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Abstract: Renewable energy is an attractive solution for water pumping systems particularly in
isolated regions where the utility grid is unavailable. An attempt is made to improve the performance
of solar photovoltaic water pumping system (SPVWPS) under partial shading condition. Under
this condition, the power versus voltage curve has more than one maximum power point (MPP),
which makes the tracking of global MPP not an easy task. Two MPP tracking (MPPT) strategies are
proposed and compared for tracking MPP of SPVWPS under shading condition. The first method is
based on the classical perturb and observe (P&O) and the other method is based on a Salp Swarm
Algorithm (SSA). Based on extensive MATLAB simulation, it is found that the SSA method can
provide higher photovoltaic (PV) generated power than the P&O method under shading condition.
Consequently, the pump flowrate is increased. But, under normal distribution of solar radiation,
both MPPT techniques can extract the maximum power but SSA is considered a time-consuming
approach. Moreover, SSA is compared with particle swarm optimization (PSO) and genetic algorithm
(GA). The obtained results ensure the superiority of SSA compared with PSO and GA. SSA has high
successful rate of reaching true global MPP.

Keywords: modern optimization; numerical evaluation; solar photovoltaic; water pumping

1. Introduction

With regularly lessening natural resources and expanding requests for power, the need to search for
alternatives sources of renewable energy is not simply intense. Earnest renewable energy sources that are
environmentally safe, have a cheap running cost, and low maintenance [1-4] are required. Stand-alone
PV systems (PVSs) depicts the most encouraging application for water pumping, especially those
situated in remote regions, where the expense of transporting fuel and power [5,6]. The standalone PVSs
have been used in numerous developing countries e.g., Egypt, Sudan, Algeria, India etc., particularly in
isolated rural zones, where there is no connection with utility [7,8]. Numerous African countries have an
excellent level of solar irradiance intensity. In Egypt, the global solar irradiation per annum is over 2000
kWh/m? [9-11]. This makes the standalone PVS an encouraging candidate. One of the most prevalent
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applications for PVS is the solar photovoltaic water pumping system (SPVWPS), especially in isolated
areas. The harvested energy by SPVWPS feeds into the pumping system for various applications,
for example, drinking water supplies and irrigation. Unfortunately, PVS has two main problems:
the lower efficiency, and the harvested output power varies continuously with weather conditions.
Additionally, the PVS characteristics are nonlinear. Their output power is subject to considerable
variation of weather conditions, i.e., solar irradiance and temperature. To increase PVS efficiency,
MPPT methods are necessary to harvest the maximum power from the PVS [12-15]. Such tracking
methods are based on moving the operating PV voltage to provide the available maximum power.
An effective and economic SPVWPS, needs to be designed properly, compared to the other pumping
systems that are connected to the grid or diesel generator, particularly in rural areas [16]. However,
the low efficiency of energy conversion, the non-linear (I-V) characteristic, the optimum point at
which maximum power can be derived, remain the main challenges of this technology [17-19]. In [20],
the authors examined the opportunities and challenges facing the SPVWPS. In fact, they briefly deal
with the economic, social, and technical implications of the target system. As they have demonstrated
that SPYWPS may have the lowest life-cycle cost compared to classical water pumping systems, which
have been powered by the grid or the diesel generator. Following in the same vein, the SPVWPS
design procedure in terms of sizing, assembly and monitoring are analyzed [21]. A theoretical and
experimental study on the performance of an SPVWPS under climatic conditions of Tunisia are carried
out [22]. The modelling of this photovoltaic structure consisting of a photovoltaic generator, buck
converter, inverter, asynchronous machine, submersible pump, and storage tank, is performed through
using MATLAB/Simulink. The global model consists of the entire structure previously developed
with the introduction of an MPPT control technology. Under constant solar irradiation, the authors
pointed out that generated PV power and flow rate characterizing the pump are strongly dependent
on radiation. In addition, changes in climatic factors have adversely affected the performance of the
pumping system. The experimental study revealed that the best performance of SPVWPS was clearly
visible in the middle of day and the experimental results conform well to the theoretical results. In
addition, [23] has reviewed the recent developments on SPVWPS, which are employed in a specific
area. Thus, the authors have examined most of the technologies applied to SPVWPS in Algeria, with
an emphasis on systems’ performance, modelling and sizing. However, these synthesis papers do not
deal with the critical analysis of the recent developments, although the focus has been placed on a
systems’ feasibility and design procedure. On the other hand, some archived reviews have discussed
issues of SPVWPS technologies, as mentioned [24,25]. Authors in [24] have reviewed studies about
SPVWPS, with an emphasis on their performance, economic and environmental impacts. They are
also interseted in control strategy and sizing. In the same vein, [25] has referred to research papers on
SPVWPS power electronics characteristics. This work examines studies done on maximum power point
tracking technology (MPPT). However, [24] was interested in a limited number of works, which do not
focus strictly on SPVWPS. As a result, nothing has been discussed about critical challenges, control,
modelling and sizing of this system. In [25], the study focused particularly on the control strategy
of SPVWPS, based on MPPT technology without taking account others control strategies. Moreover,
the system performance, modelling and sizing were not taken into account in this review. A detailed
study on SPVWPS has been carried out by [26]. The authors were limited to the latest updates of
SPVWPS in terms of technology, performance, sizing, economic and environmental considerations.
In addition, factors affecting the PV efficiency degradation and performance of a system, are examined.
In general, a three-phase engine powered by a PV generator is relatively well known in the literature,
while the single-phase induction motor dedicated to low-power applications (which is widely used for
domestic purposes) has never been studied. Author in [27] analysed the performance of a single-phase
induction motor (SPIM) connected to PV generator via an inverter. The mathematical model of the
suggested structure has been addressed. Subsequently, he adopted the rotor flux orientation vector
control (IRFOC) to drive the single-phase induction motor, connect to a centrifugal pump. In the same
study, the MPPT power detection algorithm, which contributes to the good operation of the pump,
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was used to meet the required flow rate and head. The approach proposed by [27], therefore has the
advantage of not using the DC-DC converter and has a low cost. The obtained results of the tracking
process lead to higher efficiency of the overall functioning of the pumping system. The profitability
and feasibility of the proposed method have been confirmed by simulation results. In [28], the author
suggested a solar water pumping system (SPV) incorporated with a single-phase distribution system
through using an induction motor (IMD), which is equipped with an intelligent power sharing control.
In addition, to the power exchange between the SPV and IMD, the author has introduced a Boost
converter, serving as a power factor correction unit and ensures interfacing with the grid. According
to [28], to guarantee a reliable use of this panel (SPV), it appears necessary to extract the maximum
power from it. This is achieved by implementing a maximum power point tracking (MPPT) control
based on incremental conductance, while to control the induction motor, which is coupled to a voltage
source inverter, the author used a simple scalar V/F control. The proposed topology is elaborated and
tested in the laboratory according to different modes: stand-alone, grid connected, under different
operating conditions.

One big issue that influences the performance of PV system is the partial shading condition (PSC).
Under this condition, the PV power versus voltage curve includes many points of maximum power
so any conventional MPPT unable to identify global. Several global tracking techniques based on
modern optimization are proposed in order to extract the global MPP under shading condition. These
techniques include Flower Pollination Algorithm [29], Teaching-Learning-Based Optimization [30],
Cuckoo Search [31], Moth-Flame Optimization [32], Mine Blast Optimization [33], Particle Swarm
Optimization [34,35], Differential Evolution [36], Jaya Algorithm [37], Grey Wolf Optimizer [38,39],
Sine Cosine Algorithm [40] and shuffled frog leap algorithm [41]. A modified PSO based MPPT
algorithm for a PV system operating under PSC, has been proposed by [35]. This technique can
accurately track the global MPP under different shading patterns. However, it does allow to bypass
their dependence on specific system parameters (such as the number of cells connected in series).
In addition, the tracking results obtained from any global MPP search operation could vary due to
the dependence of this technique on the number of iterations required to reach the global MPP. Based
on the Grey Wolf Optimization Technique (GWO), authors in [39] proposed a new maximum power
detection algorithm dedicated to PV generation systems which is: GWO-MPPT. The author used GWO
because this technique was able to overcome most of the constraints related to the following techniques:
Improved PSO (IPSO) and (P&O), such as low tracking efficiency and steady state oscillations. Based
on the Firefly Optimization Algorithm (FOA), the duty cycle of the converter indicates the position
on the firefly; in addition, the extracted power of the photovoltaic generation system represents the
brightness of each butterfly. The performance of the achieved results of FOA-MPPT technique is
performed in [42] and it is proven that this technique performs better than the standard PSO technique
in terms of the speed, accuracy of tracking, and dynamic response. In [43], an optimization approach
named Radial Movement Optimization (RMO), has been used for tracking the global maximum power
point regardless of the environmental conditions. The tracking performance of the maximum power
under the different shading patterns is much improved compared with other existing techniques based
on PSO. This performance has only been demonstrated at the simulation level.

Based on the above review of related works and to the best of our knowledge, the performance
evaluation of photovoltaic water pumping system under partial shading condition is not covered well.
In the other side, recent Salp Swarm Algorithm (SSA) is intensely concerned by many scholars owing
to its fewer control parameters, fast convergence speed, and better flexibility, which is adapted to solve
complex combinatorial optimization problems. The behavior of the salp chains has been widely used
due to its excellent convergence and search accuracy. This paper is a seminal attempt to apply an
SSA-based algorithm to the field of photovoltaic water pumping. The main target is evaluating the
performance of SPVWPS under the condition and mitigating the effect of shadow using SSA. The effect
of shadow on the pump flow rate and harvested electrical PV power is analyzed. Different scenarios of
PSC are considered to evaluate the reliability of SSA based tracker.
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2. Partial Shading Condition

Partial shading condition could occur from the shadow of trees and buildings [44,45]. Fully
or partial shadow is considered an essential problem, which minimizes the output power of PV
system [46]. Normally, one or three bypass diodes are connected with every PV panel module,
in order to overcome the problem of hot-spot phenomena [47]. Under uniform solar irradiance, power
versus voltage curve has unique maximum power point (MPP). This point can be easily tracked
with any conventional tracking method. This situation is completely different under partial shading
condition (PSC). The power versus voltage curve will have several MPPs depending on the number
of different solar irradiance levels. Therefore, the conventional tracking methods cannot extract the
global point under PSC. Figure 1 shows PV system under three different partial shading patterns.
The corresponding P-V and I-V characteristics are shown in Figure 2a,b, respectively. As a result,
it was necessary to develop a robust global MPPT control algorithm that allows detection of global
MPP under shaded conditions.

PV module PV module PV module
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Figure 1. Photovoltaic systems (PVS) under different partial shading conditions.
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Figure 2. (a) Power versus voltage curves (b) current versus voltage curves of PVS under uniform
irradiance and different partial shading patterns.
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3. Configuration of Proposed PV Pumping System

The suggested system contains the following components: PV array, three-phase inverter, DC-DC
converter, asynchronous machine and Centrifugal pump. Figure 3 illustrates a block diagram of the
photovoltaic pumping system equipped with MPPT and Indirect Field Oriented Control (IFOC) controls.
Referring to this system, many control approaches have been developed for efficient operations in
terms of voltage regulation, speed regulation, different MPPT strategies, frequency control, and load
variations. The main components of system can be summarized as follows:

(1) PV panels to supply power the induction motor through a three-phase current inverter (CSI:
Current Source Inverter).

(2) PWM hysteresis technique is used to control the current inverter.

(3) A DC-DC Boost converter, which ensures the tracking of the global MPP under partial shading
conditions through the use of the SSA optimization approach.

(4) Flux weakening element is needed to generate the reference current (I’ ) and the speed regulator
output represents (Ig).

(5) A motor pump driven by vector control [48].

(6) The reference speed is a function of the photovoltaic power coming from the MPPT control bloc
and the DC bus voltage controller, type (PI).

g;i_l

l’f‘m
w
| |
b

|
1T
———————— o

| IG—

boost converter

Figure 3. Overview of the photovoltaic pumping system equipped with maximum power point
tracking (MPPT) and Indirect Field Oriented Control (IFOC) controls.

In the PI controller’s framework, the appropriate values of the gain’s controllers (kps, kis, kpac, kiac)
are generally obtained by trials and errors procedure. This non-systematic and hard mechanism is
often becoming more difficult and time-consuming in the control design stage of VSI (Voltage Source
Inverter).
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3.1. Modeling of the Asynchronous Machine

When allowing for the asynchronous machine modeling, the Park transform is adopted, this
choice makes it possible to directly appreciate the current module, thus facilitating regulation [49].

dlds L d@dr

Vis = Rslgs + ULS? + I, d ws0Lslgs 1)
dl L
Vigs = Rlgs + 0Ls—0 + @5 =2 gy + w50 Lslgs )
dt L
R d L
Vi = 0= gy 4+ 28 _ 2R 1 3)

LT T T L

L
Vor =0 = wgpar — _mRrIqs 4)

r

2
whereo =1— %, Vs, Vgs, Var and Vy, are respectively the stator and the rotor voltages. I;s and Igs
indicate the stator currents.

Par = Lmlmdr (5)
Ly dlmdr
I, =1 — 6
ds mdr T R, dt ( )
Lis = (14 p-tr) Ly ()
where 7, = lg—:
In steady states conditions I s = I,z (8)

The instantaneous calculation of the angle 0 is based on this equation:

0; = fa)sdt )
Qsszsdt:f(wsl+wr)dt (10)

The sliding speed wg can be obtained by the following equation [49]:

Lyl I
wg = L_mﬁqu = __# (11)
Ly @ar TrPar Trlar

In steady states conditions (I3, = lys)

Iqs

= 12
Wyl Tl (12)
Equations (13) and (14) can be used to calculate the reference flux and reference stator current,

respectively [45]:

. Prn si |wm| < W
(Pdr - { (pTZ)C;Tn si |ﬂ)m| > Wy (13)
where ¢;,: Nominal value of flux and w;,: Nominal value of mechanical speed

* (P;i’

L, = m (14)
Ly;: is the mutual inductance

i, =1y PLm 15
qs — e/ EZ_Lr(Pd’ (15)
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The correlation between the torque and the speed as expressed through the pump model, is equal
to [50]:
Ty = a1 + a.0p° (16)

where a1, a; are the constants of the pump. T, and w, are respectively the torque and the speed of
the pump.

The power has a parabolic relationship with the motor speed wy;, thus actuating as the centrifugal
pumps [51,52].

In this system framework, the affinity law has been applied to evaluate one of the components
of the reference speed. Therefore, the motor operates under the solar irradiation variation and
determines the flow rate of the centrifugal pump. In fact, for optimizing the PV output power, we have
developed an MPPT control, which allows extracting the global MPP from the PVS under PSC, using
the optimization approach SSA. The power generated, thus contributes to the calculation of the first
component of the reference speed, according to the following formula [53]:

p,\1/3
Wiyl = (%) (17)

The photovoltaic power is converted in terms of speed via the constant k.

The DC bus voltage controller is utilized to evaluate the second part of the reference speed. In this
system, the detected bus voltage (V) is compared with the reference bus voltage (V7 ) and leads to a
voltage error, defined as [54];

Vaa(n) = V.(n) = Vac(n) (18)

This error signal passes through the voltage regulator, type (PI) and the resulting output speed is
given by this formula [50]:

wm2(n) = wpa(n = 1) + Kpge{ Ve (n) = Vg (n = 1)} + Kige- Ve (1) (19)

where k. and kig. are respectively the proportional and integral gains of the DC bus voltage regulator.
The losses of the system are recorded at the output of this controller.
Therefore, the reference speed of the engine is derived from the following formula [54]:

w; = W1 + Wm2 (20)

where wj, is the reference speed wy, is the first component of reference speed, calculated from Equation
(17).
Wy is the second component of reference speed, calculated from Equation (19).

3.2. Modeling of Centrifugal Pump

The mechanical model of the asynchronous motor driving the pump is given by the following
equation [55]:

T~ Ty~ foom = |2 e

t
T., T; indicate respectively the electromagnetic torque and the load torque (pump characteristic),
J: is the moment of inertia, f: is the dumping coefficient. The pump can be modeled by the following
relation [53]:
T, = Apw?, (22)

where A is the torque constant, given by equation [53]:

T, = Apw), (23)
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where P, is the rated power of induction motor and w;;;, is the rated speed.

3.3. Three Phase Inverter

In addition to photovoltaic modules, a PV system requires other components to interact efficiently
and safely with the power grid. In this context, the use of the inverter is important in order to ensure
control of power flow between the source and the asynchronous machine. The current inverter used
has three independent arms, as described in Figure 4.

Ipv
K1 K2 K3
A1 C
Vpv __
) 2 i
<«—— V2 Isb
f O ;SC
K1 K2 K3 «— V3
va —_— C
> - =
2

Figure 4. Three-phase current inverter.

We are interested in the family of the DC-AC converters, which are applied in the field of solar
energy and more especially to three phase current converters. Thus, this current inverter enables
alternating currents to be generated from the renewable source, forming a balanced three-phase system.
The modeling of the inverter depended on the state of the switches. Thus, we must use a continuous
equivalent model of this device. The system of simple voltages is then written in the following matrix
form [56]:

Vi v 2 -1 1| K

po
Vo | = 3 -1 2 1| K (24)
V3 -1 -1 2 K3

At all times, the current supplied by the DC power source obeys to;
IpU = Kilsg + Kol + K3lge (25)
These power electronic converters are controlled by PWM hysteresis technique.

3.4. DC-DC Boost Conuverter

Figure 5 illustrates the ideal DC-DC Boost converter scheme. It is powered by a DC voltage source
E from the photovoltaic solar panels. The circuit is driven through the duty cycle of MOSFET, which is
controlled by pulse with modulation (PWM).
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Figure 5. Schematic of ideal Boost converter.

The input voltage E is proportional to the output voltage:

Vs = (26)

where u is the duty cycle.
In this area, the introduction of the MPPT algorithm is therefore necessary to maximize the Boost
converter’s energy efficiency.

3.5. GMPP Based Salp Swarm Algorithm

Motivated by exploration and foraging attitude of salp in the deep ocean, Mirjalili et al. [57]
reported a novel optimization technique, named SSA. These creatures form a close chain called swarm
or salp chain. This chain comprises a leader salp and a group of followers, which attempt to find the
best region of food via this search method. Likewise, the algorithm is initialized with an initializing
matrix of n X dim, which represents salps’ positions, where n denotes the agents and dim is the
decision variables. This is a recursive process, where the position of each salp is updated, as per
the information given by the leader, for devouring the best food (F). The updated formula for salps’
positions is reported in [44], and is presented as,

1_r. b .
x]. = F] + cl((ub] lb])Cz + lb]) c3>0 @)
x} = F]' - Cl((ub]‘ - lb]‘)CQ + lb]') c3<0
where, x! denotes the position of the first salp (leader) in the j-th dimension, F j is the position of the
food source in the j-th dimension, ub; reveals the upper bound of j-th dimension, Ib; reveals the lower
bound of j-th dimension, ¢; and c3 are random values. ¢; can be described as the following;

412

o = 2¢ (1) (28)

where, | is the current iteration and L is the maximum number of iterations. To update the position of
the followers, the following equations is applied (Newton’s law of motion),

1
lezi'a'tz—b-vo (29)

where, i > 2, x ji represents the position of i-th salp in j-th coordinate, ¢ is the time, vy is the initial speed,

Ufinal X—X, . .. . . . . .
fv’—;‘” where v = =2. Since the optimization is an iterative process, the discrepancy between

iterations is equal to 1, and considering vy = 0, this equation can be reformulated as follows:

anda =

xji = %(in + x]‘i_l) (30)
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The main steps of the SSA optimizer are explained in Figure 6. The optimizer starts the process
by setting random position for each salp. Then, it estimates the cost function for each salp, finds out
the leader salp that has the maximum fitness, and assigns the position of the leader salp as the source
food to be chased by the salp string. Next, the new positions for salps are modified. If any of the salp
exceeded the search space, it will be recovered on the boundaries. This process continued until the end

Initialize the salp population considering the lower
and upper bound of the solution vector and
maximum number of iterations

criteria is achieved.

A

Calculate the fitness of the objective
function for each search agent (salp)

E=

Update the position of leading salps with
consideration the balance between
exploring and exploiting

Adjust the salps based
on the upper and lower
bounds of variables

A

No

Print the best
Space and the
best position

Figure 6. Flow-chart of Salp Swarm Algorithm (SSA).

For the case under study, the duty cycle of DC-DC boost converter has been selected as a decision
variable. It is varied from zero to one. Whereas, during the optimization process, the cost function is
selected to be the output power from PV system.

3.6. Details of a Case Study

The photovoltaic generation system is composed of a three-phase induction motor drive of 2200 W,
230V, used to feed the pump, which is powered by 2400 W maximum solar PV array. The specifications
of PV array, PV module and the parameter of induction motor are shown in Tables 1-3, respectively.

Table 1. Design of photovoltaic (PV) array.

PV voltage at MPP 326V
PV Power at MPP 2400 W
PV current at MPP 7.54 A
Number of series connected modules 18

Number of parallel connected modules 13
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Table 2. PV module specifications.

Open circuit voltage 216V
Short circuit current 0.64 A
Voltage at maximum power point 176 V
Current at maximum power point 0.58 A

Table 3. Induction motor parameters.

Nominal power: Pn 2200 VA
Stator resistance: Rs 0.603 Q)
Stator inductance: Ls 0.00293 H
Rotor resistance: Rr 0.70

Rotor inductance: Lr 0.00293 H
Moment of inertia: | 0.011 Kg.m2
Number of poles: P 4

Two different scenarios of partial shading are considered. In the first case, the solar irradiances are
1.0 KW/m?, 0.55 KW/m?, and 0.2 KW/m?. The P-V graph is illustrated in Figure 7a. For this condition,
the global maximum power point of 920 W is detected at the second one on P-V curve. The solar
irradiances are 0.5 kW/mZ2, 0.9 kW/m? and 0.7 kW/m? in the second presented PSC pattern. The P-V
graph is depicted in Figure 7b. Under this case, the global maximum power point of 1284 W is situated
at the third point on P-V curve.

1000 1500 e —
(a) i ' Second i (b)

g 21000

H oz -

o 500 7}

3 3

& £ s}
i ; . 9 ¢ I 1z 0 . . - . - i L
0 50 100 150 200 250 300 350 400 050 100 150 200 250 300 350 400

Voltage (V) Voltage (V)

Figure 7. The P-V graphs for each scenario (a) First shading scenario; (b) Second shading scenario.

4. Results and Discussions

Figure 8 shows the response of PV output power for SSA and P&O methods under considered
shading scenarios. For the first scenario, SSA based tracker succeed to catch the global power of 920 W
accurately. On the contrary, the conventional P&O-MPPT tracker failed in attaining the global MPP
and reached the local MPP of 475 W. This means that the harvested power is increased by 93.68% by
using SSA based tracker compared with using P&O based tracker.
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The detailed performance (power, voltage, speed, load torque, etc.) of the PV system fed water
pumping system, obtained with the SSA-MPPT strategy under the first shading pattern, are illustrated

in Figure 9. Figure 10 illustrates the detailed performance of the system with using P&O method.
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electromagnetic torque; (d) load torque; (e) stator currents; (f) swarm position vs. number of iterations.
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Figure 10. The detailed performance of SPVWP system under first scenario using P&O based tracker.

(a) DC bus voltage; (b) motor speed; (c) electromagnetic torque; (d) load torque; (e) stator currents.

Referring to Figures 9 and 10, the load torque by using SSA is 7 N.m whereas, equal to 4.8 N.m
via P&O. This means it is increased by 45.83%.
For the second shading scenario, the global MPP of 1284 W is situated at the third point on the
P-V curve, as illustrated in Figure 7b. Considering Figure 8b, it is observed that, P&O-MPPT cannot
achieve global MPP. This tracks the second local MPP of 1020 W. This mean that the harvested power

is increased by 25.88% by using SSA based tracker compared with using P&O based tracker.

The detailed performance (power, voltage, speed, load torque, etc.,) of the proposed PV array fed
water pumping system, obtained with the SSA-MPPT strategy under the second shading pattern are
illustrated in Figure 11. Figure 12 illustrates the detailed performance of the system with using the

P&O method.
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Figure 12. The detailed performance of SPVWP system under second scenario using P&O based tracker.
(a) DC bus voltage; (b) motor speed; (c) electromagnetic torque; (d) load torque; (e) stator currents.

In sum, MPPT control method based on SSA converges rapidly towards the global MPP, which
results in fast detection under partial shading patterns with high efficiency in terms of speed convergence
and steady state performance. It has been found that the reference and measured values of the rotor
speed converge towards the nominal value, which has proven improved efficiency of the speed
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regulation. Since load torque is a component of rotor speed, the chances of water spilling out of
the pump decreases due to sudden torque variation in the proposed control method. Figure 9d
shows the impact of torque at 0.1 s with an increase in rotor speed and achieves steady state at 3.5 s.
Figures 10d and 12d clearly depict that the output torque changes as rotor speed changes subjected to
changing radiation.

In addition, refereeing to the obtained results, it is observed that the P&O-MPPT tracker failed
to catch the global MPP under two studied shading patterns because of disability to differentiate the
local MPP from the global one. As a result, the performance of the SSA-MPPT controller is proven to
be better than the P&O-MPPT controller in terms of tracking speed under different studied shading
pattern. To certify the obtained results through SSA method and to assure that it is not coming by
chance, the SSA algorithm was run 50 times and compared with well-known algorithms; particle
swarm optimization (PSO) and genetic algorithm (GA). The successful rate is used as a benchmark for
the comparison. The successful rate is known as the percentage of no. of fulfilling the true global MPP
to the total no. of iterations. For the first shading scenario, the successful rate values are 82%, 86%, and
98% respectively for PSO, GA, and SSA. Whereas, it is 74%, 88%, and 96%, respectively for PSO, GA,
and SSA for the second shading scenario. This ensures the superiority of SSA compared with PSO
and GA

5. Conclusions

The application of modern optimization is used to promote the performance of solar photovoltaic
array fed water pumping system (SPVWPS) under partial shading. Salp Swarm Algorithm (SSA)
based global MPPT technique is compared with the classical perturb and observe (P&QO) method for
partially shaded SPVWPS. Different scenarios of shadow have been considered.

The main findings can be summarized as follows:

e  During the first shading scenario, the PV output power and pump torque are increased by 93.68%
and 45.83%, respectively by using SSA based tracker compared with using P&O based tracker.

e  During the second shading scenario, the PV output power is increased by 25.88% using SSA based
tracker compared with using P&O based tracker.

e  The superiority of SSA compared with particle swarm optimization (PSO) and genetic algorithm
(GA) is proved.

Finally, SSA method can be considered time-consuming in the case of normal condition. Therefore,
a combined MPPT algorithm, consisting of a P&O approach and an SSA, to reach high adaptability at
different environmental conditions, will be taken into consideration in future work.
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Abbreviations

AC Alternating Current

CSI Current Source Inverter

DC Direct Current

GA Genetic Algorithm

GMPP Global Maximum Power Point

IFOC Indirect Field Oriented Control
IRFOC Indirect Rotor Field Oriented Control

IMD Induction Motor Drive
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MPP Maximum Power Point

MPPT Maximum Power Point Tracking

PSC Partial Shading Conditions

PSO Particle Swarm Optimization

PSO-MPPT Maximum Power Point Tracking based Particle Swarm Optimization
PV Photovoltaic

P-v Power-Voltage

P-1 Power-Current

PWM Pulse Width Modulation

P&O Perturb and Observe

SPIM Single Phase Induction Motor

SPWPS Solar Photovoltaic Water Pumping System
SPV Solar Photovoltaic

SSA Salp Swarm Algorithm

SSA-MPPT Maximum Power Point based Salp Swarm Algorithm

VSl Voltage Source Inverter
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