Interventions for Pediatric Sepsis and Their Impact on Outcomes: A Brief Review
Abstract
:1. Introduction
1.1. Sepsis Severity and Prevalence
1.2. Definition of Sepsis
2. Sepsis in Chronically Ill versus Previously Healthy Children
3. Chronic Sepsis Outcomes
4. Current Treatment Strategies and Gaps in Knowledge
4.1. Early Sepsis Recognition
4.2. Early Goal Directed Therapy (EGDT)
4.3. Protocolized Medicine
4.4. Bedside Ultrasonography and Echocardiography
4.5. Fluid Resuscitation
4.5.1. Fluid Administration
4.5.2. Type of Fluid Used for Resuscitation
4.5.3. Rapidity of Fluid Resuscitation
4.6. Medications
4.6.1. Type and Timing of Antibiotics
4.6.2. Choice of Vasopressor Therapy
4.6.3. Corticosteroids
4.7. Other Interventions
4.7.1. Source Control
4.7.2. Adjuvant Therapies
4.8. Post-ICU Critical Care Syndrome-Pediatrics (PICS-p)
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Schuller, K.A.; Hsu, B.S.; Thompson, A.B. The rate of sepsis in a national pediatric population, 2006 to 2012. Clin. Pediatr. 2017, 56, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Hartman, M.E.; Linde-Zwirble, W.T.; Angus, D.C.; Watson, R.S. Trends in the epidemiology of pediatric severe sepsis*. Pediatr. Crit. Care Med. 2013, 14, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.L.; Fitzgerald, J.C.; Pappachan, J.; Wheeler, D.; Jaramillo-Bustamante, J.C.; Salloo, A.; Singhi, S.C.; Erickson, S.; Roy, J.A.; Bush, J.L.; et al. Global epidemiology of pediatric severe sepsis: The sepsis prevalence, outcomes, and therapies study. Am. J. Respir. Crit. Care Med. 2015, 191, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Prout, A.J.; Talisa, V.B.; Carcillo, J.A.; Mayr, F.B.; Angus, D.C.; Seymour, C.W.; Chang, C.H.; Yende, S. Children with chronic disease bear the highest burden of pediatric sepsis. J. Pediatr. 2018, 199, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann-Struzek, C.; Goldfarb, D.M.; Schlattmann, P.; Schlapbach, L.J.; Reinhart, K.; Kissoon, N. The global burden of paediatric and neonatal sepsis: A systematic review. Lancet Respir. Med. 2018, 6, 223–230. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, S.Q. New sepsis criteria: A change we should not make. Chest 2016, 149, 1117–1118. [Google Scholar] [CrossRef]
- Goldstein, B.; Giroir, B.; Randolph, A.; International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: Definitions for sepsis and organ dysfunction in pediatrics. Pediatr. Crit. Care Med. 2005, 6, 2–8. [Google Scholar] [CrossRef]
- Weiss, S.L.; Balamuth, F.; Hensley, J.; Fitzgerald, J.C.; Bush, J.; Nadkarni, V.M.; Thomas, N.J.; Hall, M.; Muszynski, J. The epidemiology of hospital death following pediatric severe sepsis: When, why, and how children with sepsis die. Pediatr. Crit. Care Med. 2017, 18, 823–830. [Google Scholar] [CrossRef]
- Weiss, S.L.; Fitzgerald, J.C.; Pappachan, J.; Wheeler, D.; Jaramillo-Bustamante, J.C.; Sallo, A.; Singhi, S.C.; Erickson, S.; Roy, J.A.; Bush, J.L.; et al. Erratum: Global epidemiology of pediatric severe sepsis: The sepsis prevalence, outcomes, and therapies study. Am. J. Respir. Crit. Care Med. 2016, 193, 223–224. [Google Scholar] [CrossRef]
- Farris, R.W.; Weiss, N.S.; Zimmerman, J.J. Functional outcomes in pediatric severe sepsis: Further analysis of the researching severe sepsis and organ dysfunction in children: A global perspective trial. Pediatr. Crit. Care Med. 2013, 14, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.L.; Carcillo, J.A.; Aneja, R.K.; Deymann, A.J.; Lin, J.C.; Nguyen, T.C.; Okhuysen-Cawley, R.S.; Relvas, M.S.; Rozenfeld, R.A.; Skippen, P.W.; et al. American college of critical care medicine clinical practice parameters for Hemodynamic support of pediatric and Neonatal septic shock. Crit. Care Med. 2017, 45, 1061–1093. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.L.; Carcillo, J.A.; Aneja, R.K.; Deymann, A.J.; Lin, J.C.; Nguyen, T.C.; Okhuysen-Cawley, R.S.; Relvas, M.S.; Rozenfeld, R.A.; Skippen, P.W.; et al. The 2014 American college of critical care medicine clinical practice parameters for Hemodynamic support of pediatric and Neonatal septic shock: Executive summary. Pediatr. Crit. Care Med. 2017, 18, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Rivers, E.; Nguyen, B.; Havstad, S.; Ressler, J.; Muzzin, A.; Knoblich, B.; Peterson, E.; Tomlanovich, M.; Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N. Engl. J. Med. 2001, 345, 1368–1377. [Google Scholar] [CrossRef] [PubMed]
- Sankar, J.; Sankar, M.J.; Suresh, C.P.; Dubey, N.K.; Singh, A. Early goal-directed therapy in pediatric septic shock: Comparison of outcomes “with” and “without” intermittent superior venacaval oxygen saturation monitoring: A prospective cohort study*. Pediatr. Crit. Care Med. 2014, 15, e157–e167. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, C.F.; de Oliveira, D.S.; Gottschald, A.F.; Moura, J.D.; Costa, G.A.; Ventura, A.C.; Fernandes, J.C.; Vaz, F.A.; Carcillo, J.A.; Rivers, E.P.; et al. ACCM/PALS haemodynamic support guidelines for paediatric septic shock: An outcomes comparison with and without monitoring central venous oxygen saturation. Intensive Care Med. 2008, 34, 1065–1075. [Google Scholar] [CrossRef] [PubMed]
- Balamuth, F.; Weiss, S.L.; Fitzgerald, J.C.; Hayes, K.; Centkowski, S.; Chilutti, M.; Grundmeier, R.W.; Lavelle, J.; Alpern, E.R. Protocolized treatment is associated with decreased organ dysfunction in pediatric severe sepsis. Pediatr. Crit. Care Med. 2016, 17, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Lane, R.D.; Funai, T.; Reeder, R.; Larsen, G.Y. High reliability pediatric septic shock quality improvement initiative and decreasing mortality. Pediatrics 2016, 138. [Google Scholar] [CrossRef] [PubMed]
- Paul, R.; Neuman, M.I.; Monuteaux, M.C.; Melendez, E. Adherence to PALS sepsis guidelines and hospital length of stay. Pediatrics 2012, 130, e273–e280. [Google Scholar] [CrossRef] [PubMed]
- Ranjit, S.; Aram, G.; Kissoon, N.; Ali, M.K.; Natraj, R.; Shresti, S.; Jayakumar, I.; Gandhi, D. Multimodal monitoring for hemodynamic categorization and management of pediatric septic shock: A pilot observational study*. Pediatr. Crit. Care Med. 2014, 15, e17–e26. [Google Scholar] [CrossRef] [PubMed]
- El-Nawawy, A.A.; Abdelmohsen, A.M.; Hassouna, H.M. Role of echocardiography in reducing shock reversal time in pediatric septic shock: A randomized controlled trial. J. Pediatr. 2018, 94, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Sankar, J.; Anubhuti, A.; Yadav, D.K.; Sankar, M.J. Prevalence and outcome of sepsis-induced myocardial dysfunction in children with ‘sepsis’ ‘with’ and ‘without shock’—A prospective observational study. J. Trop. Pediatr. 2018. [Google Scholar] [CrossRef] [PubMed]
- Sankar, J.; Das, R.R.; Jain, A.; Dewangan, S.; Khilnani, P.; Yadav, D.; Dubey, N. Prevalence and outcome of diastolic dysfunction in children with fluid refractory septic shock—A prospective observational study. Pediatr. Crit. Care Med. 2014, 15, e370–e378. [Google Scholar] [CrossRef] [PubMed]
- Raj, S.; Killinger, J.S.; Gonzalez, J.A.; Lopez, L. Myocardial dysfunction in pediatric septic shock. J. Pediatr. 2014, 164, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Haileselassie, B.; Su, E.; Pozios, I.; Fiskum, T.; Thompson, R.; Abraham, T. Strain echocardiography parameters correlate with disease severity in children and infants with sepsis. Pediatr. Crit. Care Med. 2016, 17, 383–390. [Google Scholar] [CrossRef]
- El-Zayat, R.S.; Shalaby, A.G. Mitral annular plane systolic excursion as a predictor of mortality in children with septic shock. Pediatr. Crit. Care Med. 2018, 19, e486–e494. [Google Scholar] [CrossRef]
- Siddall, E.; Khatri, M.; Radhakrishnan, J. Capillary leak syndrome: Etiologies, pathophysiology, and management. Kidney Int. 2017, 92, 37–46. [Google Scholar] [CrossRef]
- Lucchini, G.; Willasch, A.M.; Daniel, J.; Soerensen, J.; Jarisch, A.; Bakhtiar, S.; Rettinger, E.; Brandt, J.; Klingebiel, T.; Bader, P. Epidemiology, risk factors, and prognosis of capillary leak syndrome in pediatric recipients of stem cell transplants: A retrospective single-center cohort study. Pediatr. Transplant. 2016, 20, 1132–1136. [Google Scholar] [CrossRef]
- Sutherland, S.M.; Zappitelli, M.; Alexander, S.R.; Chua, A.N.; Brophy, P.D.; Bunchman, T.E.; Hackbarth, R.; Somers, M.J.; Baum, M.; Symons, J.M.; et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: The prospective pediatric continuous renal replacement therapy registry. Am. J. Kidney Dis. 2010, 55, 316–325. [Google Scholar] [CrossRef]
- Pedersen, O.; Jepsen, S.B.; Toft, P. Continuous renal replacement therapy for critically ill infants and children. Dan. Med. J. 2012, 59, A4385. [Google Scholar]
- Choi, S.J.; Ha, E.J.; Jhang, W.K.; Park, S.J. Elevated central venous pressure is associated with increased mortality in pediatric septic shock patients. BMC Pediatr. 2018, 18, 58. [Google Scholar] [CrossRef] [PubMed]
- Maitland, K.; Kiguli, S.; Opoka, R.O.; Engoru, C.; Olupot-Olupot, P.; Akech, S.O.; Nyeko, R.; Mtove, G.; Reyburn, H.; Lang, T.; et al. Mortality after fluid bolus in African children with severe infection. N. Engl. J. Med. 2011, 364, 2483–2495. [Google Scholar] [CrossRef]
- Aya, H.D.; Ster, I.C.; Fletcher, N.; Grounds, R.M.; Rhodes, A.; Cecconi, M. Pharmacodynamic analysis of a fluid challenge. Crit. Care Med. 2016, 44, 880–891. [Google Scholar] [CrossRef] [PubMed]
- Marik, P.; Bellomo, R. A rational approach to fluid therapy in sepsis. Br. J. Anaesth. 2016, 116, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Gelbart, B. Fluid bolus therapy in pediatric sepsis: Current knowledge and future direction. Front. Pediatr. 2018, 6, 308. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.H.; Cox, E.F.; Francis, S.T.; Lobo, D.N. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann. Surg. 2012, 256, 18–24. [Google Scholar] [CrossRef]
- Stenson, E.K.; Cvijanovich, N.Z.; Anas, N.; Allen, G.L.; Thomas, N.J.; Bigham, M.T.; Weiss, S.L.; Fitzgerald, J.C.; Checchia, P.A.; Meyer, K.; et al. Hyperchloremia is associated with complicated course and mortality in pediatric patients with septic shock. Pediatr. Crit. Care Med. 2018, 19, 155–160. [Google Scholar] [CrossRef]
- Emrath, E.T.; Fortenberry, J.D.; Travers, C.; McCracken, C.E.; Hebbar, K.B. Resuscitation with balanced fluids is associated with improved survival in pediatric severe sepsis. Crit. Care Med. 2017, 45, 1177–1183. [Google Scholar] [CrossRef]
- Sankar, J.; Ismail, J.; Sankar, M.J.; Suresh, C.P.; Meena, R.S. Fluid bolus over 15–20 versus 5–10 minutes each in the first hour of resuscitation in children with septic shock: A randomized controlled trial. Pediatr. Crit. Care Med. 2017, 18, e435–e445. [Google Scholar] [CrossRef]
- Russell, M.J.; Kanthimathinathan, H.K. Is there an optimum duration of fluid bolus in pediatric septic shock? A critical appraisal of “fluid bolus over 15–20 versus 5–10 minutes each in the first hour of resuscitation in children with septic shock: A randomized controlled trial” by Sankar et al (Pediatr. Crit. Care Med. 2017, 18, e435–e445). Pediatr. Crit. Care Med. 2018, 19, 369–371. [Google Scholar] [CrossRef]
- Kortz, T.; Kissoon, N. Fluid resuscitation in pediatric septic shock: The case against haste. Pediatr. Crit. Care Med. 2017, 18, 995–997. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.L.; Fitzgerald, J.C.; Balamuth, F.; Alpern, E.R.; Lavelle, J.; Chilutti, M.; Grundmeier, R.; Nadkarni, V.M.; Thomas, N.J. Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis. Crit. Care Med. 2014, 42, 2409–2417. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Fitzgerald, J.C.; Balamuth, F.; Keele, L.; Alpern, E.R.; Lavelle, J.; Chilutti, M.; Grundmeier, R.W.; Nadkarni, V.M.; Thomas, N.J.; et al. Association of delayed antimicrobial therapy with one-year mortality in pediatric sepsis. Shock 2017, 48, 29–35. [Google Scholar] [CrossRef]
- Vazquez-Guillamet, C.; Scolari, M.; Zilberberg, M.D.; Shorr, A.F.; Micek, S.T.; Kollef, M. Using the number needed to treat to assess appropriate antimicrobial therapy as a determinant of outcome in severe sepsis and septic shock. Crit. Care Med. 2014, 42, 2342–2349. [Google Scholar] [CrossRef] [PubMed]
- Fontela, P.S.; Quach, C.; Karim, M.E.; Willson, D.F.; Gilfoyle, E.; McNally, J.D.; Gonzales, M.; Papenburg, J.; Reynolds, S.; Lacroix, J.; et al. Determinants of antibiotic tailoring in pediatric intensive care: A national survey. Pediatr. Crit. Care Med. 2017, 18, e395–e405. [Google Scholar] [CrossRef] [PubMed]
- Chiotos, K.; Gerber, J.S.; Himebauch, A.S. How can we optimize antibiotic use in the PICU? Pediatr. Crit. Care Med. 2017, 18, 903–904. [Google Scholar] [CrossRef]
- Ceneviva, G.; Paschall, J.A.; Maffei, F.; Carcillo, J.A. Hemodynamic support in fluid-refractory pediatric septic shock. Pediatrics 1998, 102, e19. [Google Scholar] [CrossRef]
- Ventura, A.M.; Shieh, H.H.; Bousso, A.; Góes, P.F.; de Cássia F O Fernandes, I.; de Souza, D.C.; Paulo, R.L.; Chagas, F.; Gilio, A.E. Double-blind prospective randomized controlled trial of dopamine versus epinephrine as first-line vasoactive drugs in pediatric septic shock. Crit. Care Med. 2015, 43, 2292–2302. [Google Scholar] [CrossRef]
- Ramaswamy, K.N.; Singhi, S.; Jayashree, M.; Bansal, A.; Nallasamy, K. Double-blind randomized clinical trial comparing dopamine and epinephrine in pediatric fluid-refractory hypotensive septic shock. Pediatr. Crit. Care Med. 2016, 17, e502–e512. [Google Scholar] [CrossRef]
- Carmean, A.; Fortenberry, J.D.; McCracken, C.; Hebbar, K.B. A survey of attitudes and practices regarding the use of steroid supplementation in pediatric sepsis. Pediatr. Emerg. Care 2015, 31, 694–698. [Google Scholar] [CrossRef]
- Menon, K.; McNally, D.; Choong, K.; Sampson, M. A systematic review and meta-analysis on the effect of steroids in pediatric shock. Pediatr. Crit. Care Med. 2013, 14, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Nichols, B.; Kubis, S.; Hewlett, J.; Yehya, N.; Srinivasan, V. Hydrocortisone therapy in catecholamine-resistant pediatric septic shock: A pragmatic analysis of clinician practice and association with outcomes. Pediatr. Crit. Care Med. 2017, 18, e406–e414. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, D.S. Thomas Jefferson, Steroids, and Sepsis. Pediatr. Crit. Care Med. 2017, 18, 905–906. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.L.; Ferrer, R.; Torrents, E.; Guillamat-Prats, R.; Gomà, G.; Suárez, D.; Álvarez-Rocha, L.; Pozo Laderas, J.C.; Martín-Loeches, I.; Levy, M.M.; et al. Impact of source control in patients with severe sepsis and septic shock. Crit. Care Med. 2017, 45, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Hanna, W.; Wong, H.R. Pediatric sepsis: Challenges and adjunctive therapies. Crit. Care Clin. 2013, 29, 203–222. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Kiss, J.E.; Dargo, G.; Carcillo, J.A. Outcomes of previously healthy pediatric patients with fulminant sepsis-induced multisystem organ failure receiving therapeutic plasma exchange. J. Clin. Apher. 2011, 26, 208–213. [Google Scholar] [CrossRef]
- Podd, B.S.; Simon, D.W.; Lopez, S.; Nowalk, A.; Aneja, R.; Carcillo, J.A. Rationale for adjunctive therapies for pediatric sepsis induced multiple organ failure. Pediatr. Clin. N. Am. 2017, 64, 1071–1088. [Google Scholar] [CrossRef] [PubMed]
- Marik, P.E.; Khangoora, V.; Rivera, R.; Hooper, M.H.; Catravas, J. Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock: A retrospective before-after study. Chest 2017, 151, 1229–1238. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.S.; Choong, K.; Colville, G.; Crow, S.; Dervan, L.A.; Hopkins, R.O.; Knoester, H.; Pollack, M.M.; Rennick, J.; Curley, M.A.Q. Life after critical illness in children-toward an understanding of pediatric post-intensive care syndrome. J. Pediatr. 2018, 198, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Manning, J.C.; Pinto, N.P.; Rennick, J.E.; Colville, G.; Curley, M.A.Q. Conceptualizing post intensive care syndrome in Children-The PICS-p framework. Pediatr. Crit. Care Med. 2018, 19, 298–300. [Google Scholar] [CrossRef] [PubMed]
- Hulst, J.M.; Peters, J.W.; van den Bos, A.; Joosten, K.F.; van Goudoever, J.B.; Zimmermann, L.J.; Tibboel, D. Illness severity and parental permission for clinical research in a pediatric ICU population. Intensive Care Med. 2005, 31, 880–884. [Google Scholar] [CrossRef] [PubMed]
- Menon, K.; Ward, R.E.; Gaboury, I.; Thomas, M.; Joffe, A.; Burns, K.; Cook, D. Factors affecting consent in pediatric critical care research. Intensive Care Med. 2012, 38, 153–159. [Google Scholar] [CrossRef] [PubMed]
Intervention | Research Gaps |
---|---|
Early sepsis recognition | Define sepsis more accurately |
Early goal directed therapy | Larger studies needed, new goals need to be identified |
Protocolized medicine | Evidence supportive; likely difficult to study given mandatory protocolized medicine for sepsis |
Bedside ultrasonography and echocardiography | Larger studies are needed using appropriate protocols |
Fluid resuscitation | More research needed regarding the right amount, right type and rapidity of the bolus administration |
Type and timing of antibiotics | Tailoring for patients with chronic disease and sepsis; De-escalation and appropriate length of antibiotic therapy needs further research |
Choice of vasopressor therapy | Tailoring to different clinical presentations and use of point-of-care imaging |
Corticosteroids | Conflicting evidence; no large randomized controlled trials published |
Source control | No studies in pediatrics |
Adjuvant therapies | Clinical research on this approach to therapy is very difficult because use is uncommon and patients are very complex |
Post-ICU critical care syndrome-pediatrics | Very little research has been done |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watkins, L.A. Interventions for Pediatric Sepsis and Their Impact on Outcomes: A Brief Review. Healthcare 2019, 7, 2. https://doi.org/10.3390/healthcare7010002
Watkins LA. Interventions for Pediatric Sepsis and Their Impact on Outcomes: A Brief Review. Healthcare. 2019; 7(1):2. https://doi.org/10.3390/healthcare7010002
Chicago/Turabian StyleWatkins, Laura A. 2019. "Interventions for Pediatric Sepsis and Their Impact on Outcomes: A Brief Review" Healthcare 7, no. 1: 2. https://doi.org/10.3390/healthcare7010002
APA StyleWatkins, L. A. (2019). Interventions for Pediatric Sepsis and Their Impact on Outcomes: A Brief Review. Healthcare, 7(1), 2. https://doi.org/10.3390/healthcare7010002