How to Improve the Reactive Strength Index among Male Athletes? A Systematic Review with Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Protocol and Registration
2.2. Information Sources
2.3. Search Strategy
2.4. Inclusion Criteria
2.5. Exclusion Criteria
2.6. Categorisation of Studies
2.7. Data Extraction
2.8. Risk of Bias Assessment
2.9. Statistical Models
3. Results
3.1. Study Selection
3.2. Risk of Bias Assessment
3.3. Study Characteristics
3.4. Meta-Analysis
3.4.1. Studies with Control Group
3.4.2. Studies without Control Group
3.4.3. Studies Ranked by Intervention Effects
3.5. Qualitative Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Young, W. Laboratory strength assessment of athletes. New Study Athl. 1995, 10, 88–96. [Google Scholar]
- Flanagan, E.P.; Ebben, W.P.; Jensen, R.L. Reliability of the reactive strength index and time to stabilization during depth jumps. J. Strength Cond. Res 2008, 22, 1677–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markwick, W.J.; Bird, S.P.; Tufano, J.J.; Seitz, L.B.; Haff, G.G. The intraday reliability of the Reactive Strength Index calculated from a drop jump in professional men’s basketball. Int. J. Sports Physiol. Perform. 2015, 10, 482–488. [Google Scholar] [CrossRef] [PubMed]
- McClymont, D.; Hore, A. Use of the reactive strength index (RSI) as an indicator of plyometric training conditions. In Proceedings of the Science and Football V: The Proceedings of the Fifth World Congress on Sports Science and Football, Lisbon, Portugal, 11–15 April 2003; pp. 408–416. [Google Scholar]
- Flanagan, E.P.; Comyns, T.M. The Use of Contact Time and the Reactive Strength Index to Optimize Fast Stretch-Shortening Cycle Training. Strength Cond. J. 2008, 30, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Ebben, W.P.; Petushek, E.J. Using the Reactive Strength Index Modified to Evaluate Plyometric Performance. J. Strength Cond. Res. 2010, 24. [Google Scholar] [CrossRef] [PubMed]
- Harper, D.; Hobbs, S.; Moore, J. The Ten to Five Repeated Jump Test. A New Test for Evaluation of Reactive Strength. In Proceedings of the BASES Student Conference, Chester, UK, 12–13 April 2011. [Google Scholar]
- Flanagan, E. An Examination of the Slow and Fast Stretch Shortening Cycle in Cross Country Runners and Skiers. In Proceedings of the 25th International Society of Biomechanics in Sports, Ouro Preto, Brazil, 23–27 August 2007. [Google Scholar]
- Lloyd, R.S.; Oliver, J.L.; Hughes, M.G.; Williams, C.A. Reliability and validity of field-based measures of leg stiffness and reactive strength index in youths. J. Sports Sci. 2009, 27, 1565–1573. [Google Scholar] [CrossRef]
- Hobara, H.; Inoue, K.; Omuro, K.; Muraoka, T.; Kanosue, K. Determinant of leg stiffness during hopping is frequency-dependent. Eur. J. Appl. Physiol. 2011, 111, 2195–2201. [Google Scholar] [CrossRef]
- Chelly, S.M.; Denis, C. Leg power and hopping stiffness: Relationship with sprint running performance. Med. Sci. Sports Exerc. 2001, 33, 326–333. [Google Scholar] [CrossRef]
- García-López, J.; Peleteiro, J.; Rodgríguez-Marroyo, J.A.; Morante, J.C.; Herrero, J.A.; Villa, J.G. The validation of a new method that measures contact and flight times during vertical jump. Int. J. Sports Med. 2005, 26, 294–302. [Google Scholar] [CrossRef]
- Glatthorn, J.F.; Gouge, S.; Nussbaumer, S.; Stauffacher, S.; Impellizzeri, F.M.; Maffiuletti, N.A. Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. J. Strength Cond. Res. 2011, 25, 556–560. [Google Scholar] [CrossRef]
- Kibele, A. Possibilities and Limitations in the Biomechanical Analysis of Countermovement Jumps: A Methodological Study. J. Appl. Biomech. 1998, 14, 105. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Rampinini, E.; Castagna, C.; Martino, F.; Fiorini, S.; Wisloff, U. Effect of plyometric training on sand versus grass on muscle soreness and jumping and sprinting ability in soccer players. Br. J. Sports Med. 2008, 42, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Casartelli, N.; Müller, R.; Maffiuletti, N.A. Validity and reliability of the Myotest accelerometric system for the assessment of vertical jump height. J. Strength Cond. Res. 2010, 24, 3186–3193. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, J.L.; Anning, J.H.; Scharfenberg, J.M. The reliability of three devices used for measuring vertical jump height. J. Strength Cond. Res. 2011, 25, 2580–2590. [Google Scholar] [CrossRef]
- García-López, J.; Morante, J.C.; Ogueta-Alday, A.; Rodríguez-Marroyo, J.A. The type of mat (Contact vs. Photocell) affects vertical jump height estimated from flight time. J. Strength Cond. Res. 2013, 27, 1162–1167. [Google Scholar] [CrossRef]
- Baca, A. A comparison of methods for analyzing drop jump performance. Med. Sci. Sports Exerc. 1999, 31, 437–442. [Google Scholar] [CrossRef]
- Ronglan, L.; Raastad, T.; Børgesen, A. Neuromuscular fatigue and recovery in elite female handball players. Scand. J. Med. Sci. Sports 2006, 16, 267–273. [Google Scholar] [CrossRef]
- Young, W.B.; Miller, I.R.; Talpey, S.W. Physical qualities predict change-of-direction speed but not defensive agility in Australian rules football. J. Strength Cond. Res. 2015, 29, 206–212. [Google Scholar] [CrossRef] [Green Version]
- Young, W.B.; Murray, M.P. Reliability of a Field Test of Defending and Attacking Agility in Australian Football and Relationships to Reactive Strength. J. Strength Cond. Res. 2017, 31, 509–516. [Google Scholar] [CrossRef]
- Beckham, G.; Suchomel, T.; Bailey, C.; Sole, C.; Grazer, J. The Relationship of the Reactive Strength Index-Modified and Measures of Force Development in the Isometric Mid-Thigh Pull. In Proceedings of the 32nd International Conference of Biomechanics in Sports, Johnson City, TN, USA, July 2014. [Google Scholar]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Kohl, C.; McIntosh, E.J.; Unger, S.; Haddaway, N.R.; Kecke, S.; Schiemann, J.; Wilhelm, R. Online tools supporting the conduct and reporting of systematic reviews and systematic maps: A case study on CADIMA and review of existing tools. Environ. Evid. 2018, 7, 8. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [Green Version]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [Green Version]
- Büttner, F.; Winters, M.; Delahunt, E.; Elbers, R.; Lura, C.B.; Khan, K.M.; Weir, A.; Ardern, C.L. Identifying the ‘incredible’! Part 2: Spot the difference—A rigorous risk of bias assessment can alter the main findings of a systematic review. Br. J. Sports Med. 2020, 54, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Campillo, R.; Meylan, C.M.; Álvarez-Lepín, C.; Henriquez-Olguín, C.; Martinez, C.; Andrade, D.C.; Castro-Sepúlveda, M.; Burgos, C.; Baez, E.I.; Izquierdo, M. The effects of interday rest on adaptation to 6 weeks of plyometric training in young soccer players. J. Strength Cond. Res. 2015, 29, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Campillo, R.; Gallardo, F.; Henriquez-Olguín, C.; Meylan, C.M.; Martínez, C.; Álvarez, C.; Caniuqueo, A.; Cadore, E.L.; Izquierdo, M. Effect of Vertical, Horizontal, and Combined Plyometric Training on Explosive, Balance, and Endurance Performance of Young Soccer Players. J. Strength Cond. Res. 2015, 29, 1784–1795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez-Campillo, R.; Burgos, C.H.; Henríquez-Olguín, C.; Andrade, D.C.; Martínez, C.; Álvarez, C.; Castro-Sepúlveda, M.; Marques, M.C.; Izquierdo, M. Effect of unilateral, bilateral, and combined plyometric training on explosive and endurance performance of young soccer players. J. Strength Cond. Res. 2015, 29, 1317–1328. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Campillo, R.; Henríquez-Olguín, C.; Burgos, C.; Andrade, D.C.; Zapata, D.; Martínez, C.; Álvarez, C.; Baez, E.I.; Castro-Sepúlveda, M.; Peñailillo, L.; et al. Effect of Progressive Volume-Based Overload During Plyometric Training on Explosive and Endurance Performance in Young Soccer Players. J. Strength Cond. Res. 2015, 29, 1884–1893. [Google Scholar] [CrossRef]
- Ramírez-Campillo, R.; Meylan, C.; Alvarez, C.; Henríquez-Olguín, C.; Martínez, C.; Cañas-Jamett, R.; Andrade, D.C.; Izquierdo, M. Effects of in-season low-volume high-intensity plyometric training on explosive actions and endurance of young soccer players. J. Strength Cond. Res. 2014, 28, 1335–1342. [Google Scholar] [CrossRef] [Green Version]
- Rosas, F.; Ramirez-Campillo, R.; Diaz, D.; Abad-Colil, F.; Martinez-Salazar, C.; Caniuqueo, A.; Cañas-Jamet, R.; Loturco, I.; Nakamura, F.Y.; McKenzie, C.; et al. Jump Training in Youth Soccer Players: Effects of Haltere Type Handheld Loading. Int. J. Sports Med. 2016, 37, 1060–1065. [Google Scholar] [CrossRef]
- Argus, C.K.; Gill, N.D.; Keogh, J.W.; McGuigan, M.R.; Hopkins, W.G. Effects of two contrast training programs on jump performance in rugby union players during a competition phase. Int. J. Sports Physiol. Perform. 2012, 7, 68–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keiner, M.; Sander, A.; Hartmann, H.; Mickel, C.; Wirth, K. Do long-term strength training and age affect the performance of drop jump in adolescents? J. Aust. Strength Cond. 2018, 26, 24–38. [Google Scholar]
- Dello Iacono, A.; Martone, D.; Milic, M.; Padulo, J. Vertical- vs. Horizontal-Oriented Drop Jump Training: Chronic Effects on Explosive Performances of Elite Handball Players. J. Strength Cond. Res. 2017, 31, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Alvarez, C.; Gentil, P.; Moran, J.; García-Pinillos, F.; Alonso-Martínez, A.M.; Izquierdo, M. Inter-individual Variability in Responses to 7 Weeks of Plyometric Jump Training in Male Youth Soccer Players. Front. Physiol. 2018, 9, 1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The, P.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Sporri, D.; Ditroilo, M.; Pickering Rodriguez, E.C.; Johnston, R.J.; Sheehan, W.B.; Watsford, M.L. The effect of water-based plyometric training on vertical stiffness and athletic performance. PLoS ONE 2018, 13, e0208439. [Google Scholar] [CrossRef]
- Wee, E.H.; Low, J.Y.; Chan, K.Q.; Ler, H.Y. Effects of Specific Badminton Training on Aerobic and Anaerobic Capacity, Leg Strength Qualities and Agility Among College Players. In Sport Science Research and Technology Support; Springer: Cham, Switzerland, 2016; pp. 192–203. [Google Scholar]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Effects of Accentuated Eccentric Loading on Muscle Properties, Strength, Power, and Speed in Resistance-Trained Rugby Players. J. Strength Cond. Res. 2018, 32, 2750–2761. [Google Scholar] [CrossRef]
- Fiorilli, G.; Mariano, I.; Iuliano, E.; Giombini, A.; Ciccarelli, A.; Buonsenso, A.; Calcagno, G.; di Cagno, A. Isoinertial Eccentric-Overload Training in Young Soccer Players: Effects on Strength, Sprint, Change of Direction, Agility and Soccer Shooting Precision. J. Sports Sci. Med. 2020, 19, 213–223. [Google Scholar]
- Ramirez-Campillo, R.; Alvarez, C.; García-Pinillos, F.; Gentil, P.; Moran, J.; Pereira, L.A.; Loturco, I. Effects of Plyometric Training on Physical Performance of Young Male Soccer Players: Potential Effects of Different Drop Jump Heights. Pediatr. Exerc. Sci. 2019, 31, 306–313. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Alvarez, C.; Sanchez-Sanchez, J.; Slimani, M.; Gentil, P.; Chelly, M.S.; Shephard, R.J. Effects of plyometric jump training on the physical fitness of young male soccer players: Modulation of response by inter-set recovery interval and maturation status. J. Sports Sci. 2019, 37, 2645–2652. [Google Scholar] [CrossRef] [PubMed]
- Bouguezzi, R.; Chaabene, H.; Negra, Y.; Ramirez-Campillo, R.; Jlalia, Z.; Mkaouer, B.; Hachana, Y. Effects of Different Plyometric Training Frequencies on Measures of Athletic Performance in Prepuberal Male Soccer Players. J. Strength Cond. Res. 2020, 34, 1609–1617. [Google Scholar] [CrossRef] [PubMed]
- Hammami, R.; Granacher, U.; Makhlouf, I.; Behm, D.G.; Chaouachi, A. Sequencing Effects of Balance and Plyometric Training on Physical Performance in Youth Soccer Athletes. J. Strength Cond. Res. 2016, 30, 3278–3289. [Google Scholar] [CrossRef]
- Lockie, R.G.; Murphy, A.J.; Schultz, A.B.; Knight, T.J.; Janse de Jonge, X.A. The effects of different speed training protocols on sprint acceleration kinematics and muscle strength and power in field sport athletes. J. Strength Cond. Res. 2012, 26, 1539–1550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrne, P.J.; Moran, K.; Rankin, P.; Kinsella, S. A comparison of methods used to identify ‘optimal’ drop height for early phase adaptations in depth jump training. J. Strength Cond. Res. 2010, 24, 2050–2055. [Google Scholar] [CrossRef] [PubMed]
- Salonikidis, K.; Zafeiridis, A. The effects of plyometric, tennis-drills, and combined training on reaction, lateral and linear speed, power, and strength in novice tennis players. J. Strength Cond. Res. 2008, 22, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Spinks, C.D.; Murphy, A.J.; Spinks, W.L.; Lockie, R.G. The effects of resisted sprint training on acceleration performance and kinematics in soccer, rugby union, and Australian football players. J. Strength Cond. Res. 2007, 21, 77–85. [Google Scholar] [CrossRef]
- Young, W.B.; Wilson, G.J.; Byrne, C. A comparison of drop jump training methods: Effects on leg extensor strength qualities and jumping performance. Int. J. Sports Med. 1999, 20, 295–303. [Google Scholar] [CrossRef]
- Beattie, K.; Carson, B.P.; Lyons, M.; Rossiter, A.; Kenny, I.C. The Effect of Strength Training on Performance Indicators in Distance Runners. J. Strength Cond. Res. 2017, 31, 9–23. [Google Scholar] [CrossRef] [Green Version]
- Dobbs, I.J.; Oliver, J.L.; Wong, M.A.; Moore, I.S.; Lloyd, R.S. Effects of a 12-Week Training Program on Isometric and Dynamic Force-Time Characteristics in Pre- and Post-Peak Height Velocity Male Athletes. J. Strength Cond. Res. 2020, 34, 653–662. [Google Scholar] [CrossRef]
- Li, F.; Wang, R.; Newton, R.U.; Sutton, D.; Shi, Y.; Ding, H. Effects of complex training versus heavy resistance training on neuromuscular adaptation, running economy and 5-km performance in well-trained distance runners. PeerJ 2019, 7, e6787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaabene, H.; Prieske, O.; Lesinski, M.; Sandau, I.; Granacher, U. Short-Term Seasonal Development of Anthropometry, Body Composition, Physical Fitness, and Sport-Specific Performance in Young Olympic Weightlifters. Sports 2019, 7, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orange, S.T.; Metcalfe, J.W.; Robinson, A.; Applegarth, M.J.; Liefeith, A. Effects of In-Season Velocity- Versus Percentage-Based Training in Academy Rugby League Players. Int. J. Sports Physiol. Perform. 2019, 15, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Doma, K.; Leicht, A.S.; Boullosa, D.; Woods, C.T. Lunge exercises with blood-flow restriction induces post-activation potentiation and improves vertical jump performance. Eur. J. Appl. Physiol. 2020, 120, 687–695. [Google Scholar] [CrossRef]
- Jeffreys, M.A.; De Ste Croix, M.B.A.; Lloyd, R.S.; Oliver, J.L.; Hughes, J.D. The Effect of Varying Plyometric Volume on Stretch-Shortening Cycle Capability in Collegiate Male Rugby Players. J. Strength Cond. Res. 2019, 33, 139–145. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Alvarez, C.; Gentil, P.; Loturco, I.; Sanchez-Sanchez, J.; Izquierdo, M.; Moran, J.; Nakamura, F.Y.; Chaabene, H.; Granacher, U. Sequencing Effects of Plyometric Training Applied Before or After Regular Soccer Training on Measures of Physical Fitness in Young Players. J. Strength Cond. Res. 2020, 34, 1959–1966. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Campillo, R.; Alvarez, C.; García-Pinillos, F.; Sanchez-Sanchez, J.; Yanci, J.; Castillo, D.; Loturco, I.; Chaabene, H.; Moran, J.; Izquierdo, M. Optimal Reactive Strength Index: Is It an Accurate Variable to Optimize Plyometric Training Effects on Measures of Physical Fitness in Young Soccer Players? J. Strength Cond. Res. 2018, 32, 885–893. [Google Scholar] [CrossRef] [Green Version]
- Cloak, R.; Nevill, A.; Smith, J.; Wyon, M. The acute effects of vibration stimulus following FIFA 11+ on agility and reactive strength in collegiate soccer players. J. Sport Health Sci. 2014, 3, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Tsoukos, A.; Bogdanis, G.C.; Terzis, G.; Veligekas, P. Acute Improvement of Vertical Jump Performance After Isometric Squats Depends on Knee Angle and Vertical Jumping Ability. J. Strength Cond. Res. 2016, 30, 2250–2257. [Google Scholar] [CrossRef]
- Murton, J.; Eager, R.; Drury, B. Comparison of flywheel versus traditional resistance training in elite academy male Rugby union players. Res. Sports Med. 2021. Online ahead of print. [Google Scholar] [CrossRef]
- Guo, Z.; Huang, Y.; Zhou, Z.; Leng, B.; Gong, W.; Cui, Y.; Bao, D. The Effect of 6-Week Combined Balance and Plyometric Training on Change of Direction Performance of Elite Badminton Players. Front. Psychol. 2021, 12, 684964. [Google Scholar] [CrossRef]
- Bouguezzi, R.; Chaabene, H.; Negra, Y.; Moran, J.; Sammoud, S.; Ramirez-Campillo, R.; Granacher, U.; Hachana, Y. Effects of jump exercises with and without stretch-shortening cycle actions on components of physical fitness in prepubertal male soccer players. Sport Sci. Health 2020, 16, 297–304. [Google Scholar] [CrossRef]
- Makhlouf, I.; Chaouachi, A.; Chaouachi, M.; Ben Othman, A.; Granacher, U.; Behm, D.G. Combination of Agility and Plyometric Training Provides Similar Training Benefits as Combined Balance and Plyometric Training in Young Soccer Players. Front. Physiol. 2018, 9, 1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaouachi, M.; Granacher, U.; Makhlouf, I.; Hammami, R.; Behm, D.G.; Chaouachi, A. Within Session Sequence of Balance and Plyometric Exercises Does Not Affect Training Adaptations with Youth Soccer Athletes. J. Sports Sci. Med. 2017, 16, 125–136. [Google Scholar]
- Negra, Y.; Chaabene, H.; Sammoud, S.; Bouguezzi, R.; Mkaouer, B.; Hachana, Y.; Granacher, U. Effects of Plyometric Training on Components of Physical Fitness in Prepuberal Male Soccer Athletes: The Role of Surface Instability. J. Strength Cond. Res. 2017, 31, 3295–3304. [Google Scholar] [CrossRef] [PubMed]
- Hammami, R.; Gene-Morales, J.; Abed, F.; Amin Selmi, M.; Moran, J.; Colado, J.C.; Hem Rebai, H. An eight-weeks resistance training programme with elastic band increases some performance-related parameters in pubertal male volleyball players. Biol. Sport 2022, 39, 219–226. [Google Scholar] [CrossRef]
- Ciacci, S.; Bartolomei, S. The effects of two different explosive strength training programs on vertical jump performance in basketball. J. Sports Med. Phys. Fit. 2018, 58, 1375–1382. [Google Scholar] [CrossRef]
- Komi, P.V. Physiological and biomechanical correlates of muscle function: Effects of muscle structure and stretch-shortening cycle on force and speed. Exerc. Sport Sci. Rev. 1984, 12, 81–121. [Google Scholar] [CrossRef]
- Schmidtbleicher, D. Training for power events. In The Encyclopedia of Sports Medicine: Strength and Power in Sport; Komi, P., Ed.; Blackwell: Oxford, UK, 1992; Volume 3, pp. 169–179. [Google Scholar]
- Markovic, G. Does plyometric training improve vertical jump height? A meta-analytical review. Br. J. Sports Med. 2007, 41, 349–355. [Google Scholar] [CrossRef]
- Hennessy, L.; Kilty, J. Relationship of the stretch-shortening cycle to sprint performance in trained female athletes. J. Strength Cond. Res. 2001, 15, 326–331. [Google Scholar]
- Sáez-Sáez de Villarreal, E.; Requena, B.; Newton, R.U. Does plyometric training improve strength performance? A meta-analysis. J. Sci. Med. Sport 2010, 13, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.; Plisk, S.; Collins, D. Strength and conditioning. Sports Biomech. 2002, 1, 79–103. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing maximal neuromuscular power: Part 2—Training considerations for improving maximal power production. Sports Med. 2011, 41, 125–146. [Google Scholar] [CrossRef]
- Cormie, P.; Mccaulley, G.O.; Triplett, N.T.; Mcbride, J.M. Optimal Loading for Maximal Power Output during Lower-Body Resistance Exercises. Med. Sci. Sports Exerc. 2007, 39, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Markovic, G.; Jukic, I.; Milanovic, D.; Metikos, D. Effects of sprint and plyometric training on muscle function and athletic performance. J. Strength Cond. Res. 2007, 21, 543–549. [Google Scholar] [CrossRef]
- Mero, A.; Komi, P.V.; Gregor, R.J. Biomechanics of sprint running. A review. Sports Med. 1992, 13, 376–392. [Google Scholar] [CrossRef]
- Nagahara, R.; Mizutani, M.; Matsuo, A.; Kanehisa, H.; Fukunaga, T. Association of Sprint Performance With Ground Reaction Forces During Acceleration and Maximal Speed Phases in a Single Sprint. J. Appl. Biomech. 2018, 34, 104–110. [Google Scholar] [CrossRef]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Reactive and eccentric strength contribute to stiffness regulation during maximum velocity sprinting in team sport athletes and highly trained sprinters. J. Sports Sci. 2020, 38, 29–37. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The Importance of Muscular Strength: Training Considerations. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The Importance of Muscular Strength in Athletic Performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef]
- Whitmer, T.D.; Fry, A.C.; Forsythe, C.M.; Andre, M.J.; Lane, M.T.; Hudy, A.; Honnold, D.E. Accuracy of a vertical jump contact mat for determining jump height and flight time. J. Strength Cond. Res. 2015, 29, 877–881. [Google Scholar] [CrossRef] [PubMed]
Type | Definition |
---|---|
Intervention | |
Plyometrics | Exercises that are designed to enhance neuromuscular performance on the lower limbs. This involves application of jump, hopping, and bounding training. |
Resistance training | Training program that aims to improve strength, power, or hypertrophy with resistances (e.g., elastic bands, barbells, dumbbells, kettlebells, or body weight). |
Sprint training | Acceleration or maximal velocity training either resisted or unloaded. |
Change of direction (COD) or sprint or plyometric or a combination of those | COD: Any exercise that enforces the participant to accelerate, decelerate and do a COD. This type of intervention is defined by a combination of one or more of sprint training, COD training, or plyometric training. |
Sports-specific training | Sports-specific exercises training (e.g., small-sided games in soccer). |
Control | |
Maintained training routines | Sport training routines |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rebelo, A.; Pereira, J.R.; Martinho, D.V.; Duarte, J.P.; Coelho-e-Silva, M.J.; Valente-dos-Santos, J. How to Improve the Reactive Strength Index among Male Athletes? A Systematic Review with Meta-Analysis. Healthcare 2022, 10, 593. https://doi.org/10.3390/healthcare10040593
Rebelo A, Pereira JR, Martinho DV, Duarte JP, Coelho-e-Silva MJ, Valente-dos-Santos J. How to Improve the Reactive Strength Index among Male Athletes? A Systematic Review with Meta-Analysis. Healthcare. 2022; 10(4):593. https://doi.org/10.3390/healthcare10040593
Chicago/Turabian StyleRebelo, André, João R. Pereira, Diogo V. Martinho, João P. Duarte, Manuel J. Coelho-e-Silva, and João Valente-dos-Santos. 2022. "How to Improve the Reactive Strength Index among Male Athletes? A Systematic Review with Meta-Analysis" Healthcare 10, no. 4: 593. https://doi.org/10.3390/healthcare10040593
APA StyleRebelo, A., Pereira, J. R., Martinho, D. V., Duarte, J. P., Coelho-e-Silva, M. J., & Valente-dos-Santos, J. (2022). How to Improve the Reactive Strength Index among Male Athletes? A Systematic Review with Meta-Analysis. Healthcare, 10(4), 593. https://doi.org/10.3390/healthcare10040593