A Linearization to the Sum of Linear Ratios Programming Problem
Abstract
:1. Introduction
2. Main Results
- (I)
- .
- (II)
- (a)
- (b)
- (c)
- (d)
3. Numerical Example
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colantoni, C.S.; Manes, R.P.; Whinston, A. Programming, Profit Rates and Pricing Decisions. Account. Rev. 1969, 44, 467–481. [Google Scholar]
- Almogy, Y.; Levin, O. Parametric Analysis of a Multi-Stage Stochastic Shipping Problem. Oper. Res. Int. J. 1970, 69, 359–370. [Google Scholar]
- Rao, M.R. Cluster Analysis and Mathematical Programming. J. Am. Stat. Assoc. 1971, 66, 622–626. [Google Scholar] [CrossRef]
- Konno, H.; Inori, M. Bond Portfolio Optimization by Bilinear Fractional Programming. J. Oper. Res. Soc. Jpn. 1989, 32, 143–158. [Google Scholar] [CrossRef]
- Drezner, Z.; Schaible, S.; Simchi-Levi, D. Queueing Location Problems on the Plane. Nav. Res. Logist. 1990, 37, 929–935. [Google Scholar] [CrossRef]
- Zhang, S. Stochastic Queue Location Problems. Doctoral Dissertation, Econometric Institute Erasmus University, Rotterdam, The Netherlands, 1991. [Google Scholar]
- Falk, J.E.; Palocsay, S.W. Optimizing the Sum of Linear Fractional Functions. In Recent Advances in Global Optimization; Princeton University Press: Princeton, NJ, USA, 1991; pp. 221–258. [Google Scholar]
- Mathis, F.H.; Mathis, L.J. A Nonlinear Programming Algorithm for Hospital Management. SIAM Rev. 1995, 37, 230–234. [Google Scholar] [CrossRef]
- Schaible, S. Fractional Programming. In Handbook of Global Optimization. Nonconvex Optimization and Its Applications; Horst, R., Pardalos, P.M., Eds.; Springer: Boston, MA, USA, 1995; Volume 2. [Google Scholar]
- Sawik, B. Downside Risk Approach for Multi-Objective Portfolio Optimization. In Operations Research Proceedings; Metzler, J.B., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 191–196. [Google Scholar]
- Mititelu, S.T. Efficiency and Duality for Multiobjective Fractional Variational Problems with (ρ, b)-Quasiinvexity. Yu J. Oper. Res. 2016, 19, 85–99. [Google Scholar] [CrossRef]
- Treanţă, S.; Arana-Jiménez, M.; Antczak, T. A Necessary and Sufficient Condition on the Equivalence Between Local and Global Optimal Solutions in Variational Control Problems. Nonlinear Anal. Theory Methods Appl. 2020, 191, 111640. [Google Scholar] [CrossRef]
- Freund, R.W.; Jarre, F. Solving the Sum-of-Ratios Problem by an Interior-Point Method. J. Glob. Optim. 2001, 19, 83–102. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W. Programming with Linear Fractional Functionals. Nav. Res. Logist. Q. 1962, 9, 181–186. [Google Scholar] [CrossRef]
- Cambini, A.; Martein, L.; Schaible, S. On Maximizing a Sum of Ratios. J. Inf. Optim. Sci. 1989, 10, 65–79. [Google Scholar] [CrossRef]
- Almogy, Y.; Levin, Ö. A Class of Fractional Programming Problems. Oper. Res. 1971, 19, 57–67. [Google Scholar] [CrossRef]
- Dinkelbach, W. On Nonlinear Fractional Programming. Manag. Sci. 1967, 13, 492–498. [Google Scholar] [CrossRef]
- Schaible, S.; Shi, J. Fractional Programming: The Sum-of-Ratios Case. Optim. Methods Softw. 2003, 18, 219–229. [Google Scholar] [CrossRef]
- Konno, H.; Kuno, T.; Yajima, Y. Global Minimization of a Generalized Convex Multiplicative Function. J. Glob. Optim. 1994, 4, 47–62. [Google Scholar] [CrossRef]
- Konno, H.; Fukaishi, K. A Branch and Bound Algorithm for Solving Low Rank Linear Multiplicative and Fractional Programming Problems. J. Glob. Optim. 2000, 18, 283–299. [Google Scholar] [CrossRef]
- Dür, M.; Horst, R.; Van Thoai, N. Solving Sum-of-Ratios Fractional Programs Using Efficient Points. Optimization 2001, 49, 447–466. [Google Scholar] [CrossRef]
- Benson, H.P. Global Optimization of Nonlinear Sums of Ratios. J. Math. Anal. Appl. 2001, 263, 301–315. [Google Scholar] [CrossRef] [Green Version]
- Kuno, T. A Branch-and-Bound Algorithm for Maximizing the Sum of Several Linear Ratios. J. Glob. Optim. 2002, 22, 155–174. [Google Scholar] [CrossRef]
- Benson, H.P. Using Concave Envelopes to Globally Solve the Nonlinear Sum of Ratios Problem. J. Glob. Optim. 2002, 22, 343–364. [Google Scholar] [CrossRef]
- Benson, H.P. Global Optimization Algorithm for the Nonlinear Sum of Ratios Problem. J. Optim. Theory Appl. 2002, 112, 1–29. [Google Scholar] [CrossRef]
- Tuy, H. Monotonic Optimization: Problems and Solution Approaches. SIAM J. Optim. 2000, 11, 464–494. [Google Scholar] [CrossRef]
- Phuong, N.T.H.; Tuy, H. A Unified Monotonic Approach to Generalized Linear Fractional Programming. J. Glob. Optim. 2003, 26, 229–259. [Google Scholar] [CrossRef]
- Benson, H.P. A Simplicial Branch and Bound Duality-Bounds Algorithm for the Linear Sum-of-Ratios Problem. Eur. J. Oper. Res. 2007, 182, 597–611. [Google Scholar] [CrossRef]
- Wang, C.F.; Shen, P.P. A Global Optimization Algorithm for Linear Fractional Programming. Appl. Math. Comput. 2008, 204, 281–287. [Google Scholar] [CrossRef]
- Shen, P.; Zhang, T.; Wang, C. Solving a Class of Generalized Fractional Programming Problems Using the Feasibility of Linear Programs. J. Inequalities Appl. 2017, 2017, 147. [Google Scholar] [CrossRef] [Green Version]
- Shen, P.-P.; Lu, T. Regional Division and Reduction Algorithm for Minimizing the Sum of Linear Fractional Functions. J. Inequalities Appl. 2018, 2018, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Gao, Y.; Zhang, B.; Tian, F. A New Global Optimization Algorithm for a Class of Linear Fractional Programming. Mathematics 2019, 7, 867. [Google Scholar] [CrossRef] [Green Version]
- Shen, P.-P.; Wang, C.-F. Global Optimization for Sum of Linear Ratios Problem with Coefficients. Appl. Math. Comput. 2006, 176, 219–229. [Google Scholar] [CrossRef]
Method of | |||
---|---|---|---|
This article | Non-iterative | ||
[29] | |||
[32] | |||
GA |
Method of | |||
---|---|---|---|
This article | Non-iterative | ||
[33] | |||
[32] | |||
GA |
Method of | |||
---|---|---|---|
This article | Non-iterative | ||
[28] | |||
GA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borza, M.; Rambely, A.S. A Linearization to the Sum of Linear Ratios Programming Problem. Mathematics 2021, 9, 1004. https://doi.org/10.3390/math9091004
Borza M, Rambely AS. A Linearization to the Sum of Linear Ratios Programming Problem. Mathematics. 2021; 9(9):1004. https://doi.org/10.3390/math9091004
Chicago/Turabian StyleBorza, Mojtaba, and Azmin Sham Rambely. 2021. "A Linearization to the Sum of Linear Ratios Programming Problem" Mathematics 9, no. 9: 1004. https://doi.org/10.3390/math9091004
APA StyleBorza, M., & Rambely, A. S. (2021). A Linearization to the Sum of Linear Ratios Programming Problem. Mathematics, 9(9), 1004. https://doi.org/10.3390/math9091004