Comparative Study of Energy Consumption and CO2 Emissions of Variable-Speed Electric Drives with Induction and Synchronous Reluctance Motors in Pump Units
Abstract
:1. Introduction
2. Literature Review and Novelty of the Study
3. Evaluation of Pump and PDS Performances
4. PDS Energy Consumption
5. Evaluation of CO2 Emission Intensity
6. Results and Discussions
7. Payback Period Assessment
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The European Green Deal. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 23 January 2021).
- European Council Meeting (10 and 11 December 2020)—Conclusions. EUCO 22/20 CO EUR 17 CONCL 8. Available online: https://www.consilium.europa.eu/media/47296/1011-12-20-euco-conclusions-en.pdf (accessed on 23 January 2021).
- Chodakowska, E.; Nazarko, J. Assessing the performance of sustainable development goals of EU countries: Hard and soft data integration. Energies 2020, 13, 3439. [Google Scholar] [CrossRef]
- Siksnelyte, I.; Zavadskas, E.K. Achievements of the European Union countries in seeking a sustainable electricity sector. Energies 2019, 12, 2254. [Google Scholar] [CrossRef] [Green Version]
- Commission Staff Working Document Impact Assessment Accompanying the Document Commission Regulation (EU) 2019/1781 Laying Down Ecodesign Requirements for Electric Motors and Variable Speed Drives Pursuant to Directive 2009/125/EC of the European Parliament and of the Council and Repealing Commission Regulation (EC) No 640/2009. SWD/2019/0343 Final. Available online: https://ec.europa.eu/transparency/regdoc/rep/10102/2019/EN/SWD-2019-343-F1-EN-MAIN-PART-1.PDF (accessed on 23 January 2021).
- Van Werkhoven, M.; Werle, R.; Brunner, C.U. 4E EMSA Policy guidelines for motor driven units: Pumps, fans and compressors. In Proceedings of the 10th International Conference on Energy Efficiency in Motor Driven System (EEMODS’ 2017), Rome, Italy, 6–8 September 2017; Publications Office of the European Union: Luxembourg, 2018. Available online: http://publications.jrc.ec.europa.eu/repository/bitstream/JRC110714/eemods_2017_proceedings_v11(1).pdf (accessed on 23 January 2021). [CrossRef]
- Rotating Electrical Machines—Part 30-1: Efficiency Classes of Line Operated AC Motors (IE Code). IEC 60034-30-1/ Ed. 1; IEC: 2014-03. Available online: https://webstore.iec.ch/publication/136 (accessed on 23 January 2021).
- Rotating Electrical Machines—Part 30-2: Efficiency Classes of Variable Speed AC Motors (IE-Code) IEC 60034-30-2/ IEC: 2016-12. Available online: https://webstore.iec.ch/publication/30830 (accessed on 23 January 2021).
- European Commission Regulation (EC), No. 640/2009 Implementing Directive 2005/32/ EC of the European Parliament and of the Council with Regard to Ecodesign Requirements for Electric Motors, (2009), Amended by Commission Regulation (EU) No 4/2014 of January 6, 2014. Document 32014R0004. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32014R0004 (accessed on 23 January 2021).
- Commission Regulation (EU) 2019/1781 of 1 October 2019 Laying Down Ecodesign Requirements for Electric Motors and Variable Speed Drives Pursuant to Directive 2009/125/EC of the European Parliament and of the Council, Amending Regulation (EC) No 641/2009 with Regard to Ecodesign Requirements for Glandless Standalone Circulators and Glandless Circulators Integrated in Products and Repealing Commission Regulation (EC) No 640/2009. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R1781&from=EN (accessed on 23 January 2021).
- Efficiency Regulations for Motors: International Norms. NORD DRIVESYSTEMS Group, S4700 Part. No. 6069202 / 4019. Available online: https://www.nord.com/cms/media/documents/bw/S4700_6069202_4019_Screen.pdf (accessed on 23 January 2021).
- How International Standards for Electric Motor Systems Support Policies of Countries Using These in Their Regulations. Available online: https://www.iec.ch/government-regulators/electric-motors (accessed on 23 January 2021).
- Shankar, V.K.A.; Umashankar, S.; Paramasivam, S.; Hanigovszki, N. A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system. Appl. Energy 2016, 181, 495–513. [Google Scholar] [CrossRef]
- Almeida, A.; Ferreira, F.; Duarte, A. Technical and economical considerations on super high-efficiency three-phase motors. IEEE Trans. Ind. Appl. 2014, 50, 1274–1285. [Google Scholar] [CrossRef]
- Goman, V.; Oshurbekov, S.; Kazakbaev, V.; Prakht, V.; Dmitrievskii, V. Energy Efficiency analysis of fixed-speed pump drives with various types of motors. Appl. Sci. 2019, 9, 5295. [Google Scholar] [CrossRef] [Green Version]
- Oshurbekov, S.; Kazakbaev, V.; Prakht, V.; Dmitrievskii, V. Comparative study of energy consumption of 15 kW induction motors of IE1 and IE2 efficiency classes in pump applications. In Proceedings of the XI International Conference on Electrical Power Drive Systems (ICEPDS), Saint-Petersburg, Russia, 4–7 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Ahonen, T.; Orozco, S.M.; Ahola, J.; Tolvanen, J. Effect of electric motor efficiency and sizing on the energy efficiency in pumping systems. In Proceedings of the 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), Karlsruhe, Germany, 6–8 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–9. [Google Scholar] [CrossRef]
- Van Rhyn, P.; Pretorius, J.H.C. Utilising high and premium efficiency three phase motors with VFDs in a public water supply system. In Proceedings of the IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), Riga, Latvia, 11–13 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 497–502. [Google Scholar] [CrossRef]
- Safin, N.; Kazakbaev, V.; Prakht, V.; Dmitrievskii, V. Calculation of the efficiency and power consumption of induction IE2 and synchronous reluctance IE5 electric drives in the pump application based on the passport specification according to the IEC 60034-30-2. In Proceedings of the 25th International Workshop on Electric Drives: Optimization in Control of Electric Drives (IWED), Moscow, Russia, 31 January–2 February 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Kazakbaev, V.; Prakht, V.; Dmitrievskii, V.; Ibrahim, M.N.; Oshurbekov, S.; Sarapulov, S. Efficiency analysis of low electric power drives employing induction and synchronous reluctance motors in pump applications. Energies 2019, 12, 1144. [Google Scholar] [CrossRef] [Green Version]
- Rassolkin, A.; Heidari, H.; Kallaste, A.; Vaimann, T.; Acedo, J.P.; Romero-Cadaval, E. Efficiency map comparison of induction and synchronous reluctance motors. In Proceedings of the 26th International Workshop on Electric Drives: Improvement in Efficiency of Electric Drives (IWED), Moscow, Russia, 30 January–2 February 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Ferreira, F.J.T.E.; Baoming, G.; De Almeida, A.T. Reliability and operation of high-efficiency induction motors. IEEE Trans. Ind. Appl. 2016, 52, 4628–4637. [Google Scholar] [CrossRef]
- Tabora, J.M.; De Lima Tostes, M.E.; De Matos, E.O.; Bezerra, U.H.; Soares, T.M.; De Albuquerque, B.S. Assessing voltage unbalance conditions in IE2, IE3 and IE4 classes induction motors. IEEE Access 2020, 8, 186725–186739. [Google Scholar] [CrossRef]
- Ferreira, F.J.T.; Leprettre, B.; De Almeida, A.T. Comparison of protection requirements in IE2-IE3-and IE4-class motors. IEEE Trans. Ind. Appl. 2016, 52, 3603–3610. [Google Scholar] [CrossRef]
- Wang, G. Data-driven energy models for existing VFD-motorpump systems. Sci. Technol. Built Environ. 2019, 25, 732–742. [Google Scholar] [CrossRef]
- Hieninger, T.; Goppelt, F.; Schmidt-Vollus, R.; Schlucker, E. Energy-saving potential for centrifugal pump storage operation using optimized control schemes. Energy Effic. 2021, 14, 23. [Google Scholar] [CrossRef]
- Grundfos Product Center: Technical Data and Curves NB 50-200/210 AF2ABAQE. Available online: https://product-selection.grundfos.com/products/nb-nbe-nbe-series-2000/nb/nb-50-200210-97837025?tab=variant-curves&pumpsystemid=1173717497 (accessed on 23 January 2021).
- Grundfos Product Center: Technical Data and Curves NB 80-315/305 AF2ABAQE. Available online: https://product-selection.grundfos.com/products/nb-nbe-nbe-series-2000/nb/nb-80-315305-97839395?tab=variant-curves&pumpsystemid=1167816632 (accessed on 23 January 2021).
- Grundfos Product Center: Technical Data and Curves NB 150-400/375 AF1ABAQE. Available online: https://product-selection.grundfos.com/products/nb-nbe-nbe-series-2000/nb/nb-150-400375-97837168?tab=variant-curves&pumpsystemid=1168447008 (accessed on 23 January 2021).
- Grundfos Product Center: Technical Data and Curves NB 250-500/445 AF1ABAQE. Available online: https://product-selection.grundfos.com/products/nb-nbe-nbe-series-2000/nb/nb-250-500445-97921024?tab=variant-curves&pumpsystemid=1173934349 (accessed on 23 January 2021).
- Tamminen, J.; Viholainen, J.; Ahonen, T.; Ahola, J.; Hammo, S.; Vakkilainen, E. Comparison of model-based flow rate estimation methods in frequency-converter-driven pumps and fans. Energy Effic. 2014, 7, 493–505. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Liu, M. Development of simplified in-situ fan curve measurement method using the manufacturers fan curve. Build. Environ. 2012, 48, 77–83. [Google Scholar] [CrossRef]
- Nelik, L. Centrifugal and Rotary Pumps. Fundamentals with Applications; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Wu, P.; Lai, Z.; Wu, D.; Wang, L. Optimization Research of Parallel Pump System for Improving Energy Efficiency. J. Water Resour. Plan. Manag. 2015, 141, 04014094. [Google Scholar] [CrossRef]
- Arfaoui, J.; Rezk, H.; Al-Dhaifallah, M.; Elyes, F.; Abdelkader, M. Numerical Performance Evaluation of Solar Photovoltaic Water Pumping System under Partial Shading Condition using Modern Optimization. Mathematics 2019, 7, 1123. [Google Scholar] [CrossRef] [Green Version]
- Goyal, N.; Ram, M.; Kumar, A.; Bisht, S.; Klochkov, Y. Reliability Measures and Profit Exploration of Windmill Water-Pumping Systems Incorporating Warranty and Two Types of Repair. Mathematics 2021, 9, 822. [Google Scholar] [CrossRef]
- Belhaj Salem, M.; Fouladirad, M.; Deloux, E. Prognostic and Classification of Dynamic Degradation in a Mechanical System Using Variance Gamma Process. Mathematics 2021, 9, 254. [Google Scholar] [CrossRef]
- Extended Product Approach for Pumps, Copyright © 2021 by Europump. Published by Europump. Available online: http://europump.net/uploads/Extended%20Product%20Approach%20for%20Pumps%20-%20A%20Europump%20guide%20(27OCT2014).pdf (accessed on 23 January 2021).
- Stoffel, B. Assessing the Energy Efficiency of Pumps and Pump Units. Background and Methodology; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Adjustable Speed Electrical Power Drive Systems—Part 9-2: Ecodesign for Power Drive Systems, Motor Starters, Power Electronics and Their Driven Applications—Energy Efficiency Indicators for Power Drive Systems and Motor Starters; IEC 61800-9-2/Ed1; IEC: Geneva, Switzerland, 2017.
- Pellegrino, G.; Bojoi, R.; Guglielmi, P. Unified Direct-Flux Vector Control for AC Motor Drives. IEEE Trans. Ind. Appl. 2011, 47, 2093–2102. [Google Scholar] [CrossRef]
- Li, Y.; Liu, M.; Lau, J.; Zhang, B. A novel method to determine the motor efficiency under variable speed operations and partial load conditions. Appl. Energy 2015, 144, 234–240. [Google Scholar] [CrossRef]
- SinaSave Energy Saving and Amortization, Siemens Online Tool. Available online: https://www.sinasave.siemens.com (accessed on 23 January 2021).
- Manufacturer’s Statement ACS880-01 and IE4 SynRM Motor Package Efficiency. Drive: ACS880-01-202A-3, Motor: M3BL 280SMA, 3GBL282213-ADC, Pn 75 kW, 1500 rpm. Document No: FIVEN201506010267. Available online: https://library.e.abb.com/public/34f02c42d4b642b5888d22a429ef04c5/Manufacturers%20statement%20-%20IE4%20M3BL%20280SMA_ACS880_103A,%2075%20%20kW,%201500%20rpm.pdf (accessed on 23 January 2021).
- Manufacturer’s Statement ACS880-01 and IE4 SynRM Motor Package Efficiency. Drive: ACS880-01-427A-3, Motor: M3BL 315MLA, 3GBL312413-ADC, Pn 200 kW, 1500 rpm. Document No: FIVEN201506010275. Available online: https://library.e.abb.com/public/c00bb6eb084a40b3912317e345a73fe0/Manufacturers%20statement%20-%20IE4%20M3BL%20315MLA_ACS880_427A,%20200%20%20kW,%201500%20rpm.pdf (accessed on 23 January 2021).
- Eurostat Data for the Industrial Consumers in Germany. Available online: http://ec.europa.eu/eurostat/statistics-explained/index.php/Electricity_price_statistics#Electricity_prices_for_industrial_consumers (accessed on 23 January 2021).
- Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems, Executive Summary. (2001) Hydraulic Institute (Parsippany, NJ); Europump (Brussels, Belgium); Office of Industrial Technologies Energy Efficiency and Renewable Energy U.S. Department of Energy (Washington, DC). January 2001, pp. 1–19. Available online: https://searchworks.stanford.edu/view/4676735 (accessed on 23 January 2021).
- Waghmode, L.; Sahasrabudhe, A. A comparative study of life cycle cost analysis of pumps. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (ASME 2010), Montreal, QC, Canada, 15–18 August 2010; Volume 6, pp. 491–500. [Google Scholar] [CrossRef]
- CO2 Intensity of Electricity Generation. European Environment Agency. Available online: https://www.eea.europa.eu/data-and-maps/data/co2-intensity-of-electricity-generation (accessed on 23 January 2021).
- Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on Energy Efficiency, Amending Directives 2009/125/EC and 2010/30/EU and Repealing Directives 2004/8/EC and 2006/32/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012L0027 (accessed on 23 January 2021).
- Wilby, M.R.; González, A.B.R.; Díaz, J.J.V. Empirical and dynamic primary energy factors. Energy 2014, 73, 771–779. [Google Scholar] [CrossRef]
- Final Report. Evaluation of Primary Energy Factor Calculation Options for Electricity. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/final_report_pef_eed.pdf (accessed on 23 January 2021).
- Tucki, K.; Orynycz, O.; Mitoraj-Wojtanek, M. Perspectives for Mitigation of CO2 Emission due to Development of Electromobility in Several Countries. Energies 2020, 13, 4127. [Google Scholar] [CrossRef]
- de Castro Andrade, C.T.; Pontes, R.S.T. Economic analysis of Brazilian Policies for Energy Efficient Electric Motors. Energy Policy 2017, 106, 315–325. [Google Scholar] [CrossRef]
- De Almeida, A.T.; Ferreira, F.J.; Baoming, G. Beyond Induction Motors—Technology Trends to Move Up Efficiency. IEEE Trans. Ind. Appl. 2014, 50, 2103–2114. [Google Scholar] [CrossRef]
- Moghaddam, R.R.; Magnussen, F.; Sadarangani, C. Theoretical and Experimental Reevaluation of Synchronous Reluctance Machine. IEEE Trans. Ind. Electron. 2010, 57, 6–13. [Google Scholar] [CrossRef]
- Dmitrievskii, V.; Prakht, V.; Kazakbaev, V.; Pozdeev, A.; Oshurbekov, S. Development of a high efficient electric drive with synchronous reluctance motor. In Proceedings of the 18th International Conference on Electrical Machines and Systems (ICEMS), Pattaya, Thailand, 25–28 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 876–881. [Google Scholar] [CrossRef]
- AC Electric Motor. Available online: https://www.acelectricmotor.co.uk/ (accessed on 23 January 2021).
- Ozcelik, N.G.; Dogru, U.E.; Imeryuz, M.; Ergene, L.T. Synchronous Reluctance Motor vs. Induction Motor at Low-Power Industrial Applications: Design and Comparison. Energies 2019, 12, 2190. [Google Scholar] [CrossRef] [Green Version]
- Three Phase VFD Pricelist. Available online: http://www.gohz.com/three-phase-vfd (accessed on 23 January 2021).
- Report on Study on International Efficiency (IE) Efficiency Classes for Low Voltage AC Motors. Available online: https://www.emsd.gov.hk/filemanager/en/content_764/Report%20on%20International%20Efficiency%20Efficiency%20Classes%20for%20Low%20Voltage%20AC%20Motors.pdf (accessed on 23 January 2021).
- Fact Sheet, No. 29–New Motor Technologies November 2018. Available online: https://www.topmotors.ch/sites/default/files/2018-11/E_MB_29_Motor_technologies.pdf (accessed on 23 January 2021).
- Almeida, A. Motor Systems Technology Developments. In Proceedings of the 8th Motor Summit for Energy Efficient Motor Driven Systems Powered by Impact Energy, Zurich, Switzerland, 14–15 November 2018; Available online: https://motorsummit.ch/wp-content/uploads/2020/08/MS18_proceedings.pdf (accessed on 23 January 2021).
Country | Power Range | First Year of Implementation | Country | Power Range | First Year of Implementation |
---|---|---|---|---|---|
Switzerland, Turkey | 0.75–375 kW | 2017 | Japan | 0.75–375 kW | 2014 |
USA | 0.75–200 kW | 2007 | Saudi Arabia | 0.75–375 kW | 2018 |
USA | 0.18–2.2 kW | 2015 | Brazil | 0.75–185 kW | 2017 |
Canada | 0.75–150 kW | 2017 | Taiwan | 0.75–200 kW | 2016 |
Mexico | 0.75–375 kW | 2010 | Singapore | 0.75–375 kW | 2013 |
South Korea | 0.75–200 kW | 2017 | - | - | - |
No. of Pump | Type | PRATE.pump, kW | nRATE.pump, rpm | QBEP, m3/h | HBEP, m | ηBEP, % |
---|---|---|---|---|---|---|
1 | NB 50-200/210 | 2.2 | 1450 | 35.2 | 13.7 | 69.8 |
2 | NB 80-315/305 | 15 | 1450 | 125.0 | 29.0 | 76.8 |
3 | NB 150-400/375 | 75 | 1450 | 441.3 | 45.0 | 84.4 |
4 | NB 250-500/445 | 200 | 1450 | 852.5 | 60.1 | 81.5 |
m | Type of Motor, IE Class | nRATED.motor, rpm | TRATED.motor, N·m | ||||||
---|---|---|---|---|---|---|---|---|---|
Rated Output, kW | 2.2 | 15 | 75 | 200 | 2.2 | 15 | 75 | 200 | |
1 | SynRM, IE4 | 1500 | 1500 | 1500 | 1500 | 14.0 | 95.0 | 478 | 1272 |
2 | IM, IE4 | 1465 | 1480 | 1490 | 1490 | 14.3 | 97.0 | 480 | 1280 |
3 | IM, IE3 | 1465 | 1475 | 1485 | 1488 | 14.3 | 97.0 | 480 | 1280 |
No. of Pump | 1 (NB 50-200/210, 2.2 kW) | 2 (NB 80-315/305, 15 kW) | 3 (NB 150-400/375, 75 kW) | 4 (NB 250-500/445, 200 kW) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No. of Load Point (i) | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
Qi, % | 75 | 100 | 110 | 75 | 100 | 110 | 75 | 100 | 110 | 75 | 100 | 110 |
Qi, m3/h | 23.4 | 35.2 | 38.7 | 93.8 | 125.0 | 137.5 | 331.0 | 441.3 | 485.4 | 639.4 | 852.5 | 937.8 |
Hi, m | 12.0 | 13.7 | 14.4 | 25.4 | 29.0 | 30.5 | 39.4 | 45.0 | 47.2 | 52.6 | 60.1 | 63.1 |
a2 | −0.0038 | −5.5371 × 10−4 | −8.8848 × 10−5 | −3.7879 × 10−5 | ||||||||
a1 | 0.066 | 0.0398 | 0.0318 | 0.286 | ||||||||
a0 | 16.27 | 33.18 | 48.83 | 63.00 | ||||||||
k | 0.195 | 0.116 | 0.051 | 0.0352 | ||||||||
b | 6.855 | 14.5 | 22.49 | 30.05 | ||||||||
npump.i, rpm | 1310 | 1450 | 1508 | 1310 | 1450 | 1508 | 1310 | 1450 | 1508 | 1310 | 1450 | 1508 |
npump.i, % | 90.3 | 100.0 | 104.0 | 90.3 | 100.0 | 104.0 | 90.3 | 100.0 | 104.0 | 90.3 | 100.0 | 104.0 |
ηpump.i, % | 68.9 | 69.8 | 69.5 | 75.9 | 76.8 | 76.3 | 82.9 | 84.4 | 84.1 | 79.6 | 81.5 | 81.2 |
Pmech.i, kW | 1.25 | 1.88 | 2.18 | 8.54 | 12.86 | 14.95 | 42.82 | 64.09 | 74.29 | 115.1 | 171.3 | 198.6 |
Pmech.i, % | 56.9 | 85.5 | 99.2 | 56.9 | 85.7 | 99.7 | 57.1 | 85.5 | 99.1 | 57.6 | 85.7 | 99.3 |
Tpump.i, N·m | 9.18 | 12.44 | 13.87 | 62.50 | 85.32 | 95.52 | 313.2 | 424.4 | 473.3 | 838.1 | 1126 | 1255 |
m | Type of Motor, IE Class | Interpolated Motor Efficiency ηM.i.m, % in the Load Points | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.2 kW | 15 kW | 75 kW | 200 kW | ||||||||||
1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | ||
1 | SynRM, IE4 | 86.8 | 88.5 | 89.1 | 91.6 | 92.2 | 92.4 | 93.1 | 93.5 | 93.6 | 94.2 | 94.5 | 94.4 |
2 | IM, IE4 | 84.1 | 85.4 | 85.7 | 89.9 | 90.4 | 90.6 | 92.4 | 92.7 | 92.8 | 93.7 | 93.8 | 93.8 |
3 | IM, IE3 | 82.1 | 82.4 | 82.6 | 88.5 | 89.1 | 89.3 | 91.8 | 91.9 | 92.0 | 93.1 | 93.2 | 93.2 |
m | Type of Motor, IE Class | Ey.m, MW·h | Cy.m, k€ | Sy.3m, k€ | CLCCen.m, k€ | ΔCLCCen.3m, k€ |
---|---|---|---|---|---|---|
2.2 kW | ||||||
1 | SynRM, IE4 | 17.84 | 3.18 | 0.23 | 51.94 | 3.743 |
2 | IM, IE4 | 18.47 | 3.29 | 0.12 | 53.80 | 1.884 |
3 | IM, IE3 | 19.12 | 3.41 | - | 55.68 | - |
15 kW | ||||||
1 | SynRM, IE4 | 117.0 | 20.83 | 0.73 | 340.6 | 11.90 |
2 | IM, IE4 | 119.2 | 21.24 | 0.32 | 347.3 | 5.216 |
3 | IM, IE3 | 121.0 | 21.56 | - | 352.5 | - |
75 kW | ||||||
1 | SynRM, IE4 | 574.8 | 102.38 | 1.66 | 1674 | 27.22 |
2 | IM, IE4 | 579.4 | 103.20 | 0.846 | 1688 | 13.83 |
3 | IM, IE3 | 584.2 | 104.04 | - | 1702 | - |
200 kW | ||||||
1 | SynRM, IE4 | 1522 | 271.14 | 3.62 | 4437 | 59.12 |
2 | IM, IE4 | 1533 | 272.97 | 1.79 | 4464 | 29.21 |
3 | IM, IE3 | 1543 | 274.76 | - | 4493 | - |
m | Type of Motor, IE Class | Emissions Considering the Final Energy | Emissions Considering the Primary Energy | ||
---|---|---|---|---|---|
CDEy.m, Tons | ΔCDEy.3m, Tons | CDE*y.m, Tons | ΔCDE*y.3m, Tons | ||
2.2 kW | |||||
1 | SynRM, IE4 | 7.465 | 0.538 | 16.43 | 1.184 |
2 | IM, IE4 | 7.737 | 0.271 | 17.02 | 0.596 |
3 | IM, IE3 | 8.008 | - | 17.62 | - |
15 kW | |||||
1 | SynRM, IE4 | 48.98 | 1.711 | 107.75 | 3.764 |
2 | IM, IE4 | 49.94 | 0.750 | 109.87 | 1.650 |
3 | IM, IE3 | 50.69 | - | 111.52 | - |
75 kW | |||||
1 | SynRM, IE4 | 240.7 | 3.914 | 529.64 | 8.611 |
2 | IM, IE4 | 242.7 | 1.989 | 533.87 | 4.376 |
3 | IM, IE3 | 244.7 | - | 538.24 | - |
200 kW | |||||
1 | SynRM, IE4 | 637.6 | 8.502 | 1402.7 | 18.70 |
2 | IM, IE4 | 641.9 | 4.201 | 1412.2 | 9.242 |
3 | IM, IE3 | 646.1 | - | 1426.6 | - |
m | Type of Motor, IE Class | 2.2 kW | 15 kW | 75 kW | 200 kW |
---|---|---|---|---|---|
1 | SynRM, IE4 | 6.72 | 3.38 | 1.60 | 1.32 |
2 | IM, IE4 | 3.38 | 1.48 | 0.81 | 0.65 |
m | Motor Type | Motor Current, A | Motor Price, € | Converter Price, € | PDS Price, Ciic.m, € | Payback Time 1, Tm1, Years | Payback Time 2, Tm2, Years |
---|---|---|---|---|---|---|---|
2.2 kW | |||||||
1 | SynRM, IE4 | 5.7 | 286 | 242 | 528 | 0.09 | 2.32 |
2 | IM, IE4 | 4.5 | 351 | 222 | 573 | 0.56 | 4.95 |
3 | IM, IE3 | 4.4 | 286 | 222 | 508 | - | - |
15 kW | |||||||
1 | SynRM, IE4 | 32.9 | 763 | 818 | 1581 | 0.34 | 2.22 |
2 | IM, IE4 | 29 | 935 | 575 | 1510 | 0.54 | 4.71 |
3 | IM, IE3 | 28.5 | 763 | 575 | 1338 | - | - |
75 kW | |||||||
1 | SynRM, IE4 | 173 | 2954 | 3085 | 6039 | 0.27 | 3.61 |
2 | IM, IE4 | 133 | 3618 | 2637 | 6255 | 0.78 | 7.32 |
3 | IM, IE3 | 130 | 2954 | 2637 | 5590 | - | - |
200 kW | |||||||
1 | SynRM, IE4 | 427 | 6883 | 9468 | 16,351 | 0.38 | 4.51 |
2 | IM, IE4 | 345 | 8431 | 8092 | 16,524 | 0.87 | 9.28 |
3 | IM, IE3 | 345 | 6883 | 8092 | 14,975 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goman, V.; Prakht, V.; Kazakbaev, V.; Dmitrievskii, V. Comparative Study of Energy Consumption and CO2 Emissions of Variable-Speed Electric Drives with Induction and Synchronous Reluctance Motors in Pump Units. Mathematics 2021, 9, 2679. https://doi.org/10.3390/math9212679
Goman V, Prakht V, Kazakbaev V, Dmitrievskii V. Comparative Study of Energy Consumption and CO2 Emissions of Variable-Speed Electric Drives with Induction and Synchronous Reluctance Motors in Pump Units. Mathematics. 2021; 9(21):2679. https://doi.org/10.3390/math9212679
Chicago/Turabian StyleGoman, Victor, Vladimir Prakht, Vadim Kazakbaev, and Vladimir Dmitrievskii. 2021. "Comparative Study of Energy Consumption and CO2 Emissions of Variable-Speed Electric Drives with Induction and Synchronous Reluctance Motors in Pump Units" Mathematics 9, no. 21: 2679. https://doi.org/10.3390/math9212679
APA StyleGoman, V., Prakht, V., Kazakbaev, V., & Dmitrievskii, V. (2021). Comparative Study of Energy Consumption and CO2 Emissions of Variable-Speed Electric Drives with Induction and Synchronous Reluctance Motors in Pump Units. Mathematics, 9(21), 2679. https://doi.org/10.3390/math9212679