAC-Trends Anal. Chem. 2021, 139, 116251. [Google Scholar] [CrossRef]
- Monedeiro, F.; Monedeiro-Milanowski, M.; Ratiu, I.-A.; Brożek, B.; Ligor, T.; Buszewski, B. Needle Trap Device-GC-MS for Characterization of Lung Diseases Based on Breath VOC Profiles. Molecules 2021, 26, 1789. [Google Scholar] [CrossRef]
- Cellini, A.; Biondi, E.; Blasioli, S.; Rocchi, L.; Farneti, B.; Braschi, I.; Savioli, S.; Rodriguez-Estrada, M.T.; Biasioli, F.; Spinelli, F. Early Detection of Bacterial Diseases in Apple Plants by Analysis of Volatile Organic Compounds Profiles and Use of Electronic Nose. Ann. Appl. Biol. 2016, 168, 409–420. [Google Scholar] [CrossRef]
- MacDougall, S.; Bayansal, F.; Ahmadi, A. Emerging Methods of Monitoring Volatile Organic Compounds for Detection of Plant Pests and Disease. Biosensors 2022, 12, 239. [Google Scholar] [CrossRef]
- Peled, N.; Ionescu, R.; Nol, P.; Barash, O.; McCollum, M.; VerCauteren, K.; Koslow, M.; Stahl, R.; Rhyan, J.; Haick, H. Detection of Volatile Organic Compounds in Cattle Naturally Infected with Mycobacterium Bovis. Sens. Actuator B Chem. 2012, 171–172, 588–594. [Google Scholar] [CrossRef] [Green Version]
- Maurer, D.L.; Koziel, J.A.; Engelken, T.J.; Cooper, V.L.; Funk, J.L. Detection of Volatile Compounds Emitted from Nasal Secretions and Serum: Towards Non-Invasive Identification of Diseased Cattle Biomarkers. Separations 2018, 5, 18. [Google Scholar] [CrossRef]
Advantages | Disadvantages |
---|---|
High sensitivity and precision | Expensive and requires qualified personnel |
Allows qualitative and quantitative analyses | Is unable to differentiate between isomer molecules with the same m/z ratio |
Can be coupled with other techniques, such as gas chromatography (GC) or liquid chromatography (LC) | Difficulty recognizing hydrocarbons producing parallel isomers |
A small amount of sample is required (μL) | Unable to separate optical and geometrical isomers |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barea-Sepúlveda, M.; Duarte, H.; Aliaño-González, M.J.; Romano, A.; Medronho, B. Total Ion Chromatogram and Total Ion Mass Spectrum as Alternative Tools for Detection and Discrimination (A Review). Chemosensors 2022, 10, 465. https://doi.org/10.3390/chemosensors10110465
Barea-Sepúlveda M, Duarte H, Aliaño-González MJ, Romano A, Medronho B. Total Ion Chromatogram and Total Ion Mass Spectrum as Alternative Tools for Detection and Discrimination (A Review). Chemosensors. 2022; 10(11):465. https://doi.org/10.3390/chemosensors10110465
Chicago/Turabian StyleBarea-Sepúlveda, Marta, Hugo Duarte, María José Aliaño-González, Anabela Romano, and Bruno Medronho. 2022. "Total Ion Chromatogram and Total Ion Mass Spectrum as Alternative Tools for Detection and Discrimination (A Review)" Chemosensors 10, no. 11: 465. https://doi.org/10.3390/chemosensors10110465
APA StyleBarea-Sepúlveda, M., Duarte, H., Aliaño-González, M. J., Romano, A., & Medronho, B. (2022). Total Ion Chromatogram and Total Ion Mass Spectrum as Alternative Tools for Detection and Discrimination (A Review). Chemosensors, 10(11), 465. https://doi.org/10.3390/chemosensors10110465