(L,⊙)-Fuzzy (K,E)-Soft Filter
Abstract
:1. Introduction
2. Preliminaries
- (L1)
- is a complete lattice;
- (L2)
- is a commutative semigroup;
- (L3)
- , ∀;
- (L4)
- (i)
- If , then and .
- (ii)
- iff . Moreover, iff .
- (iii)
- If , then and for .
- (iv)
- , and .
- (v)
- .
- (vi)
- .
- (vii)
- and .
- (viii)
- .
- (ix)
- .
- (x)
- .
- (xi)
- iff .
- (i)
- is a subset of , and write if , . iff and .
- (ii)
- The intersection of and is an L-fuzzy soft set , where , .
- (iii)
- The union of and is an L-fuzzy soft set , where , .
- (iv)
- An L-fuzzy soft set is defined as , .
- (v)
- is the complement of h and is defined by , where is a mapping obtained by , .
- (vi)
- is a null L-fuzzy soft set, if , .
- (vii)
- is absolute L-fuzzy soft set, if , .
- (i)
- For , , ,
- (ii)
- For ,
- (iii)
- is called one to one (resp. onto, bijective) if ϕ and ψ are both one to one (resp. onto, bijective).
- (i)
- and if is onto.
- (ii)
- and if is one to one.
- (iii)
- If is one to one,
- (iv)
- .
- (v)
- .
- (vi)
- .
- (vii)
- .
- (viii)
- with equality if is one to one.
- (ix)
- .
- (x)
- with equality if is one to one.
- (SO1)
- ,
- (SO2)
- , for each ,
- (SO3)
- (SR)
- , and .
3. -Fuzzy -Soft Filter
- (SF1)
- and ,
- (SF2)
- , for each ,
- (SF3)
- If , then .
- (SS)
- , and .
4. -fs-Topologies Induced by -fs-Filters
- (H1)
- and .
- (H2)
- , .
- (H3)
- , .
- (i)
- is an -fs-topology.
- (ii)
- If is stratified -fs-filter and , , then is an enriched -fs-topology.
- (SO1)
- . and .
- (SO2)
- and , we have
- (SO3)
- For each , , we have
- (i)
- (ii)
- If , then.
- (iii)
- If is an L-fuzzy soft filter map, then is an L-fuzzy soft continuous.
- (i)
- (ii)
- (iii)
- If is an L-fuzzy soft filter map, then . Then from (ii), we have . From Lemma 1(xi), we have . Thus, is an L-fuzzy soft continuous.
5. The Products of -fs-Filters
- (i)
- is an -fs-filter on X.
- (ii)
- If is a stratified -fs-filter and is an enriched -fs-topology, then is a stratified -fs-filter.
- (iii)
- If , then , .
- (iv)
- If , then , .
- (i)
- (SF1) . and .(SF2) For each , , , we have(SF3) It is easy.
- (ii)
- For each , , , we have
- (iii)
- Since * dominates ⊙, by Lemma 1(iv), . Then,
- (iv)
- (i)
- .
- (ii)
- If is an L- fuzzy soft continuous and is an L-fuzzy soft filter map, then is an L-fuzzy soft filter map.
- (i)
- For each , , we have
- (ii)
- Since is an L- fuzzy soft continuous, is an L-fuzzy soft filter map and by (i), we have
- (i)
- is an -fs-filter on X, and it is finer than and . If , then is the coarsest -fs-filter on X, and it is finer than and . Besides, if and , then .
- (ii)
- If or is a stratified -fs-filter, then is a stratified -fs-filter on X.
- (iii)
- is an -fs-topology on X and it is finer than and . If , then is the coarsest -fs-topology on X, and it is finer than and .
- (iv)
- If or is an enriched -fs-topology, then is an enriched -fs-topology on X.
- (v)
- , where .
- (vi)
- .
- (i)
- (SF1) and (SF3) are clear.(SF2) For each and ,If , then for , and . If is -fs-filter on X with and , we have . Then .Moreover, if and , thenThus, .
- (ii)
- Let be a stratified -fs-filter, then for each we haveThen, is a stratified -fs-filter on X. Similarly if is a stratified -fs-filter, then is a stratified -fs-filter on X.
- (iii)
- It can be proved by the same manner as in (i).
- (iv)
- Suppose that is an enriched -fs-topology on X. Then, we have
- (v)
- Since and , by Theorem 6, we have:
- (vi)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Molodtsov, D.A. Soft set theory-first results. Comput. Math. Appl. 1999, 37, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Molodtsov, D.A. The description of a dependence with the help of soft sets. J. Comput. Syst. Sci. Int. 2001, 40, 977–984. [Google Scholar]
- Molodtsov, D.A. The Theory of Soft Sets; URSS Publishers: Moscow, Russia, 2004. (In Russian) [Google Scholar]
- Molodtsov, D.; Leonov, V.Y.; Kovkov, D.V. Soft sets technique and its application. Nechetkie Sist. Myagkie Vychisleniya 2006, 1, 8–19. [Google Scholar]
- Maji, P.K.; Biswas, R.; Roy, A.R. Fuzzy soft sets. J. Fuzzy Math. 2001, 9, 589–602. [Google Scholar]
- Maji, P.K.; Biswas, R.; Roy, A.R. Soft set theory. Comput. Math. Appl. 2003, 45, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Maji, P.K.; Roy, A.R.; Biswas, R. An application of soft sets in a decision making problem. Comput. Math. Appl. 2002, 44, 1077–1083. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.R.; Maji, P.K. A fuzzy soft set theoretic approach to decision making problems. J. Comput. Appl. Math. 2007, 203, 412–418. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Kharal, A. On Fuzzy Soft Sets. Adv. Fuzzy Syst. 2009, 2009, 586507. [Google Scholar] [CrossRef] [Green Version]
- Kharal, A.; Ahmad, B. Mappings on Fuzzy Soft Classes. Adv. Fuzzy Syst. 2009, 2009, 407890. [Google Scholar] [CrossRef]
- Majumdara, P.; Samanta, S.K. Generalised fuzzy soft sets. Comput. Math. Appl. 2010, 59, 1425–1432. [Google Scholar] [CrossRef] [Green Version]
- Çağman, N.; Enginoğlu, S.; Çitak, F. Fuzzy soft set theory and its applications. Iran. J. Fuzzy Syst. 2011, 8, 137–147. [Google Scholar]
- Shabir, M.; Naz, M. On soft topological spaces. Comput. Math. Appl. 2011, 61, 1786–1799. [Google Scholar] [CrossRef] [Green Version]
- Aygünoǧlu, A.; Çetkin, V.; Aygün, H. An introduction to fuzzy soft topological spaces. Hacettep J. Math. Stat. 2014, 43, 193–204. [Google Scholar] [CrossRef] [Green Version]
- Šostak, A.P. On a fuzzy topological structure. Suppl. Rend. Circ. Matem. Palermo2 Ser. II 1985, 11, 89–103. [Google Scholar]
- Chang, C.L. Fuzzy topological spaces. J. Math. Anal. Appl. 1968, 24, 182–190. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.-M.; Kim, Y.C.; Ramadan, A.A. L-fuzzy (K,E)-soft quasi uniform spaces and L-fuzzy (K,E)-soft topogenous spaces. Int. J. Pure Appl. Math. 2016, 108, 831–847. [Google Scholar] [CrossRef] [Green Version]
- Ramadan, A.A.; Oh, J.-M. On L-fuzzy (K,E)-soft quasi-uniform spaces. Int. J. Pure Appl. Math. 2016, 108, 591–606. [Google Scholar]
- Çetkin, V.; Aygünoğlu, A.; Aygün, H. A topological view on application of L-fuzzy soft sets: Compactness. J. Intell. Fuzzy Syst. 2017, 32, 781–790. [Google Scholar] [CrossRef]
- Kandil, A.; El-Tantawy, O.A.; El-Sheikh, S.A.; El-Sayed, S.S. Fuzzy soft connected sets in fuzzy soft topological spaces II. J. Egypt. Math. Soc. 2017, 25, 171–177. [Google Scholar] [CrossRef]
- Ramadan, A.A.; Kim, Y.C. L-fuzzy (K,E)-soft quasi-uniform spaces induced by L-fuzzy (K,E)-soft pre-proximities. Int. J. Pure Appl. Math. 2017, 116, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Kılıçman, A.; Khameneh, A.Z. Separation Axioms of Interval-Valued Fuzzy Soft Topology via Quasi-Neighborhood Structure. Mathematics 2020, 8, 178. [Google Scholar] [CrossRef] [Green Version]
- Gao, R.; Wu, J. A Net with applications for continuity in a fuzzy soft topological space. Math. Probl. Eng. 2020, 2020, 9098410. [Google Scholar] [CrossRef]
- Dizman, T.S.; Ozturk, T.Y. Fuzzy bipolar soft topological spaces. TWMS J. Appl. Eng. Math. 2021, 11, 151–159. [Google Scholar]
- Höhle, U.; Šostak, A.P. Axiomatic foundations of fixed-basis fuzzy topology. In Chapter 3 in Mathematics of Fuzzy Sets, Logic, Topology, and Measure Theory, The Handbooks of Fuzzy Sets Series; Kluwer Academic Publishers: Boston, MA, USA, 1999; pp. 123–273. [Google Scholar]
- Jager, G. Lattice-valued convergence spaces and regularity. Fuzzy Sets Syst. 2008, 159, 2488–2502. [Google Scholar] [CrossRef] [Green Version]
- Fang, J. Lattice-valued semiuniform convergence spaces. Fuzzy Sets Syst. 2012, 195, 33–57. [Google Scholar] [CrossRef]
- Li, L.; Jin, Q. Lattice-valued convergence spaces: Weaker regularity and p-regularity. Abstr. Appl. Anal. 2014, 2014, 328153. [Google Scholar] [CrossRef] [Green Version]
- Jager, G. Alexandrov L-filters and Alexandrov L-convergence spaces. J. Intell. Fuzzy Syst. 2018, 35, 3255–3266. [Google Scholar]
- Höhle, U.; Šostak, A.P. A general theory of fuzzy topological spaces. Fuzzy Sets Syst. 1995, 73, 131–149. [Google Scholar] [CrossRef]
- Luna-Torres, J.; Ochoa, C.O. L-filters and LF-topologies. Fuzzy Sets Syst. 2003, 140, 433–446. [Google Scholar] [CrossRef]
- Kim, Y.C.; Ko, J.M. Images and preimages of L-filterbases. Fuzzy Sets Syst. 2006, 157, 1913–1927. [Google Scholar] [CrossRef]
- Pang, B.; Zhao, Y. L-fuzzy N-convergence structures. J. Intell. Fuzzy Syst. 2016, 30, 3033–3043. [Google Scholar] [CrossRef]
- Abd El-latif, A.A.; Aygün, H.; Cetkin, V. On (L,M)-Double fuzzy filter spaces. Adv. Fuzzy Syst. 2018, 2018, 3871282. [Google Scholar] [CrossRef]
- Ramadan, A.A.; Usama, M.A.; Abd El-latif, A.A. L-fuzzy pre proximities, L-fuzzy filters and L-fuzzy grills. J. Egypt. Math. Soc. 2020, 28, 47. [Google Scholar] [CrossRef]
- Goguen, J.A. L-fuzzy sets. J. Math. Anal. Appl. 1967, 18, 145–175. [Google Scholar] [CrossRef] [Green Version]
- Hájek, P. Metamathematices of Fuzzy Logic; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Höhle, U.; Rodabaugh, S.E. Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory. In The Handbooks of Fuzzy Sets Series 3; Kluwer Academic Publishers: Boston, MA, USA, 1999. [Google Scholar]
- Kim, Y.C.; Kim, Y.S. (L,⊙)-Fuzzy topologies induced by (L,⊙)-filters. Int. Math. Forum 2009, 4, 1337–1345. [Google Scholar]
- Kim, Y.C.; Ramadan, A.A. (K,E)-Soft topological and L-fuzzy (K,E)-soft neighborhood systems. Int. J. Pure Appl. Math. 2016, 18, 341–351. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd El-Latif, A.A.; Ramadan, A.A.E. (L,⊙)-Fuzzy (K,E)-Soft Filter. Mathematics 2021, 9, 2895. https://doi.org/10.3390/math9222895
Abd El-Latif AA, Ramadan AAE. (L,⊙)-Fuzzy (K,E)-Soft Filter. Mathematics. 2021; 9(22):2895. https://doi.org/10.3390/math9222895
Chicago/Turabian StyleAbd El-Latif, Ahmed Aref, and Ahmed Abd Elkader Ramadan. 2021. "(L,⊙)-Fuzzy (K,E)-Soft Filter" Mathematics 9, no. 22: 2895. https://doi.org/10.3390/math9222895
APA StyleAbd El-Latif, A. A., & Ramadan, A. A. E. (2021). (L,⊙)-Fuzzy (K,E)-Soft Filter. Mathematics, 9(22), 2895. https://doi.org/10.3390/math9222895