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Abstract: The reactive strength index (RSI) describes the individual’s capability to quickly change
from an eccentric muscular contraction to a concentric one and can be used to monitor, assess, and
reduce the risk of athlete’s injury. The purpose of this review is to compare the effectiveness of
different training programs on RSI. Electronic searches were conducted in MEDLINE, PubMed,
Scopus, SPORTDiscus, and Web of Science from database inception to 11 February 2022. This
meta-analysis was conducted in accordance with the recommendations of the preferred reporting
items for systematic reviews and meta-analyses (PRISMA). The search returned 5890 records, in
which 39 studies were included in the systematic review and 30 studies were included in the meta-
analysis. Results from the randomized studies with the control group revealed that plyometric
training improved RSI in adult athletes (0.84, 95% CI 0.37 to 1.32) and youth athletes (0.30, 95% CI
0.13 to 0.47). Evidence withdrawn from randomized studies without a control group revealed that
resistance training also improved the RSI (0.44, 95% CI 0.08 to 0.79) in youth athletes but not in adults.
Interventions with plyometric training routines have a relatively large, statistically significant overall
effect in both adult and youth athletes. This supports the implementation of this type of interventions
in early ages to better cope with the physical demands of the various sports. The impact of resistance
training is very low in adult athletes, as these should seek to have a more power-type training to see
improvements on the RSI. More interventions with sprint and combined training are needed.

Keywords: strength; power; reactive strength; players; plyometric training; resistance training

1. Introduction

The reactive strength index (RSI) describes the individual’s capability to quickly
change from an eccentric muscular contraction to a concentric one [1]. In other words, the
RSI was created to assess the athlete’s reactive strength, and it was originally measured
with the drop jump (DJ) test [1]. For this test, the athletes must perform a vertical jump
as soon as they land on the ground from a specific height [1]. The hands can stay on
the athletes’ hips throughout the test or not, as both methods have shown good levels of
reliability [2]. This test should incorporate various drop heights to assess at what height the
athlete can elevate more his centre of gravity, and it was already proven to be a reliable and
valid test to measure the RSI [3]. The RSI can be calculated by dividing the jump height by
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the ground contact time, providing valuable information for coaches, regarding plyometric
performance (i.e., jump height) and how each jump is performed (i.e., ground contact
time) [4]. Jump height can be measured directly or can be derived from flight time with the
following mathematical formula [5]: jump height (m) = (gravity × (flight time)2)/8, where
gravity = 9.81 m/s and flight time is in seconds.

Most recently, with advancements in technology, more tests have been developed to
measure the RSI, such as the countermovement (CMJ), tuck jump, squat jump, weighted
CMJ, single-leg jump [6], 10/5 [7], single rebound jump [8], vertical rebound for 5 repeti-
tions [9], vertical rebound for 15 repetitions [10], and vertical rebound for 10 s tests [11].
In those cases where there is no drop or rebound jump, the RSI is designated explicitly by
reactive strength index modified (RSImod), since it is calculated by dividing the jump height
by the time to take-off (time to produce force from the beginning of the eccentric muscular
phase until the moment the athlete leaves the ground) [6].

To obtain these variables mentioned before (i.e., jump height, flight time, ground
contact time, and time to take-off), three different methods can be used: (a) the flight
time [12]; (b) the difference between the height of two marks during the jump [13]; and
(c) the mathematical integration of the ground reaction force [14]. The first one requires
the use of contact mats [12,15,16], photocell mats [13,15], or accelerometers [16,17]. The
second method uses different devices to calculate displacement (i.e., linear position trans-
ducers) [18]. The third method is considered the best one, as its accuracy is extremely high
if adequate sampling frequency methods are chosen and requires the use of one or two
force plates [13,19].

The use of RSI is vital for high-performance sports professionals, as it can be used as a
motivational tool, in a way that coaches can instantly deliver feedback to their athletes, ac-
cording to their RSI value, in order to improve their physical performance [5]. Furthermore,
both RSI and RSImod can be used as variables to potentially monitor athlete’s neuromuscu-
lar readiness [20]. Moreover, the RSI has been shown to have a strong relationship with
change of direction speed, acceleration speed [21], and agility [22]. Additionally, maximal
strength, especially relative to body mass, appears to have a very strong relationship with
RSImod, indicating that stronger athletes tend to have better reactive strength [23].

However, there is no clear information on which type of training would produce better
improvements on RSI. Besides that, to the best of our knowledge, the scientific literature
does not review this topic. Therefore, the aim of this study was to analyse the strategies
that can improve the RSI of male athletes, through a systematic review of experimental
research and meta-analysis.

2. Methods
2.1. Protocol and Registration

This meta-analysis was conducted in accordance with the recommendations of the
preferred reporting items for systematic reviews and meta-analyses (PRISMA) [24]. The
study protocol was registered with PROSPERO (CRD42020176616).

2.2. Information Sources

The literature search on five electronic databases (i.e., MEDLINE, PubMed, Scopus,
SPORTDiscus, and Web of Science) started on 5 July 2020 and was conducted from database
inception to 11 February 2022.

2.3. Search Strategy

All retrieved papers were exported to CADIMA software, a tool designed to increase
the efficiency of the evidence synthesis process and facilitate reporting of all activities to
maximize methodological rigor [25]. Duplicates were automatically removed. Titles and
abstracts of potentially relevant papers were screened by two reviewers (A.R. and J.R.P.).
Disagreements between authors were solved through discussion and, when necessary, three
other authors (D.M., J.P.D., and J.V.-d.-S.) were involved. Full-text copies were acquired for
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all papers that met title and abstract screening criteria. Full-text screening was performed
by two reviewers (A.R. and J.R.P.). Again, any discrepancies were discussed, until the
authors reached an agreement and consulted the three other authors, when required.

The comprehensive search strategy is available in the Supplementary File
(Supplemental Material S1).

2.4. Inclusion Criteria

Scientific peer-reviewed published papers written in English, Portuguese, French, and
Spanish were eligible for the present systematic review. The review sought to identify all
studies reporting exercise interventions to improve the RSI in both male adult and youth
athletes. Therefore, studies were eligible if: (1) subjects were male athletes; (2) subjects had
between 11 and 45 years old; (3) the study included at least two moments of evaluation,
with a baseline RSI measurement and post-intervention RSI measurement; (4) the study
included a training program that aimed to improve the RSI.

2.5. Exclusion Criteria

Studies that do not describe a protocol to induce effects on RSI or that used RSI during
a recovery program were excluded from the present study.

2.6. Categorisation of Studies

We identified six categories of exercise interventions, through the process of reviewing
the included studies. The definitions of these exercise interventions are provided in Table 1.

Table 1. Definition of types of interventions and comparators.

Type Definition

Intervention

Plyometrics Exercises that are designed to enhance neuromuscular performance on the lower
limbs. This involves application of jump, hopping, and bounding training.

Resistance training Training program that aims to improve strength, power, or hypertrophy with
resistances (e.g., elastic bands, barbells, dumbbells, kettlebells, or body weight).

Sprint training Acceleration or maximal velocity training either resisted or unloaded.

Change of direction (COD) or sprint or
plyometric or a combination of those

COD: Any exercise that enforces the participant to accelerate, decelerate and do a
COD.
This type of intervention is defined by a combination of one or more of sprint
training, COD training, or plyometric training.

Sports-specific training Sports-specific exercises training (e.g., small-sided games in soccer).

Control

Maintained training routines Sport training routines

2.7. Data Extraction

Pre-established data extraction criteria were created with seven items: (a) general
information (authors name and year of the study), (b) sample characteristics (size and
age), (c) sport, (d) training program, (e) measurement equipment, (f) methodology, and
(g) results.

2.8. Risk of Bias Assessment

The revised Cochrane risk of bias tool for randomized trials (RoB 2.0) scale was used
to quantify the risk of bias in eligible, individually randomized, parallel-group trials and
provide information on the general methodological quality of studies. The RoB 2.0 scale
rates internal study validity and the presence of replicable statistical information on a
scale from low risk of bias to high risk of bias [26]. The risk of bias in non-randomized
studies of interventions (ROBINS-I) tool was used to quantify the risk of bias in eligible
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non-randomized trials and provide information on the general methodological quality of
the studies. The ROBINS-I scale rates internal study validity and the presence of replicable
statistical information on a scale from 1 (low risk of bias) to 4 (high risk of bias) [27].
Inter-rater agreement was calculated using Cohen’s kappa coefficient (k). Using different
tools to assess the risk of bias on randomized and non-randomized studies was supported
elsewhere [28].

2.9. Statistical Models

Meta-analyses were conducted to estimate the overall effects of the intervention
programs to improve RSI for all available data, as well as for studies that only included
randomized samples. Within the previous categorization, meta-analyses were also divided
by studies with (intervention vs. control) and without a control group (pre-intervention vs.
post-intervention). Additionally, subgroup meta-analyses were performed to identify the
effects of each training program (“plyometrics”, “resistance training”, “sprint training”,
“sprint or plyometric or a combination of those”, and “sports-specific training”) on adults
(≥18 years old) and youth (<18 years old) athletes. Additionally, pre- and post-intervention
results from all the included studies (randomized and non-randomized) were ranked on
two different meta-analyses to understand the effectiveness of each training program on
adult and youth athletes.

Meta-analysis, and the respective forest plots, were calculated when the mean, stan-
dard deviation, and sample sizes were introduced on the Cochrane collaboration’s review
manager computer program (RevMan version 5.4.1, Oxford, UK). When this data was
impossible to retrieve from the manuscript [29–38], authors were contacted to provide the
missing information. Most of the authors replied to the request [29–34]; therefore, the data
was included on the meta-analyses. In addition, when the same study reported different
RSI measurements (i.e., from different heights and/or tests), the method that resulted in
the highest positive performance change was selected for the meta-analysis.

The pooled data for each outcome were reported as standardized mean differences
(SMD), with a 95% confidence interval (CI). Each meta-analysis was performed using the
random-effects model, and heterogeneity was assessed using I2 statistic and chi-square (Q)
tests. A Q value with a significance of p ≤ 0.05 was considered significant heterogeneity,
while, for the I2 value, 25% was considered low, 50% was considered moderate, and 75%
was considered high heterogeneity [39].

3. Results
3.1. Study Selection

The search strategy returned 5890 records, and the PRISMA flow diagram [40] is
shown in Figure 1. Records were excluded based on the included participants (not male
athletes), intervention or comparator (not a training program), post-intervention data (not
reporting RSI measurements), or testing on surfaces other than the floor (i.e., force sledge).
In addition, for the quantitative synthesis (meta-analysis), ineligible studies were excluded
for reporting RSI data only in figures and/or percentage [35–38] or for being unique, in
terms of physical training method [41,42] and, therefore, not being able to pair it with
other studies to conduct a meta-analysis. In total, thirty-nine studies were included in the
systematic review and thirty-three were included in the meta-analysis.

3.2. Risk of Bias Assessment

Inter-rater agreement for the risk of bias assessment, using the RoB 2.0, was
κ = 0.933; for the ROBINS-I, it was κ = 1.0. Thus, overall, the risk of bias within
individual studies assessed using the RoB 2.0 scale ranged between low and high risk
of bias (Supplemental Material S2), whereas the ROBINS-I scale ranged from a serious
to critical risk of bias (Supplemental Material S3).
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Of the thirty-three randomized studies assessed with the RoB 2.0, twelve (36%) [35,43–53]
had a high risk of bias. Randomisation process (18%) and selection of reported results (15%)
were the most common sources of high risk of bias.

Of the six non-randomized studies assessed with the ROBINS-I, one (17%) [54] was
of critical risk of bias assessment, due to their departures from the intended interventions,
participants being excluded because of missing data, and selection of participants based on
their characteristics observed after the start of the intervention. The remaining five studies
(83%) [36,42,55–57] were of serious risk of bias assessment.

3.3. Study Characteristics

Study characteristics (including training program characteristics) for all 39 included stud-
ies are presented in Supplemental Material S4. Overall, the most common tests used to quantify
the RSI are DJs (79%) [29–36,38,41–43,45,46,49–54,56–66], vertical hops (21%) [44,47,48,67–71],
and CMJs (8%) [37,55,72]. The most popular materials used to quantify the RSI are
contact mats (46%) [29–34,36,38,45,46,49,53,61,62,68,69,71,72], force plates
(36%) [35,37,41–43,48,50,52,54–56,60,65,66], and photoelectric systems (15%) [44,47,57,58,67,70].
Soccer is the most common sport studied (56%) [29–34,36,38,44–48,50,52,53,61,62,67–70], fol-
lowed by rugby (18%) [35,43,50,52,58,60,65] and basketball (8%) [50,53,72]. Intervention dura-
tion ranged from four weeks [35,42,65] to two years [36].



Healthcare 2022, 10, 593 6 of 17

3.4. Meta-Analysis
3.4.1. Studies with Control Group

Fourteen randomized studies (four with adult athletes [50,51,53,60] and ten with
youth athletes [29–34,45,61,62,68]), with the control group, reporting plyometric training
programs were included in the meta-analysis (Figure 2a). The overall standardized mean
difference in adult athletes was 0.84 (95% CI 0.37 to 1.32), with a significant overall interven-
tion effect. The overall standardized mean difference in youth athletes between groups was
lower than adult athletes, at 0.30 (95% CI 0.13 to 0.47), with the intervention effect almost
the same. Examination of heterogeneity statistics revealed a non-significant heterogeneity
for both adult and youth athletes RSI results (χ2 = 13.60 (p = 0.06), I2 = 49% and χ2 = 23.86
(p = 0.16), I2 = 25%, respectively).

The meta-analysis included two randomized studies (one with adult athletes [52] and
another with youth athletes [68]) reporting a combination of change of direction, plyometric,
and/or sprint training programs (Figure 2b). The overall standardized mean difference in
adult athletes was −0.01 (95% CI −0.83 to 0.82), with a non-significant overall intervention
effect. The overall standardized mean difference in youth athletes between groups was
higher than adult athletes, at 0.65 (95% CI −0.02 to 1.33), with a non-significant overall
intervention effect.

Regarding the non-randomized studies, in Figure S1c, at Supplemental Material S5,
three non-randomized studies with adult athletes [43,54,56] and one non-randomized
studies with youth athletes [55] reporting resistance training programs can be seen. The
overall standardized mean difference in adult athletes was 0.49 (95% CI 0.02 to 0.96),
with a significant overall intervention effect. The overall standardized mean difference
in youth athletes between groups was higher than adult athletes, at 0.65 (95% CI 0.15
to 1.16), also with a significant overall intervention effect. Examination of heterogeneity
statistics revealed a non-significant heterogeneity for both adult and youth athletes RSI
results (χ2 = 0.49 (p = 0.92), I2 = 0% and χ2 = 0.12 (p = 0.94), I2 = 0%, respectively). Non-
randomized studies reporting plyometric interventions or a combination of change of
direction, plyometric, and/or sprint training programs were not found. Therefore, no
meta-analyses were performed for these interventions with non-randomized studies.

3.4.2. Studies without Control Group

Nine randomized studies (two with adult athletes [49,66] and seven with youth
athletes [44,46–48,67,69,70]), without a control group, reporting plyometric training
programs were included in the meta-analysis (Figure 3a). The studies with adults
reported a significant intervention effect, with a standardized mean difference of
0.94 (95% CI 0.29 to 1.60). The overall standardized mean difference in youth athletes
was 0.78 (95% CI 0.31 to 1.24), with a significant overall intervention effect. Examination
of heterogeneity statistics revealed a high heterogeneity for youth athletes RSI results
(χ2 = 58.49 (p < 0.00001), I2 = 76%).

Only one randomized study with adults [49] examined the impact of sprint training
methods in RSI (Figure 3b). The study’s standardized mean difference was 0.56 (95%
CI −0.11 to 1.23) with a non-significant intervention effect. No studies were found for
youth athletes.

Two randomized studies with adult athletes [49,72] and three randomized studies
with youth athletes [58,65,72] reporting resistance training programs were included in
the meta-analysis (Figure 3c). The overall standardized mean difference in adult athletes
was 0.19 (95% CI −0.33 to 0.72), with a non-significant overall intervention effect. The
overall standardized mean difference in youth athletes between groups was higher
than adult athletes, at 0.44 (95% CI 0.12 to 0.75), with a significant overall intervention
effect. Examination of heterogeneity statistics revealed a non-significant heterogeneity
for both adult and youth athletes RSI results (χ2 = 0.42 (p = 0.81), I2 = 0% and χ2 = 1.54
(p = 0.98), I2 = 0%, respectively). One additional non-randomized study [57] reporting
resistance training was found in youth athletes. However, the mentioned study did
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not change the significant effect previously calculated only for the randomized studies
(Figure S2c at Supplemental Material S5).
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3.4.3. Studies Ranked by Intervention Effects

A ranked forest plot of the intervention effects on adult athletes demonstrates that,
compared with pre-test, several interventions demonstrated similar differences: combined
training, with an overall standardized mean difference of 0.58 (95% CI −0.06 to 1.21); sprint
training, with an overall standardized mean difference of 0.56 (95% CI −0.11 to 1.23); and
plyometric training, with an overall standardized mean difference of 0.54 (95% CI 0.26 to
0.82) (Figure 4a). Of those interventions, only plyometrics were considered significant. In
youth athletes, combined training had the largest standardized mean difference (1.15, 95%
CI 0.48 to 1.83), followed by plyometric training (0.61, 95% CI 0.42 to 0.80) (Figure 4b).

3.5. Qualitative Analysis

As previously reported, six studies were not included in the quantitative analysis.
Two [37,38] had plyometric training interventions and, like those who were part of
the meta-analysis, it was seen that this training method improves the RSI. Like the
results from the meta-analyses on plyometric training, participants of those two studies
also improved their RSI. Additionally, another study [41] with a plyometric training
method inside water also improved the RSI performance of their participants. With
respect to resistance training, one study [35] reported two different resistance training
interventions in adult athletes, and the findings suggested that some individuals had
performance decrements over the four week training period. However, one study [36]
with youth athletes showed RSI improvements with a resistance training intervention.
Lastly, one study [42], with adult athletes, had a badminton specific/change of direction
intervention, and it was seen that the RSI improved, mainly due to ground contact times
enhancements, rather than jumping height. The characteristics of all these mentioned
studies can be seen in Supplemental Material S4.
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4. Discussion

This is the first study using meta-analyses to investigate the comparative effectiveness
of different exercise interventions to improve the RSI in both male adult and youth athletes.
Given the importance that RSI may have in athletes’ performance, in particular, acceleration,
change of direction, [21], and agility [22], it is vital to investigate effective strategies to
improve it. Randomized studies with a control group reported significant overall inter-
vention effects, regarding plyometric and resistance training programs, whereas combined
training interventions did not have a significant overall effect. Randomized studies without
a control group reported similar tendencies in youth athletes; however, plyometric, sprint,
and resistance training programs showed a non-significant overall intervention effect in
adult athletes. Compared to randomized studies alone, results from a combination of
randomized and non-randomized did not differ. The results ranked by treatment effect
indicate that resistance training is inferior, compared to both sprint and plyometric training
methods, in enhancing the RSI in adult and youth athletes.

Plyometric training is characterized by a pre-activation (stretch) of the extensors’
muscles (e.g., quadriceps during a jump), followed by a shortening phase of these same
extensors’ muscles, which represents the stretch-shortening cycle (SSC) [73]. The duration
of the SSC, usually measured by the ground contact time, can be categorized into slow
(>250 milliseconds; CMJ, changes of direction) or fast (<250 milliseconds; DJ, sprints) [74].
Studies have shown that low correlations exist between these two types of SSC [75–77],
and reactive strength training is commonly referred as “plyometrics”.

The effectiveness of plyometric training methods to improve jumping height ability
have been shown [75]; since the RSI can be enhanced by improving this variable (by the
formula: RSI = jump height/ground contact time), it is not surprising that plyometrics
were successful in increasing the RSI in both adult and youth athletes. Nevertheless, one
of the plyometric studies [70] reported that the intervention group declined in the RSI
after the training intervention. However, it should be noted that this intervention group
performed the plyometric training on unstable surfaces, which may be done with longer
ground contact times, resulting in worse RSI values.

According to a motor learning perspective, exercises performed in a similar way to the
target task produce an enhanced performance, since they generate a greater transfer, due to
their specificity [78]. With this under consideration, both plyometric and sprint exercises
are usually performed with a maximum acceleration during the triple-extension phase, and
the same applies to the various tests used to quantify the RSI (i.e., vertical hops, CMJ, and
DJ) [79]. Although some resistance training exercises might also have this triple-extension
phase, the movement will always be slower because of the higher loads used, compared to
plyometric and sprint training methods [80]. Additionally, sprint training methods enhance
the SSC muscle function, by decreasing ground contact time and increasing flight time [81],
because of the importance of the eccentric phase during sprinting to maximize the power
output during the concentric phase [82]. Moreover, during the maximal velocity phase of
a sprint, the ground contact time is minimal (~80–120 ms); therefore, there is no time to
produce muscle force [83]. Thus, the force is only produced by the tendons, being that the
tendon stiffness is a particularly important property to generate high forces in a truly short
time (fast SSC) [84]. The ability to sprint and generate high forces in short periods of time
is somehow related to the RSI, as it is calculated by the jump height, divided by the contact
time. Consequently, sprints might reduce the denominator of the RSI formula (i.e., contact
time), and subsequently, increase the RSI value. Furthermore, during the acceleration phase
of a sprint, an athlete needs to produce more horizontal force to propel himself, while, on
the maximal velocity phase, an athlete needs to produce more vertical force [83]. Thus,
the force vector direction is the same during a vertical jump (used to access the RSI) as it
is on the maximal velocity phase of a sprint. Consequently, sprint training (in particular,
maximal velocity), might have some transfer to vertical jumps and, therefore, to better RSI
performances, since this type of training may also enhance motor unit firing frequency,
ultimately benefitting strength−power characteristics [85]. Nevertheless, only few studies
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that used sprint training to improve the RSI were found and more research is needed to
corroborate this tendency.

Although resistance training induced improvements on RSI, youth athletes seem
to take more advantage of this type of training, compared to adult athletes. In general,
adult athletes are more skilled and have higher levels of strength, compared to youth
athletes. Thus, after achieving specific strength standards, to improve their performance,
adult athletes must shift towards a power-type training, while maintaining their strength
levels [86]. In youth athletes, on the other hand, resistance training enhances motor control
and coordination, which are the base for bigger future improvements in other physical
qualities, such as velocity and power [86]. These neural changes that youth athletes
experience during resistance training might explain why this training method produces
better RSI improvements, compared to adult athletes.

The plyometric intervention was the training program most reported in the present
review. Nevertheless, due to different designs (i.e., randomized study vs. non-randomized
study or presence vs. absence of a control group) on the individual studies, it was not
possible to band together with the different plyometric training programs into different
categories (e.g., fast SSC, slow SSC, extensive plyometrics, intensive plyometrics, unilateral,
bilateral, vertical emphasis, and horizontal emphasis). The resistance training program
is also a broad category. Once again, due to different study designs, it was not possible
to group these studies into more specific categories (e.g., high volume, strength training,
power training, and accentuated eccentric training). As it was previously mentioned,
reactive strength describes the individual’s capability to quickly change from an eccentric
muscular contraction to a concentric one [1]. Consequently, it is plausible to consider that
an athlete that is able to produce higher rates of force development during the eccentric
phase will be able to express his/her concentric potential quicker than an athlete with
lower levels of eccentric rates of force development. Therefore, it is expected that resistance
training focusing on producing more force (eccentrically) in less time will also improve
the RSI. Three studies [43,44,65] that were included in the present review reported this
type of training. Whereas, in the studies from Murton and colleagues [65] and Douglas
and colleagues [43], the adult rugby players in the intervention group improved their
performance on RSI after 4 and 12 weeks, respectively, of accentuated eccentric resistance
training. In the study from Fiorilli and colleagues [44], the youth soccer players from the
intervention group did not improve their RSI after 6 weeks of flywheel eccentric overload
training (pre-test: 0.84 ± 0.18; post-test: 0.83 ± 0.18). The flywheel device is an isoinertial
equipment that, in a given movement, returns during the eccentric phase, the exact same
force produced on the concentric phase. Therefore, using this device does not guarantee
that the eccentric overload has been reached per se. As the methodology used by Fiorilli
and colleagues [44] was not fully detailed, this may justify the results previously mentioned.
Consequently, future research should aim to understand not only the effect of the resistance
or plyometric training on RSI but, essentially, the effects of different types/categories of
resistance and plyometric training on RSI.

Furthermore, it was noted that only 36% of the studies included used the gold standard
method of measurement (i.e., force plates) [13]. Despite the fact that contact mats are
cheaper and easier to use than force plates [13], investigators should be warned that the
flight times derived from the contact mats are not always consistent, when compared with
the flight times derived from the force plates [87]. More than half of the studies included in
the review (i.e., 56%) had a sample of soccer athletes. It would be important that future
research dedicate itself to study other sport modalities.

This review highlighted the best training intervention to improve the RSI and indicated
possible directions for future research in this topic. Nevertheless, a limitation of this review
is that some studies could not be included in the meta-analysis, due to not reporting RSI
values in a continuous way. Therefore, fewer studies were included in the meta-analysis
than in the systematic review; it is possible that the inclusion of these studies could modify
the results observed. Additionally, 36% of the randomized studies included had a high risk
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of bias. Although, it is crucial to notice that most of the high risk of bias was due to the
randomisation process.

5. Conclusions

Results from this systematic review and meta-analysis suggest that interventions with
plyometric training routines have a relatively large, statistically significant overall effect
in both adult and youth athletes. Thus, evidence supports implementing these types of
interventions at an early age, in order to better cope with the physical demands of the
various sports. Resistance training seems to have less impact on trained adult athletes;
therefore, trained adult athletes should seek to have a more power-type training to improve
the RSI. More research on specific resistance (e.g., strength vs. power type vs. eccentric
overload) and plyometric (e.g., fast vs. short SSC) interventions are needed. Likewise,
more research with sprint and combined training interventions is needed to understand
the effects of these methods on the RSI.
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