A Hybrid Spherical Fuzzy MCDM Approach to Prioritize Governmental Intervention Strategies against the COVID-19 Pandemic: A Case Study from Vietnam
Abstract
:1. Introduction
- (1)
- This study aims to present an overview of the intervention practices applied in various countries. It is well known that there are few studies in the literature examining government plans for COVID-19’s spread using the MCDM method. Due to this dearth in the literature, this study’s primary motivation is to evaluate governments’ strategies for the COVID-19 pandemic, which is currently a major threat to all countries worldwide.
- (2)
- This study is the first to utilize a novel hybrid SF-AHP and WASPAS-F model to investigate the optimal intervention strategies used to deal with the spread of the COVID-19 pandemic in emerging nations, particularly in Vietnam.
- (3)
- This study provides five potential criteria based on the relevant literature research and expert consultations, including “total anticipated cost”, “ease of implementation”, “high acceptance among citizens”, “effectiveness in reducing the spread of COVID-19”, and “irreplaceability by other measures”. It then prioritizes the relative weights of the proposed criteria using SF-AHP. Finally, the WASPAS- F technique is deployed to rank 15 government intervention strategies for the COVID-19 pandemic by comprehensively reviewing existing government protection practices.
2. Literature Review
2.1. Literature Review on MCDM Methods
2.2. Literature Review on Governmental Intervention Strategies
2.3. Literature Review on Proposed Criteria
3. Materials and Methods
3.1. Research Framework
3.2. Spherical Fuzzy Analytical Hierarchy Process (SF-AHP)
- Union:
- Intersection:
- Addition:
- Multiplication:
- Multiplication by a scalar;:
- Power of:
3.3. Fuzzy Weighted Aggregated Sum Product Assessment (WASPAS-F)
4. Results Analysis
4.1. A Case Study from Vietnam
4.2. Results of SF-AHP
4.3. Results of WASPAS-F
5. Comparative Analysis
6. Managerial Implications
7. Conclusions, Limitations, and Future Works
7.1. Conclusions
- The most effective strategy was successfully determined by the novel combined approach of SF-AHP and WASPAS-F;
- The criteria of “effectiveness in preventing the spread of COVID-19”, “ease of implementation”, and “high acceptability to citizens” were recognized as the most essential criteria in the SF-AHP method, as shown in Table 6;
- From the final ranking of WASPAS-F, “vaccinations”, “enhanced control of the country’s health resources”, “common health testing”, “formation of an emergency response team”, and “quarantining patients and those suspected of infection” were the top five strategies, as shown in Table 9.
7.2. Limitations
7.3. Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
C1 | C2 | C3 | C4 | C5 | Total | Score | Rank | Weight | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 0.214 | 0.688 | 0.356 | 0.284 | 0.601 | 0.390 | 0.262 | 0.637 | 0.381 | 0.334 | 0.565 | 0.370 | 0.183 | 0.718 | 0.343 | 0.546 | 0.107 | 0.512 | 13.046 | 8 | 0.069 |
A2 | 0.189 | 0.710 | 0.350 | 0.263 | 0.636 | 0.373 | 0.247 | 0.647 | 0.372 | 0.327 | 0.567 | 0.376 | 0.161 | 0.746 | 0.334 | 0.517 | 0.123 | 0.487 | 12.352 | 11 | 0.065 |
A3 | 0.196 | 0.707 | 0.360 | 0.273 | 0.626 | 0.370 | 0.269 | 0.626 | 0.385 | 0.362 | 0.537 | 0.367 | 0.184 | 0.718 | 0.357 | 0.554 | 0.107 | 0.517 | 13.253 | 4 | 0.070 |
A4 | 0.184 | 0.720 | 0.355 | 0.282 | 0.617 | 0.364 | 0.249 | 0.649 | 0.371 | 0.346 | 0.552 | 0.379 | 0.154 | 0.758 | 0.327 | 0.532 | 0.121 | 0.503 | 12.699 | 10 | 0.067 |
A5 | 0.197 | 0.704 | 0.361 | 0.275 | 0.619 | 0.366 | 0.252 | 0.648 | 0.371 | 0.370 | 0.521 | 0.374 | 0.163 | 0.744 | 0.335 | 0.549 | 0.110 | 0.517 | 13.086 | 7 | 0.069 |
A6 | 0.185 | 0.720 | 0.340 | 0.292 | 0.604 | 0.379 | 0.259 | 0.636 | 0.382 | 0.329 | 0.575 | 0.358 | 0.178 | 0.727 | 0.345 | 0.537 | 0.116 | 0.503 | 12.847 | 9 | 0.068 |
A7 | 0.200 | 0.706 | 0.345 | 0.260 | 0.646 | 0.356 | 0.257 | 0.636 | 0.377 | 0.366 | 0.519 | 0.385 | 0.190 | 0.711 | 0.364 | 0.550 | 0.107 | 0.511 | 13.166 | 5 | 0.069 |
A8 | 0.223 | 0.673 | 0.370 | 0.303 | 0.588 | 0.388 | 0.288 | 0.600 | 0.387 | 0.340 | 0.553 | 0.382 | 0.191 | 0.709 | 0.362 | 0.571 | 0.093 | 0.531 | 13.635 | 1 | 0.072 |
A9 | 0.201 | 0.704 | 0.353 | 0.325 | 0.561 | 0.398 | 0.272 | 0.623 | 0.387 | 0.294 | 0.620 | 0.344 | 0.192 | 0.709 | 0.351 | 0.549 | 0.108 | 0.512 | 13.134 | 6 | 0.069 |
A10 | 0.223 | 0.672 | 0.363 | 0.245 | 0.663 | 0.352 | 0.225 | 0.680 | 0.354 | 0.304 | 0.605 | 0.352 | 0.157 | 0.757 | 0.320 | 0.499 | 0.139 | 0.472 | 11.957 | 13 | 0.063 |
A11 | 0.228 | 0.665 | 0.374 | 0.239 | 0.671 | 0.344 | 0.215 | 0.697 | 0.341 | 0.261 | 0.673 | 0.316 | 0.165 | 0.743 | 0.333 | 0.477 | 0.155 | 0.449 | 11.471 | 14 | 0.060 |
A12 | 0.171 | 0.736 | 0.338 | 0.263 | 0.632 | 0.366 | 0.240 | 0.657 | 0.372 | 0.336 | 0.561 | 0.365 | 0.152 | 0.760 | 0.327 | 0.512 | 0.130 | 0.484 | 12.246 | 12 | 0.065 |
A13 | 0.208 | 0.686 | 0.366 | 0.311 | 0.579 | 0.381 | 0.260 | 0.634 | 0.370 | 0.349 | 0.546 | 0.375 | 0.183 | 0.715 | 0.352 | 0.563 | 0.098 | 0.526 | 13.431 | 2 | 0.071 |
A14 | 0.205 | 0.692 | 0.358 | 0.319 | 0.573 | 0.398 | 0.278 | 0.610 | 0.386 | 0.324 | 0.562 | 0.382 | 0.191 | 0.711 | 0.348 | 0.562 | 0.097 | 0.525 | 13.404 | 3 | 0.071 |
A15 | 0.170 | 0.743 | 0.333 | 0.215 | 0.703 | 0.327 | 0.184 | 0.742 | 0.315 | 0.234 | 0.704 | 0.289 | 0.149 | 0.765 | 0.322 | 0.416 | 0.209 | 0.393 | 10.097 | 15 | 0.053 |
C1 | C2 | C3 | C4 | C5 | Total | Score | Rank | Weight | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 0.218 | 0.890 | 0.143 | 0.250 | 0.845 | 0.188 | 0.240 | 0.866 | 0.172 | 0.274 | 0.823 | 0.191 | 0.199 | 0.903 | 0.134 | 0.502 | 0.485 | 0.490 | 12.375 | 7 | 0.069 |
A2 | 0.190 | 0.903 | 0.138 | 0.229 | 0.865 | 0.175 | 0.225 | 0.872 | 0.163 | 0.267 | 0.825 | 0.195 | 0.173 | 0.919 | 0.130 | 0.468 | 0.516 | 0.458 | 11.572 | 11 | 0.065 |
A3 | 0.197 | 0.901 | 0.147 | 0.239 | 0.860 | 0.172 | 0.248 | 0.859 | 0.175 | 0.300 | 0.806 | 0.190 | 0.200 | 0.903 | 0.148 | 0.507 | 0.485 | 0.493 | 12.491 | 5 | 0.070 |
A4 | 0.184 | 0.908 | 0.144 | 0.247 | 0.855 | 0.167 | 0.228 | 0.873 | 0.162 | 0.285 | 0.816 | 0.200 | 0.164 | 0.925 | 0.125 | 0.480 | 0.511 | 0.471 | 11.863 | 10 | 0.066 |
A5 | 0.198 | 0.899 | 0.148 | 0.241 | 0.856 | 0.168 | 0.230 | 0.872 | 0.163 | 0.308 | 0.796 | 0.197 | 0.174 | 0.918 | 0.130 | 0.498 | 0.491 | 0.487 | 12.258 | 8 | 0.068 |
A6 | 0.185 | 0.908 | 0.131 | 0.257 | 0.847 | 0.181 | 0.237 | 0.866 | 0.173 | 0.269 | 0.829 | 0.181 | 0.193 | 0.909 | 0.137 | 0.490 | 0.501 | 0.478 | 12.103 | 9 | 0.068 |
A7 | 0.202 | 0.901 | 0.134 | 0.226 | 0.870 | 0.161 | 0.236 | 0.865 | 0.167 | 0.303 | 0.794 | 0.205 | 0.208 | 0.899 | 0.154 | 0.503 | 0.484 | 0.489 | 12.414 | 6 | 0.069 |
A8 | 0.229 | 0.881 | 0.155 | 0.269 | 0.837 | 0.188 | 0.268 | 0.842 | 0.177 | 0.279 | 0.817 | 0.201 | 0.209 | 0.897 | 0.152 | 0.530 | 0.455 | 0.514 | 13.006 | 1 | 0.073 |
A9 | 0.203 | 0.900 | 0.142 | 0.291 | 0.818 | 0.199 | 0.252 | 0.858 | 0.177 | 0.238 | 0.854 | 0.169 | 0.211 | 0.897 | 0.142 | 0.509 | 0.484 | 0.495 | 12.548 | 4 | 0.070 |
A10 | 0.229 | 0.880 | 0.148 | 0.212 | 0.879 | 0.158 | 0.203 | 0.889 | 0.149 | 0.247 | 0.846 | 0.176 | 0.167 | 0.925 | 0.119 | 0.456 | 0.538 | 0.448 | 11.305 | 13 | 0.063 |
A11 | 0.234 | 0.875 | 0.159 | 0.206 | 0.883 | 0.152 | 0.194 | 0.897 | 0.141 | 0.210 | 0.879 | 0.150 | 0.177 | 0.918 | 0.128 | 0.440 | 0.559 | 0.431 | 10.940 | 14 | 0.061 |
A12 | 0.170 | 0.916 | 0.131 | 0.229 | 0.863 | 0.168 | 0.218 | 0.877 | 0.164 | 0.276 | 0.821 | 0.187 | 0.162 | 0.926 | 0.126 | 0.460 | 0.527 | 0.451 | 11.388 | 12 | 0.064 |
A13 | 0.211 | 0.889 | 0.151 | 0.277 | 0.831 | 0.182 | 0.239 | 0.864 | 0.161 | 0.288 | 0.812 | 0.196 | 0.199 | 0.902 | 0.142 | 0.517 | 0.468 | 0.504 | 12.710 | 3 | 0.071 |
A14 | 0.207 | 0.893 | 0.144 | 0.285 | 0.827 | 0.199 | 0.257 | 0.849 | 0.175 | 0.265 | 0.822 | 0.200 | 0.210 | 0.899 | 0.140 | 0.520 | 0.463 | 0.505 | 12.772 | 2 | 0.071 |
A15 | 0.169 | 0.919 | 0.128 | 0.185 | 0.898 | 0.141 | 0.164 | 0.917 | 0.124 | 0.186 | 0.893 | 0.130 | 0.159 | 0.929 | 0.122 | 0.375 | 0.628 | 0.369 | 9.389 | 15 | 0.052 |
References
- Ragab, D.; Salah Eldin, H.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 Cytokine Storm; What We Know So Far. Front. Immunol. 2020, 11, 1446. [Google Scholar] [CrossRef]
- Nguyen, P.H.; Tsai, J.F.; Kayral, I.E.; Lin, M.H. Unemployment rates forecasting with grey-based models in the post-COVID-19 period: A case study from Vietnam. Sustainability 2021, 13, 7879. [Google Scholar] [CrossRef]
- Nguyen, P.H.; Tsai, J.F.; Nguyen, H.P.; Nguyen, V.T.; Dao, T.K. Assessing the Unemployment Problem Using A Grey MCDM Model under COVID-19 Impacts: A Case Analysis from Vietnam. J. Asian Financ. Econ. Bus. 2020, 7, 53–62. [Google Scholar] [CrossRef]
- Huynh, G.; Tran, T.T.; Nguyen, H.T.N.; Pham, L.A. COVID-19 vaccination intention among healthcare workers in Vietnam. Asian Pac. J. Trop. Med. 2021, 14, 159–164. [Google Scholar] [CrossRef]
- Samanlioglu, F.; Kaya, B.E. Evaluation of the COVID-19 Pandemic Intervention Strategies with Hesitant F-AHP. J. Healthc. Eng. 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
- Furati, K.M.; Sarumi, I.O.; Khaliq, A.Q.M. Fractional model for the spread of COVID-19 subject to government intervention and public perception. Appl. Math. Model. 2021, 95, 89–105. [Google Scholar] [CrossRef] [PubMed]
- Aquino, E.M.L.; Silveira, I.H.; Pescarini, J.M.; Aquino, R.; de Souza-Filho, J.A. Social distancing measures to control the COVID-19 pandemic: Potential impacts and challenges in Brazil. Cienc. e Saude Coletiva 2020, 25, 2423–2446. [Google Scholar] [CrossRef] [PubMed]
- West, R.; Michie, S.; Rubin, G.J.; Amlôt, R. Applying principles of behaviour change to reduce SARS-CoV-2 transmission. Nat. Hum. Behav. 2020, 4, 451–459. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention COVID-19 Vaccine Safety Update. 2021. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/safety-of-vaccines.html (accessed on 1 September 2021).
- Cucinotta, D.; Vanelli, M. WHO declares COVID-19 a pandemic. Acta Biomed. 2020, 91, 157. [Google Scholar]
- Centers for Disease Control and Prevention CDC COVID Data Tracker. Cent. Dis. Control. Prev. 2020. Available online: https://covid.cdc.gov/covid-data-tracker/#datatracker-home (accessed on 1 September 2021).
- Piraveenan, M.; Sawleshwarkar, S.; Walsh, M.; Zablotska, I.; Bhattacharyya, S.; Farooqui, H.H.; Bhatnagar, T.; Karan, A.; Murhekar, M.; Zodpey, S.; et al. Optimal governance and implementation of vaccination programmes to contain the COVID-19 pandemic. R. Soc. Open Sci. 2021, 8, 210429. [Google Scholar] [CrossRef]
- Priesemann, V.; Balling, R.; Brinkmann, M.M.; Ciesek, S.; Czypionka, T.; Eckerle, I.; Giordano, G.; Hanson, C.; Hel, Z.; Hotulainen, P.; et al. An action plan for pan-European defence against new SARS-CoV-2 variants. Lancet 2021, 397, 469–470. [Google Scholar] [CrossRef]
- Aharon, D.Y.; Siev, S. COVID-19, government interventions and emerging capital markets performance. Res. Int. Bus. Financ. 2021, 58, 101492. [Google Scholar] [CrossRef]
- Mardani, A.; Saraji, M.K.; Mishra, A.R.; Rani, P. A novel extended approach under hesitant fuzzy sets to design a framework for assessing the key challenges of digital health interventions adoption during the COVID-19 outbreak. Appl. Soft Comput. J. 2020, 96, 106613. [Google Scholar] [CrossRef]
- Golinelli, D.; Boetto, E.; Carullo, G.; Nuzzolese, A.G.; Landini, M.P.; Fantini, M.P. How the COVID-19 pandemic is favoring the adoption of digital technologies in healthcare: A literature review. J. Med. Internet Res. 2020. [Google Scholar] [CrossRef]
- Ross, J.; Stevenson, F.; Dack, C.; Pal, K.; May, C.; Michie, S.; Barnard, M.; Murray, E. Developing an implementation strategy for a digital health intervention: An example in routine healthcare. BMC Health Serv. Res. 2018, 18, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Mendes-Santos, C.; Andersson, G.; Weiderpass, E.; Santana, R. Mitigating COVID-19 Impact on the Portuguese Population Mental Health: The Opportunity That Lies in Digital Mental Health. Front. Public Health 2020, 8, 599. [Google Scholar] [CrossRef]
- Sormunen, M.; Saaranen, T.; Heikkilä, A.; Sjögren, T.; Koskinen, C.; Mikkonen, K.; Kaäriaïnen, M.; Koivula, M.; Salminen, L. Digital Learning Interventions in Higher Education: A Scoping Review. CIN-Comput. Inform. Nurs. 2020, 38, 613–624. [Google Scholar] [CrossRef]
- Männistö, M.; Mikkonen, K.; Vuopala, E.; Kuivila, H.-M.; Virtanen, M.; Kyngäs, H.; Kääriäinen, M. Effects of a digital educational intervention on collaborative learning in nursing education: A quasi-experimental study. Nord. J. Nurs. Res. 2019, 39, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Despres, C.; Aguilar, R.; McAlister, A.; Ramirez, A.G. Communication for Awareness and Action on Inequitable Impacts of COVID-19 on Latinos. Health Promot. Pract. 2020, 21, 859–861. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.; Babcock, R.A.; Orbinski, J. The digital response to COVID-19: Exploring the use of digital technology for information collection, dissemination and social control in a global pandemic. J. Bus. Contin. Emerg. Plan. 2021, 14, 333–353. [Google Scholar]
- Tan, B.; Martinez Peria, M.; Pierri, N.; Presbitero, A. Government Intervention and Bank Market Power: Lessons from the Global Financial Crisis for the COVID-19 Crisis. IMF Work. Pap. 2020. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3772479 (accessed on 1 September 2021).
- Pinto Neto, O.; Kennedy, D.M.; Reis, J.C.; Wang, Y.; Brizzi, A.C.B.; Zambrano, G.J.; de Souza, J.M.; Pedroso, W.; de Mello Pedreiro, R.C.; de Matos Brizzi, B.; et al. Mathematical model of COVID-19 intervention scenarios for São Paulo—Brazil. Nat. Commun. 2021, 12, 418. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, H.; Song, K.-H.; Kim, E.S.; Park, J.S.; Jung, J.; Ahn, S.; Jeong, E.K.; Park, H.; Kim, H. Bin Impact of Public Health Interventions on Seasonal Influenza Activity During the COVID-19 Outbreak in Korea. Clin. Infect. Dis. 2021, 73, e132–e140. [Google Scholar] [CrossRef] [PubMed]
- Doherty, F.V.; Odeyemi, O.A.; Adeola, A.; Amolegbe, O.; Ajagbe, F.E. Evaluation of knowledge, impacts and government intervention strategies during the COVID-19 pandemic in Nigeria. Data Br. 2020, 32, 106177. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.K.W.; Gu, H.; Chang, L.D.J.; Cheuk, S.S.Y.; Gurung, S.; Krishnan, P.; Ng, D.Y.M.; Liu, G.Y.Z.; Wan, C.K.C.; Tsang, D.N.C.; et al. SARS-CoV-2 superspread in fitness center, Hong Kong, China, March 2021. Emerg. Infect. Dis. 2021, 27, 2230–2232. [Google Scholar] [CrossRef] [PubMed]
- Sheth, S.A.; Wu, T.C.; Sharrief, A.; Ankrom, C.; Grotta, J.C.; Fisher, M.; Savitz, S.I. Early Lessons from World War COVID Reinventing Our Stroke Systems of Care. Stroke 2020, 51, 2268–2272. [Google Scholar] [CrossRef]
- Bechtold, H.D.; Cruz, A.T.; Kaziny, B.D. From World War II to COVID-19: A Historical Perspective on the American Medical Supply Chain. Disaster Med. Public Health Prep. 2021, 1–2. [Google Scholar] [CrossRef]
- Asadi, S.; Nilashi, M.; Abumalloh, R.A.; Samad, S.; Ahani, A.; Ghabban, F.; Yusuf, S.Y.M.; Supriyanto, E. Evaluation of Factors to Respond to the COVID-19 Pandemic Using DEMATEL and Fuzzy Rule-Based Techniques. Int. J. Fuzzy Syst. 2021, 19, 925–941. [Google Scholar] [CrossRef]
- Nguyen, P.H. A Fuzzy Analytic Hierarchy Process (FAHP) Based on SERVQUAL for Hotel Service Quality Management: Evidence from Vietnam. J. Asian Financ. Econ. Bus. 2021, 8, 1101–1109. [Google Scholar] [CrossRef]
- Nguyen, P.H.; Tsai, J.F.; Kumar, V.A.G.; Hu, Y.C. Stock investment of agriculture companies in the Vietnam stock exchange market: An AHP integrated with GRA-TOPSIS-MOORA approaches. J. Asian Financ. Econ. Bus. 2020, 7, 113–121. [Google Scholar] [CrossRef]
- Wang, C.N.; Nguyen, N.A.T.; Dang, T.T.; Lu, C.M. A compromised decision-making approach to third-party logistics selection in sustainable supply chain using fuzzy ahp and fuzzy vikor methods. Mathematics 2021, 9, 886. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, W.; Gao, X. Business risk evaluation of electricity retail company in China using a hybrid MCDM method. Sustainability 2020, 12, 2040. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.H. A new multi-criteria assessment model combining GRA techniques with intuitionistic fuzzy entropy-based TOPSIS method for sustainable building materials supplier selection. Sustainability 2019, 11, 2265. [Google Scholar] [CrossRef] [Green Version]
- Alkan, N.; Kahraman, C. Evaluation of government strategies against COVID-19 pandemic using q-rung orthopair fuzzy TOPSIS method. Appl. Soft Comput. 2021, 110, 107653. [Google Scholar] [CrossRef]
- Abikova, J. Application of fuzzy DEMATEL–ANP methods for siting refugee camps. J. Humanit. Logist. Supply Chain Manag. 2020, 10, 347–369. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965. [Google Scholar] [CrossRef] [Green Version]
- Kutlu Gündoğdu, F.; Kahraman, C. Spherical fuzzy sets and decision making applications. Adv. Intell. Syst. Comput. 2020, 1029, 979–987. [Google Scholar] [CrossRef]
- Ahmad, N.; Hasan, M.G.; Barbhuiya, R.K. Identification and prioritization of strategies to tackle COVID-19 outbreak: A group-BWM based MCDM approach. Appl. Soft Comput. 2021, 111, 107642. [Google Scholar] [CrossRef] [PubMed]
- Lo, H.W.; Shiue, W.; Liou, J.J.H.; Tzeng, G.H. A hybrid MCDM-based FMEA model for identification of critical failure modes in manufacturing. Soft Comput. 2020, 24, 15733–15745. [Google Scholar] [CrossRef]
- Liou, J.J.H.; Tzeng, G.H. Comments on “Multiple criteria decision making (MCDM) methods in economics: An overview”. Technol. Econ. Dev. Econ. 2012, 17, 397–427. [Google Scholar] [CrossRef]
- Wang, C.N.; Van Thanh, N.; Chyou, J.T.; Lin, T.F.; Nguyen, T.N. Fuzzy multicriteria decision-making model (MCDM) for raw materials supplier selection in plastics industry. Mathematics 2019, 7, 981. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Hu, J.; Feng, J.; Liu, A. A novel multiple criteria decision making method for material selection based on GGPFWA operator. Mater. Des. 2020, 195, 109038. [Google Scholar] [CrossRef]
- Mukhamediev, R.I.; Mustakayev, R.; Yakunin, K.; Kiseleva, S.; Gopejenko, V. Multi-criteria spatial decision making supportsystem for renewable energy development in Kazakhstan. IEEE Access 2019, 7, 122275–122288. [Google Scholar] [CrossRef]
- Chien, F.; Wang, C.N.; Nguyen, V.T.; Nguyen, V.T.; Chau, K.Y. An evaluation model of quantitative and qualitative fuzzy multi-criteria decision-making approach for hydroelectric plant location selection. Energies 2020, 13, 2783. [Google Scholar] [CrossRef]
- Kulak, O.; Goren, H.G.; Supciller, A.A. A new multi criteria decision making approach for medical imaging systems considering risk factors. Appl. Soft Comput. J. 2015, 35, 931–941. [Google Scholar] [CrossRef]
- Geetha, S.; Narayanamoorthy, S.; Kang, D.; Kureethara, J.V. A Novel Assessment of Healthcare Waste Disposal Methods: Intuitionistic Hesitant Fuzzy MULTIMOORA Decision Making Approach. IEEE Access 2019, 7, 130283–130299. [Google Scholar] [CrossRef]
- Alizadeh, R.; Soltanisehat, L.; Lund, P.D.; Zamanisabzi, H. Improving renewable energy policy planning and decision-making through a hybrid MCDM method. Energy Policy 2020, 137, 111174. [Google Scholar] [CrossRef]
- Wang, C.N.; Kao, J.C.; Wang, Y.H.; Nguyen, V.T.; Nguyen, V.T.; Husain, S.T. A multicriteria decision-making model for the selection of suitable renewable energy sources. Mathematics 2021, 9, 1318. [Google Scholar] [CrossRef]
- Jiang, P.; Hu, Y.C.; Wang, W.; Jiang, H.; Wu, G. Interval grey prediction models with forecast combination for energy demand forecasting. Mathematics 2020, 8, 960. [Google Scholar] [CrossRef]
- Tsai, J.F.; Wang, C.P.; Lin, M.H.; Huang, S.W. Analysis of key factors for supplier selection in taiwan’s thin-film transistor liquid-crystal displays industry. Mathematics 2021, 9, 396. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process, New York: Mcgrew Hill. In International, Translated to Russian, Portuguesses and Chinese, Revised Edition, Paperback (1996, 2000); RWS Publications: Pittsburgh, PA, USA, 1980; Volume 9, pp. 19–22. [Google Scholar]
- Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539. [Google Scholar] [CrossRef]
- Yager, R.R.; Abbasov, A.M. Pythagorean membership grades, complex numbers, and decision making. Int. J. Intell. Syst. 2013, 28, 436–452. [Google Scholar] [CrossRef]
- Yager, R.R. Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 2016, 25, 1222–1230. [Google Scholar] [CrossRef]
- Chen, T. A FAHP-FTOPSIS approach for choosing mid-term occupational healthcare measures amid the COVID-19 pandemic. Health Policy Technol. 2021, 10, 100517. [Google Scholar] [CrossRef]
- Wu, H.C.; Wang, Y.C.; Chen, T.C.T. Assessing and comparing covid-19 intervention strategies using a varying partial consensus fuzzy collaborative intelligence approach. Mathematics 2020, 8, 1725. [Google Scholar] [CrossRef]
- Kutlu Gündoğdu, F.; Kahraman, C. Spherical fuzzy analytic hierarchy process (AHP) and its application to industrial robot selection. In Proceedings of the International Conference on Intelligent and Fuzzy Systems 2019 Conference, Istanbul, Turkey, 23–25 July 2019. [Google Scholar]
- Yildiz, D.; Temur, G.T.; Beskese, A.; Bozbura, F.T. A spherical fuzzy analytic hierarchy process based approach to prioritize career management activities improving employee retention. J. Intell. Fuzzy Syst. 2020, 39, 6603–6618. [Google Scholar] [CrossRef]
- Nasir, A.; Jan, N.; Yang, M.S.; Khan, S.U. Complex T-Spherical Fuzzy Relations with Their Applications in Economic Relationships and International Trades. IEEE Access 2021, 9, 66115–66131. [Google Scholar] [CrossRef]
- Duleba, S.; Kutlu Gündoğdu, F.; Moslem, S. Interval-Valued Spherical Fuzzy Analytic Hierarchy Process Method to Evaluate Public Transportation Development. Informatica 2021, 1–26. [Google Scholar] [CrossRef]
- Piccoli, L.; Dzankic, J.; Ruedin, D. Citizenship, Migration and Mobility in a Pandemic (CMMP): A global dataset of COVID-19 restrictions on human movement. PLoS ONE 2021, 16, e0248066. [Google Scholar] [CrossRef] [PubMed]
- Mateus, A.L.P.; Otete, H.E.; Beck, C.R.; Dolan, G.P.; Nguyen-Van-Tam, J.S. Effectiveness of travel restrictions in the rapid containment of human influenza: A systematic review. Bull. World Health Organ. 2014, 92, 868–880. [Google Scholar] [CrossRef] [PubMed]
- Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The incubation period of coronavirus disease 2019 (CoVID-19) from publicly reported confirmed cases: Estimation and application. Ann. Intern. Med. 2020, 172, 577–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porsse, A.A.; de Souza, K.B.; Carvalho, T.S.; Vale, V.A. The economic impacts of COVID-19 in Brazil based on an interregional CGE approach. Reg. Sci. Policy Pract. 2020, 12, 1105–1121. [Google Scholar] [CrossRef]
- Buitrago-Garcia, D.; Egli-Gany, D.; Counotte, M.J.; Hossmann, S.; Imeri, H.; Ipekci, A.M.; Salanti, G.; Low, N. Occurrence and transmission potential of asymptomatic and presymptomatic SARSCoV-2 infections: A living systematic review and meta-analysis. PLoS Med. 2020, 17, e1003346. [Google Scholar] [CrossRef]
- Kahanec, M.; Lafférs, L.; Schmidpeter, B. The impact of repeated mass antigen testing for COVID-19 on the prevalence of the disease. J. Popul. Econ. 2021, 34, 1105–1140. [Google Scholar] [CrossRef] [PubMed]
- Wilder-Smith, A.; Freedman, D.O. Isolation, quarantine, social distancing and community containment: Pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak. J. Travel Med. 2020, 27, 1–4. [Google Scholar] [CrossRef] [PubMed]
- WHO Considerations for Implementing and Adjusting Public Health and Social Measures in the Context of COVID-19. 2021. Available online: https://www.who.int/publications-detail-redirect/considerations-in-adjusting-public-health-and-social-measures-in-the-context-of-covid-19-interim-guidance (accessed on 1 September 2021).
- WHO. Public Health Surveillance for COVID-19; WHO: Geneve, Switzerland, 2020; Volume 11. [Google Scholar] [CrossRef]
- Committee on Modeling Community Containment for Pandemic Influenza. Modeling Community Containment for Pandemic Influenza: A Letter Report; The National Academies Press: Washington, DC, USA, 2006; Available online: https://www.nap.edu/catalog/11800/modeling-community-containment-for-pandemic-influenza-a-letter-report (accessed on 1 September 2021).
- World Health Organization Writing Group Non-pharmaceutical interventions for pandemic influenza, national and community measures. Emerg. Infect. Dis. 2006, 12, 88–94. [CrossRef]
- Zhang, Z.; Yao, W.; Wang, Y.; Long, C.; Fu, X. Wuhan and Hubei COVID-19 mortality analysis reveals the critical role of timely supply of medical resources. J. Infect. 2020, 81, 147–178. [Google Scholar] [CrossRef] [PubMed]
- Daugherty Biddison, L.; Berkowitz, K.A.; Courtney, B.; De Jong, M.J.; Devereaux, A.V.; Kissoon, N.; Roxland, B.E.; Sprung, C.L.; Dichter, J.R.; Christian, M.D.; et al. Ethical considerations: Care of the critically ill and injured during pandemics and disasters: CHEST consensus statement. Chest 2014, 146, e145S–e155S. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, E.J.; Wertheimer, A. Who Should Get Influenza Vaccine When Not All Can? Drugs Alcohol Today 2009, 9, 8–13. [Google Scholar] [CrossRef]
- Dechsupa, S.; Assawakosri, S.; Phakham, S.; Honsawek, S. Positive impact of lockdown on COVID-19 outbreak in Thailand. Travel Med. Infect. Dis. 2020, 36, 19–21. [Google Scholar] [CrossRef]
- Mumena, W.A. Impact of COVID-19 curfew on eating habits, food intake, and weight according to food security status in Saudi Arabia: A retrospective study. Prog. Nutr. 2020, 22, e2020075. [Google Scholar] [CrossRef]
- WHO. Key Planning Recommendations for Mass Gatherings in the Context of the Current COVID-19 Outbreak: Interim Guidance 14 February 2020; WHO: Geneve, Switzerland, 2020. [Google Scholar] [CrossRef]
- Wainwright, J.J.; Mikre, M.; Whitley, P. Analysis of Drug Test Results Before and After the US Declaration of a National Emergency Concerning the COVID-19 Outbreak. JAMA-J. Am. Med. Assoc. 2020, 323, 1674–1677. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, E.; Tsutsui, Y. Impact of the State of Emergency Declaration for COVID-19 on Preventive Behaviors and Mental Conditions in Japan: Difference in Difference Analysis using Panel Data. arXiv 2020, arXiv:2005.13008. [Google Scholar]
- Germann, T.C.; Kadau, K.; Longini, I.M.; Macken, C.A. Mitigation strategies for pandemic influenza in the United States. Proc. Natl. Acad. Sci. USA. 2006, 103, 5935–5940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, S.; Gao, H.; Wong, J.Y.; Shiu, E.Y.C.; Xiao, J.; Fong, M.W.; Cowling, B.J. Nonpharmaceutical measures for pandemic influenza in nonhealthcare settings-international travel-related measures. Emerg. Infect. Dis. 2020, 26, 2298–2299. [Google Scholar] [CrossRef] [PubMed]
- Huynh, G.; Nguyen, H.T.N.; Nguyen, V.T.; Pham, A. Le Development and psychometric properties of the health belief scales toward covid-19 vaccine in Ho Chi Minh city, Vietnam. Risk Manag. Healthc. Policy 2021, 14, 2517. [Google Scholar] [CrossRef] [PubMed]
- Pandey, N.; Kaushal, V.; Puri, G.D.; Taneja, S.; Biswal, M.; Mahajan, P.; Guru, R.R.; Malhotra, P.; Sehgal, I.S.; Dhooria, S.; et al. Transforming a General Hospital to an Infectious Disease Hospital for COVID-19 Over 2 Weeks. Front. Public Health 2020, 8, 1–8. [Google Scholar] [CrossRef]
- Herrera, V.; Finkler, N.; Vincent, J. Innovation and Transformation in the Response to Covid-19: Seven Areas Where Clinicians Need to Lead. NEJM Catal. 2020, 1–13. [Google Scholar] [CrossRef]
- Ghorui, N.; Ghosh, A.; Mondal, S.P.; Bajuri, M.Y.; Ahmadian, A.; Salahshour, S.; Ferrara, M. Identification of dominant risk factor involved in spread of COVID-19 using hesitant fuzzy MCDM methodology. Results Phys. 2021, 21, 103811. [Google Scholar] [CrossRef]
- Kutlu Gündoğdu, F.; Kahraman, C. A novel spherical fuzzy analytic hierarchy process and its renewable energy application. Soft Comput. 2020, 24, 4607–4621. [Google Scholar] [CrossRef]
- Chakraborty, S.; Zavadskas, E.K. Applications of WASPAS method in manufacturing decision making. Informatica 2014, 25, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Rudnik, K.; Bocewicz, G.; Kucińska-Landwójtowicz, A.; Czabak-Górska, I.D. Ordered fuzzy WASPAS method for selection of improvement projects. Expert Syst. Appl. 2021, 169, 114471. [Google Scholar] [CrossRef]
- Keshavarz Ghorabaee, M.; Zavadskas, E.K.; Amiri, M.; Esmaeili, A. Multi-criteria evaluation of green suppliers using an extended WASPAS method with interval type-2 fuzzy sets. J. Clean. Prod. 2016, 137, 213–229. [Google Scholar] [CrossRef]
- Bausys, R.; Kazakeviciute-Januskeviciene, G.; Cavallaro, F.; Usovaite, A. Algorithm selection for edge detection in satellite images by neutrosophic WASPAS method. Sustainability 2020, 12, 548. [Google Scholar] [CrossRef] [Green Version]
- Bausys, R.; Kazakeviciute-Januskeviciene, G. Qualitative rating of lossy compression for aerial imagery by neutrosophic waspas method. Symmetry 2021, 13, 273. [Google Scholar] [CrossRef]
- Ilbahar, E.; Kahraman, C. Retail store performance measurement using a novel interval-valued Pythagorean fuzzy WASPAS method. J. Intell. Fuzzy Syst. 2018, 35, 3835–3846. [Google Scholar] [CrossRef]
- Ali, J.; Bashir, Z.; Rashid, T. WASPAS-based decision making methodology with unknown weight information under uncertain evaluations. Expert Syst. Appl. 2021, 168, 114143. [Google Scholar] [CrossRef]
- Myers, L.; Sirois, M.J. Spearman Correlation Coefficients, Differences between. In Encyclopedia of Statistical Sciences; John Wiley & Sons: Hoboken, NJ, USA, 2004; Volume 12, ISBN 9780471667193. [Google Scholar] [CrossRef] [Green Version]
Definition | (μ, υ, π) | Score Index (SI) |
---|---|---|
Absolutely more Importance (AMI) | (0.9, 0.1, 0.0) | 9 |
Very High Importance (VHI) | (0.8, 0.2, 0.1) | 7 |
High Importance (HI) | (0.7, 0.3, 0.2) | 5 |
Slightly More Importance (SMI) | (0.6, 0.4, 0.3) | 3 |
Equally Importance (EI) | (0.5, 0.4, 0.4) | 1 |
Slightly Low Importance (SLI) | (0.4, 0.6, 0.3) | 1/3 |
Low Importance (LI) | (0.3, 0.7, 0.2) | 1/5 |
Very Low Importance (VLI) | (0.2, 0.8, 0.1) | 1/7 |
Absolutely Low Importance (ALI) | (0.1, 0.9, 0.0) | 1/9 |
Criteria | Left Criteria Is Greater | Right Criteria Is Greater | Criteria | |||||||
---|---|---|---|---|---|---|---|---|---|---|
AMI | VHI | HI | SMI | EI | SLI | LI | VLI | ALI | ||
C1 | 1 | 5 | 5 | 4 | C2 | |||||
C1 | 1 | 4 | 5 | 5 | C3 | |||||
C1 | 2 | 3 | 4 | 6 | C4 | |||||
C1 | 2 | 6 | 6 | 1 | C5 | |||||
C2 | 3 | 5 | 4 | 3 | C3 | |||||
C2 | 2 | 4 | 4 | 5 | C4 | |||||
C2 | 6 | 5 | 3 | 1 | C5 | |||||
C3 | 1 | 3 | 2 | 4 | 5 | C4 | ||||
C3 | 1 | 3 | 5 | 6 | C5 | |||||
C4 | 6 | 6 | 2 | 1 | C5 |
Criteria | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
C1 | 1.000 | 0.241 | 0.436 | 0.155 | 1.787 |
C2 | 4.144 | 1.000 | 1.597 | 0.254 | 4.639 |
C3 | 2.292 | 0.626 | 1.000 | 0.316 | 4.534 |
C4 | 6.463 | 3.938 | 3.162 | 1.000 | 4.800 |
C5 | 0.559 | 0.216 | 0.221 | 0.208 | 1.000 |
SUM | 14.459 | 6.021 | 6.416 | 1.933 | 16.761 |
C1 | C2 | C3 | C4 | C5 | MEAN | WSV | CV | |
---|---|---|---|---|---|---|---|---|
C1 | 0.069 | 0.040 | 0.068 | 0.080 | 0.107 | 0.073 | 0.374 | 5.134 |
C2 | 0.287 | 0.166 | 0.249 | 0.131 | 0.277 | 0.222 | 1.174 | 5.289 |
C3 | 0.159 | 0.104 | 0.156 | 0.164 | 0.271 | 0.171 | 0.879 | 5.153 |
C4 | 0.447 | 0.654 | 0.493 | 0.517 | 0.286 | 0.480 | 2.628 | 5.481 |
C5 | 0.039 | 0.036 | 0.034 | 0.108 | 0.060 | 0.056 | 0.281 | 5.091 |
C1 | C2 | C3 | C4 | C5 | |
---|---|---|---|---|---|
C1 | (0.500, 0.400, 0.400) | (0.307, 0.694, 0.221) | (0.396, 0.592, 0.293) | (0.180, 0.823, 0.118) | (0.554, 0.408, 0.336) |
C2 | (0.664, 0.336, 0.2480 | (0.500, 0.400, 0.400) | (0.544, 0.438, 0.318) | (0.303, 0.696, 0.221) | (0.700, 0.300, 0.222) |
C3 | (0.552, 0.422, 0.313) | (0.410, 0.571, 0.310) | (0.500, 0.400, 0.400) | (0.316, 0.682, 0.227) | (0.687, 0.323, 0.233) |
C4 | (0.786, 0.235, 0.158) | (0.652, 0.341, 0.257) | (0.618, 0.372, 0.270) | (0.500, 0.400, 0.400) | (0.707, 0.292, 0.214) |
C5 | (0.395, 0.571, 0.329) | (0.275, 0.724, 0.197) | (0.288, 0.716, 0.209) | (0.270, 0.729, 0.190) | (0.500, 0.400, 0.400) |
SF-AHP Weights | Calculations to Obtain Crisp Weights | Crisp Weights | |
---|---|---|---|
C1 | (0.417, 0.560, 0.305) | 10.997 | 0.160 |
C2 | (0.573, 0.415, 0.290) | 15.714 | 0.228 |
C3 | (0.520, 0.463, 0.305) | 14.068 | 0.204 |
C4 | (0.670, 0.322, 0.260) | 18.768 | 0.272 |
C5 | (0.361, 0.613, 0.290) | 9.387 | 0.136 |
C1 | C2 | C3 | C4 | C5 | |
---|---|---|---|---|---|
A1 | (0.1098, 0.2154, 0.2058) | (0.2419, 0.2673, 0.2448) | (0.2864, 0.3623, 0.2977) | (0.2200, 0.1695, 0.1895) | (0.0347, 0.0735, 0.0490) |
A2 | (0.1065, 0.2029, 0.1952) | (0.1358, 0.1782, 0.1868) | (0.2380, 0.3121, 0.2670) | (0.1662, 0.1412, 0.1686) | (0.0461, 0.1114, 0.0892) |
A3 | (0.1321, 0.2801, 0.3046) | (0.1697, 0.2120, 0.2126) | (0.2461, 0.3265, 0.2764) | (0.3666, 0.2425, 0.2387) | (0.0350, 0.0742, 0.0504) |
A4 | (0.0994, 0.1819, 0.1586) | (0.1994, 0.2304, 0.2212) | (0.1614, 0.2260, 0.2126) | (0.2444, 0.1860, 0.2027) | (0.0578, 0.1531, 0.1289) |
A5 | (0.0940, 0.1687, 0.1437) | (0.2758, 0.2919, 0.2620) | (0.1856, 0.2691, 0.2434) | (0.4546, 0.2801, 0.2596) | (0.0367, 0.0808, 0.0570) |
A6 | (0.0923, 0.1647, 0.1384) | (0.2504, 0.2734, 0.2491) | (0.2541, 0.3336, 0.2812) | (0.2004, 0.1601, 0.1838) | (0.0391, 0.0865, 0.0610) |
A7 | (0.1147, 0.2296, 0.2240) | (0.1825, 0.2181, 0.2147) | (0.2380, 0.3193, 0.2741) | (0.4057, 0.2589, 0.2482) | (0.0344, 0.0714, 0.0464) |
A8 | (0.1110, 0.2154, 0.2058) | (0.2843, 0.2980, 0.2663) | (0.3268, 0.3874, 0.3048) | (0.2786, 0.2048, 0.2160) | (0.0350, 0.0735, 0.0490) |
A9 | (0.1098, 0.2154, 0.2004) | (0.3692, 0.3502, 0.2899) | (0.3187, 0.3839, 0.3048) | (0.1369, 0.1201, 0.1497) | (0.0352, 0.0728, 0.0477) |
A10 | (0.1257, 0.2546, 0.2379) | (0.0891, 0.1413, 0.1611) | (0.1654, 0.2404, 0.2245) | (0.1271, 0.1153, 0.1459) | (0.0510, 0.1290, 0.1054) |
A11 | (0.1147, 0.2259, 0.2115) | (0.0849, 0.1352, 0.1568) | (0.1735, 0.2511, 0.2315) | (0.0880, 0.0894, 0.1232) | (0.0401, 0.0907, 0.0669) |
A12 | (0.0835, 0.1400, 0.1072) | (0.3013, 0.3103, 0.2727) | (0.1493, 0.2332, 0.2245) | (0.1662, 0.1436, 0.1724) | (0.0310, 0.0593, 0.0351) |
A13 | (0.1122, 0.2223, 0.2176) | (0.2928, 0.3041, 0.2706) | (0.2703, 0.3480, 0.2882) | (0.3373, 0.2307, 0.2312) | (0.0377, 0.0826, 0.0580) |
A14 | (0.0966, 0.1708, 0.1410) | (0.2164, 0.2488, 0.2384) | (0.1452, 0.2260, 0.2197) | (0.1809, 0.1530, 0.1800) | (0.0818, 0.2625, 0.2899) |
A15 | (0.0751, 0.1167, 0.0819) | (0.0849, 0.1321, 0.1525) | (0.0766, 0.1435, 0.1583) | (0.0733, 0.0777, 0.1118) | (0.0667, 0.1885, 0.1740) |
C1 | C2 | C3 | C4 | C5 | |
---|---|---|---|---|---|
A1 | (0.6659, 0.5855, 0.8490) | (0.7788, 0.8334, 0.9077) | (0.8336, 0.8929, 0.9878) | (0.7490, 0.8126, 0.8099) | (0.5069, 0.2729, 0.5261) |
A2 | (0.6596, 0.5663, 0.8306) | (0.6588, 0.7044, 0.7775) | (0.7879, 0.8334, 0.9334) | (0.6964, 0.7662, 0.7491) | (0.5506, 0.3520, 0.6532) |
A3 | (0.7044, 0.6782, 1.0000) | (0.7028, 0.7570, 0.8372) | (0.7959, 0.8509, 0.9505) | (0.8552, 0.9121, 0.9455) | (0.5081, 0.2746, 0.5315) |
A4 | (0.6459, 0.5325, 0.7616) | (0.7365, 0.7837, 0.8564) | (0.6999, 0.7177, 0.8292) | (0.7698, 0.8373, 0.8474) | (0.5878, 0.4278, 0.7460) |
A5 | (0.6351, 0.5106, 0.7308) | (0.8091, 0.8644, 0.9436) | (0.7303, 0.7780, 0.8895) | (0.9043, 0.9556, 1.0000) | (0.5154, 0.2891, 0.5557) |
A6 | (0.6316, 0.5038, 0.7196) | (0.7867, 0.8413, 0.9168) | (0.8038, 0.8595, 0.9589) | (0.7311, 0.7978, 0.7936) | (0.5247, 0.3014, 0.5695) |
A7 | (0.6747, 0.6067, 0.8795) | (0.7177, 0.7660, 0.8421) | (0.7879, 0.8422, 0.9462) | (0.8780, 0.9317, 0.9705) | (0.5057, 0.2680, 0.5158) |
A8 | (0.6681, 0.5855, 0.8490 | (0.8162, 0.8719, 0.9525) | (0.8678, 0.9211, 1.0000) | (0.7964, 0.8638, 0.8842) | (0.5081, 0.2729, 0.5261) |
A9 | (0.6659, 0.5855, 0.8396) | (0.8804, 0.9323, 1.0000) | (0.8612, 0.9171, 1.0000) | (0.6622, 0.7271, 0.6916) | (0.5093, 0.2712, 0.5208) |
A10 | (0.6939, 0.6430, 0.9021) | (0.5831, 0.6398, 0.7141) | (0.7051, 0.7385, 0.8528) | (0.6496, 0.7178, 0.6799) | (0.5669, 0.3850, 0.6939) |
A11 | (0.6747, 0.6012, 0.8588) | (0.5749, 0.6282, 0.7031) | (0.7155, 0.7536, 0.8667) | (0.5905, 0.6613, 0.6069) | (0.5288, 0.3105, 0.5887) |
A12 | (0.6125, 0.4600, 0.6468) | (0.8300, 0.8866, 0.9656) | (0.6834, 0.7282, 0.8528) | (0.6964, 0.7703, 0.7603) | (0.4905, 0.2392, 0.4665) |
A13 | (0.6702, 0.5959, 0.8690) | (0.8232, 0.8793, 0.9612) | (0.8190, 0.8764, 0.9714) | (0.8369, 0.8976, 0.9253) | (0.5193, 0.2931, 0.5591) |
A14 | (0.6404, 0.5141, 0.7251) | (0.7541, 0.8091, 0.8939) | (0.6777, 0.7177, 0.8434) | (0.7119, 0.7863, 0.7826) | (0.6501, 0.5951, 1.0000) |
A15 | (0.5930, 0.4153, 0.5779) | (0.5749, 0.6222, 0.6920) | (0.5578, 0.5817, 0.7111) | (0.5632, 0.6319, 0.5688) | (0.6127, 0.4858, 0.8315) |
Alternatives | Ranking | |||
---|---|---|---|---|
A1 | 0.9892 | 0.1950 | 0.3269 | 8 |
A2 | 0.8484 | 0.1720 | 0.2843 | 11 |
A3 | 1.0558 | 0.2268 | 0.3645 | 3 |
A4 | 0.8879 | 0.2000 | 0.3142 | 9 |
A5 | 1.0343 | 0.2036 | 0.3415 | 6 |
A6 | 0.9227 | 0.1756 | 0.2996 | 10 |
A7 | 1.0266 | 0.2060 | 0.3422 | 5 |
A8 | 1.0856 | 0.2262 | 0.3688 | 2 |
A9 | 1.0349 | 0.1905 | 0.3307 | 7 |
A10 | 0.7712 | 0.1494 | 0.2526 | 12 |
A11 | 0.6945 | 0.1107 | 0.2076 | 14 |
A12 | 0.8099 | 0.1208 | 0.2352 | 13 |
A13 | 1.1012 | 0.2456 | 0.3877 | 1 |
A14 | 0.9504 | 0.2397 | 0.3577 | 4 |
A15 | 0.5712 | 0.0821 | 0.1633 | 15 |
Alternatives | Complete SF-AHP | Partial SF-AHP | SF-AHP and WASPAS-F | |||
---|---|---|---|---|---|---|
Overall Score | Ranking | Overall Score | Ranking | Overall Score | Ranking | |
A1 | 0.0687 | 8 | 0.0691 | 7 | 0.3269 | 8 |
A2 | 0.0651 | 11 | 0.0646 | 11 | 0.2843 | 11 |
A3 | 0.0698 | 4 | 0.0697 | 5 | 0.3645 | 3 |
A4 | 0.0669 | 10 | 0.0662 | 10 | 0.3142 | 9 |
A5 | 0.0689 | 7 | 0.0684 | 8 | 0.3415 | 6 |
A6 | 0.0677 | 9 | 0.0676 | 9 | 0.2996 | 10 |
A7 | 0.0694 | 5 | 0.0693 | 6 | 0.3422 | 5 |
A8 | 0.0718 | 1 | 0.0726 | 1 | 0.3688 | 2 |
A9 | 0.0692 | 6 | 0.0700 | 4 | 0.3307 | 7 |
A10 | 0.0630 | 13 | 0.0631 | 13 | 0.2526 | 12 |
A11 | 0.0604 | 14 | 0.0611 | 14 | 0.2076 | 14 |
A12 | 0.0645 | 12 | 0.0636 | 12 | 0.2352 | 13 |
A13 | 0.0708 | 2 | 0.0710 | 3 | 0.3877 | 1 |
A14 | 0.0706 | 3 | 0.0713 | 2 | 0.3577 | 4 |
A15 | 0.0532 | 15 | 0.0524 | 15 | 0.1633 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, P.-H.; Tsai, J.-F.; Dang, T.-T.; Lin, M.-H.; Pham, H.-A.; Nguyen, K.-A. A Hybrid Spherical Fuzzy MCDM Approach to Prioritize Governmental Intervention Strategies against the COVID-19 Pandemic: A Case Study from Vietnam. Mathematics 2021, 9, 2626. https://doi.org/10.3390/math9202626
Nguyen P-H, Tsai J-F, Dang T-T, Lin M-H, Pham H-A, Nguyen K-A. A Hybrid Spherical Fuzzy MCDM Approach to Prioritize Governmental Intervention Strategies against the COVID-19 Pandemic: A Case Study from Vietnam. Mathematics. 2021; 9(20):2626. https://doi.org/10.3390/math9202626
Chicago/Turabian StyleNguyen, Phi-Hung, Jung-Fa Tsai, Thanh-Tuan Dang, Ming-Hua Lin, Hong-Anh Pham, and Kim-Anh Nguyen. 2021. "A Hybrid Spherical Fuzzy MCDM Approach to Prioritize Governmental Intervention Strategies against the COVID-19 Pandemic: A Case Study from Vietnam" Mathematics 9, no. 20: 2626. https://doi.org/10.3390/math9202626
APA StyleNguyen, P. -H., Tsai, J. -F., Dang, T. -T., Lin, M. -H., Pham, H. -A., & Nguyen, K. -A. (2021). A Hybrid Spherical Fuzzy MCDM Approach to Prioritize Governmental Intervention Strategies against the COVID-19 Pandemic: A Case Study from Vietnam. Mathematics, 9(20), 2626. https://doi.org/10.3390/math9202626